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Abstract— In this paper we present some new results on the 
problem of robust estimation for stationary multiple time series 
processes.  For these processes, we consider the prediction, 
smoothing and causal filtering problem in cases for which the 
minimum achievable mean square error is expressed in a closed 
form in terms of the spectral density matrix of the signal.  We 
consider three convex classes of spectral uncertainties, and 
develop robust solutions for these cases.   

I. INTRODUCTION  

The subject of robust estimation of signals has received a 
lot of attention in the engineering literature [1, 2, 3]. In this 
paper we present some new robust estimation results for 
multiple stationary time series.  We consider robust linear 
prediction, filtering and interpolation of second order random 
processes.  For the stationary, we assume that the spectral 
density matrices are incompletely known, and incomplete 
knowledge is expressed as membership to a convex 
uncertainty class. We then seek minimax robust linear filters, 
in a game theoretic sense.  We determine very general 
conditions for existence of minimax robust solutions. 

II. STATIONARY PROCESSES  

In this section we assume that a noisy version of a 
multivariate stationary random process is observed.  We 
investigate both discrete-time and continuous-time cases.  Let 

 be the observation record, consisting of the d-
dimensional process Y(t).  The observation interval I

}It{Y(t); Oε
0 will be 

a subset of either the continuous or discrete time axis.  The 
observations will be either noisy or noiseless. In general: 

OI  tεN(t);  X(t)  Y(t) +=              (1) 
where X(t) is the signal component and N(t) the additive 
noise.  
Suppose now that a linear, time invariant filter with transfer 
function H operates on {Y(t)} in order to produce an estimate 

 of the signal X(t).  )t(X
∧

Then, the covariance matrix of the error X(t) -  has the 
form:  [5] 
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for discrete time observations, and [5] 

  (iw)}dw*HH(iw)N(iw)
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for continuous time observations, where S, N denote the 
spectral density matrices of X(t), N(t) correspondingly, and 
H* is the transpose conjugate of the matrix H. 

Classical Wiener filtering theory [5] has resolved the 
problem of minimizing the error covariance matrix for both 
continuous and discrete time, when S and N are known.  In 
more recent work, Chen and Kassam [6] have determined 
robust solutions to the multivariate robust noncausal filtering 
problem (2), (3). 

In the preceding formalism, the data record is doubly 
infinite, and the mean square error expressions Pd, Pc are 
simpler.  When the causality assumption is imposed, the data 
record is semi-infinite, and the solutions are more complex.  
Hosoya [4] determined the robust solution to the linear 
prediction problem for -contaminated spectra and scalar 
processes, and Vastola and Poor [7], and Franke [8], found 
robust solutions for more general cases. 

ε

The minimum mean square error in one step prediction 
based on the infinite past, for the scalar process case is [5] 

∫
−
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π

π

1
1 }d)logS()exp{(2(S)P λλπ        (4) 

In this paper, we present some robust estimation results for the 
d-dimensional process case.  For a d-dimensional process, 
with spectral density matrix S( λ ), the minimum trace of the 
optimum prediction error covariance matrix, Pd(S), is: 

}d|)S(|logd)exp{(2(S)traceP(S)g
π

π

1
dd λλπ ∫

−

−==  (5) 

The optimum causal filter H0(z) is found through the spectral 
factorization of S( λ ): [5] 

)(eΦ*)Φ(eπ)(2)S( ii1 λλλ −=         (6) 
where (z) is holomorphic within the unit circle |z| = 1, with 

(0)=I
Φ

Φ d.  The transfer function of the filter giving the best 
linear-step predictor, is: [5] 
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where [A(z)]+ denotes the terms of positive powers of z only 
in the Laurent series expansion of A(z). 

The functional  
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is convex.  Thus, maximizing gd(S) of eq. (5) over convex sets 
of S, is a convex optimization problem. 

Another case of interest in discrete-time is the 
interpolation or smoothing problem where we let N=0 and the 
doubly infinite set is available for linear 
estimation of S(t) in the time-discrete case, we have the 
interpolation problem.  The trace of the error covariance 
matrix is the optimality criterion.  The resulting optimum error 
covariance matrix is: [5] 

t}k{k,IO ≠=

∫
−
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π
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The optimal transfer function H0 has the expression: 

∫
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For a positive definite matrix A, we have the identity: 
log det A = trace log A. 

From eq. (9), using the previous identity, we find: 
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As a measure of the error covariance matrix for the 
interpolation problem we use the functional –G(S).  We will 
show that G(S) is concave with respect to S.  Let 
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The second derivative of H(a) is: 
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hence – (a) is nonnegative definite matrix, and thus H
o(a)]Htr[)(SG a ≥−=−  

and in conclusion G(S) is a convex functional of S, because –
G(S) is concave. 

For the case of nonzero additive noise N(t), and under the 
constraint of realizable or causal filters H, there is no closed 
form expression of the resulting minimum error covariance 
matrix in the general case, and the problem is very intractable.  
There is one exception:  when the noise is white, some 
analytical expressions for the minimum error are available. 

For continuous time observations, white noise N(t) with a 
constant spectral density matrix NO, and for optimal causal 
filtering, the following expression for the minimum 
achievable error covariance matrix is available: [9] 

=⋅= −
Δ

1
2d ],[)(h OOd NNStrPS              
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The corresponding expression for discrete time observations 
seems to have been derived only for the scalar (d = 1) process 
case, and has the form: [10] 
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   (13) 

No multidimensional extension of the above result seems 
available. 

Due to the concavity of the log function, it is very easy to 
demonstrate that both hd(S) of eq. (12) and q(S) of eq. (13) are 
concave functionals of S, a result that will be used in the 
sequel to characterize minimax robust solutions.   

III. ROBUST ESTIMATION  

Let us denote by W(H, S) the generic expression for the 
trace or determinant of the error covariance matrix in 
estimating X(t) from }It{Y(t); Oε  as in the preceding section, 
where H is the transfer function of the linear estimator filter, 
and S the signal spectrum.  We assume fixed noise spectral 
density.  Two cases for the observation set IO are considered: 

};{};;{ 0201 tkkItkkI ≠=≤=  where X(t) is the signal to be 
estimated at time t, for t either discrete or continuous.  Thus, 
either causal filtering cases or noiseless smoothing in discrete 
time are considered [11, 12].  The functional W(H, S) is 
convex in H and concave in S.  Due to the convex-concave 
nature of W(H, S), there is a minimax value, a conclusion that 
follows from the general minimax theorem of Ky Fan [13] and 
convex optimization theory, e.g.: (Rockafellar [14]). 

== ),(minmax),(maxmin
11

SHWSHW
HHFSFSHH εεεε

    

).(max)*,(max*)*,( SVSHWSHW
FSFS εε

===  (14) 

where H1 is a convex class of filters, and F is a convex 
uncertainty class for the spectra S.  Note that the procedure for 
finding a robust filter H* is to maximize over FSε  the 
minimized over H error expression, denoted V(S). 

We can now determine robust filters through the least 
favorable or maximizing spectra.  Three convex classes of 
spectral density matrices will be considered, denoted as C1, 
C2, C3. 

);()()(0],,[);({1 λλλππλελ iii bsaSC ≤≤≤−=             

},,1;)( dipds ii ==∫
−

λλ
π

π

         (15) 

where )(si λ ,…, )(sd λ are the eigenvalues of S(λ ), )(a i λ ,  

)(bi λ  are known lower and upper spectral bounds, and pi are 
known constants.  This class can be also defined for time 
continuous problems, substituting w forλ and the real axis 

],[-for  ),( ππ+∞−∞ . 
The second class is defined through fixing the total signal 

power in given frequency bands, i.e.: 
 Let  be a disjoint set 

of frequency bands covering the spectrum 

0II],,[IUUII jim21 =∩−= ππ
],[ ππ− .  We 

define the convex class: 
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where pk is the total power of all d components in the spectral 
band Ik.  The third class of spectra is defined as a convex 
combination of m known spectra: 

∑ ∑
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1i

m
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iiii3 }oq,1q),(Sq)(S{C λλ     (17)   

We are now in a position to state and prove two theorems that 
will be used to determine robust solutions. 
 
Theorem 1 

Let { }d,...,1i)];(s[G ii =λ be concave and differentiable 
functions of )(si λ , let )(1 λs ,…, )(sd λ be the eigenvalues 

of )(S λ , and 1C)(S ελ .  Define the functional: 

λλ
π

π

d])(s[G]S[G
d

1i
ii∫∑

− =
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Then, G[S] is maximized over 1CSε  by the functions 

[ ], where: )(s,),(s 0
d

0
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)]](b,cmin[),(amax[)(s kkk
0
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where ck is uniquely chosen so that:  .)( kk pds =∫
−

λλ
π

π

Theorem 2 
Let G[S] be as in eq. (18).  The maximum of G(S) 

over 2CSε , where C2 is defined by eq. (16), is achieved by the 
functions: 

;m,...,1k,d,...,1i  ,Ifor apq)(s kik
1

k
0

k === − λελ   (20)       
where qk is the measure of Ik and the nonnegative constants 
{ai} sum to 1: 
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Then, the maximizing  is found as the vector 
that maximizes g(a) under the conditions (21).  

)aa(a 0
d

0
1

0 =

(Note: complete proof for both Theorems can be found in the 
extended version of this paper.) 

We can now apply Theorem 1 for robust estimation, based 
on the minimax saddle point equation (14), for various cases.  
Consider the prediction problem, for a time series based on 
the infinite past.  For the case of scalar process, the minimum 
mean square error is given by eq. (4), and is directly related to 
the “spectral entropy” H(S) of the process: 

∫−
−=

π

π
λλπ d)(Slog)2()S(H 1 ,        (23) 

).S(Hexp)S(P1 =          (24)        
More generally, for the d-dimensional process with spectral 
density matrix S( )λ , the entropy per dimension is: 

         (25)  ∫−
−=

π

π
λλπ d)(Sdetlog)d2()S(H 1

and the trace of the optimum prediction error matrix Pd(S) is: 
).S(Hexp)S(P tr)S(g dd ==         (26) 

According to the general result (14), and equations (23)-(26), 
the robust prediction filter corresponds to the maximum 
entropy process.  This observation and connection was made 
in the survey paper of Poor and Kassam [3].  In this paper, we 
expand it for d-dimensional processes and new spectral 
uncertainty classes.  We seek the maxentropic process that 
maximizes H(S).  Consider the class C1 of spectral density 
matrices, defined by eq. (15).  We note that: 
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where )(),...,(1 λλ dss are the eigenvalues of S )(λ .  

According to Theorem 1, H(S) is maximized over 1CSε by the 
spectral density matrix S with eigenvalues: 

)}(s,),(s),(s{ 0
d

0
2

0
1 λλλ  

expressed by equation (19). 
Consider next the maximization of H(S) over the spectral 

class C2, defined by eq. (16).  We identify the concave 
functions ))(s(G ii λ of theorems 1, 2 by: 

)(slog))(s(G iii λλ =           (28)  
Then, using Theorem 2, we find that the maximizing spectral 
density has eigenvalues  
      )}(s,),(s),(s{ 0

d
0

2
0

1 λλλ
expressed by equation (20), and parametrized by the 
nonnegative vector a defined by eq. (21).  The optimum value 
of a is found as the argument maximizing the function: 

∑∑
= =

−=
d
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m

1k
ik

1
kk ]apqlog[q)a(g      (29) 

In Section II,   we have also proven that H(S) is a concave in 
S functional.  Therefore, the maximum entropy H(S) over the 
convex class C3 defined eq. (17), is determined by a convex 
Kuhn-Tucker [13] maximization: 

∫ ∑− =
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BB
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where 

    (31)                    
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m

1i
iim1 ∑

=
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We consider next the discrete time robust interpolation 
problem, for the three classes of spectra, C1, C2, C3.  The 
robust interpolation is achieved by an interpolation filter HO of 
eq. (10), for a spectrum S that minimizes the criterion G(S) 
given by eq. (11).  It is shown in Section II that G(S) is a 
convex functional of S, hence we have a convex minimization 
problem.  However, we cannot find any more explicit 
solutions for the general classes of spectra C1, C2, C3, as we 
could do for the prediction error.  We will consider more 
restrictive classes of spectra.  Let  

}A)(AF)(S);(S{C T
O λλλ ==       (32)                    
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where A is an orthogonal constant matrix, and 
)](s),...,(s[diag)(F d1 λλλ =  is the diagonal matrix 

consisting of the d eigenvalues )}(s),...,(s),(s{ d21 λλλ of 
S )(λ .  For S )(λ in the class CO, we have: 
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We are now in a position to seek the minimizing spectrum 
S of the class .  With a slight modification of 
Theorem 1, we observe that the minimum of the integral: 

1O CC ∩

λλ
π

π
d)(s 1

k∫−
−  

for sk(λ ) that satisfy the conditions: 

   kkkkk pd)(s),(b)(s)(a =≤≤ ∫− λλλλλ
π

π

is achieved by , defined by eq.(19). )(s o
k λ

Next, we consider the problem of robust causal filtering, 
for both discrete and continuous time.  For the discrete time 
case, the minimum mean square error expression for filtering 
in white noise is available only for the scalar (d = 1) case, and 
expressed by q(S), of eq. (13). 

 The robust causal filter corresponds to the spectral 
density that maximizes q(s).  We consider the case of known, 
fixed noise level No, and incompletely known signal spectrum 
S(λ ).   

In this case, the robust filter corresponds to the spectral 
density S that maximizes the integral: 

∫
−

−+=
π

π

λλ d)](SN1log[)S(B 1
O       (34)     

For d=1, the spectral density of the class C1 that maximizes 
B(S), is: 

)]](b,cmin[),(amax[)(SN 01
O λλλ =−    (35) 

where c is the value that is chosen so that  has given 
total power.  This conclusion is a special case of Theorem 1. 

)(S0 λ

The spectral density of class C2 that maximizes B(S) is the 
piecewise constant: 

m,...,1k;pq)(SN k
1

k
01

O =⋅= −− λ     (36) 

Finally, the maximization of B(S) over 3CSε  is a Kuhn-
Tucker convex optimization problem [13]. 

Consider the problem of robust causal filtering in 
continuous time, in the presence of white noise.  The closed 
form expression for the minimum mean square error is eq. 
(12).  Suppose N0 is the known covariance matrix of the white 
noise, and {z1(w), z2(w), z3(w), …, zd(w)}are the eigenvalues 
of the matrix Z(iw) = S(iw)N0

-1.  We assume that Z(iw) is a 
member of the uncertainty class C1 of eq. (15), but with 

replacing the integration limits ),( +∞−∞ ],[ ππ− .  By an 
obvious modification of Theorem 1, we find that the 
maximum of hd(S) of eq. (12) is achieved by functions:  

)]]w(b,cmin[),w(amax[)w(z kkk
0
k =    (37) 

where is chosen so that  integrates to a given value 
p

kc )(0 wzk

k. 
Note that an additional constraint needs to be placed on the 

eigenvalues {zk(w)}, namely that all of them are zero outside a 
finite interval.  This is necessary in order to keep hd(S) finite.  

 If [-W0, W0] is the w-interval outside of which all 
eigenvalues are zero, we can replace the limits ),( ∞−∞ at the 
integral (12) by [-W0, W0]. 

Under the finite support assumption, we can now proceed 
and solve the robust causal filtering problem for the class C2 
of eq. (16).  We consider a subdivision {I1, I2, … Im}of the 
spectral band [-W0, W0], and then define C2 accordingly.  The 
uncertainty class is now chosen so as the matrix Z(w) is in C2.  
Using Theorem 2, we find the set of eigenvalues {zk(w)} that 
maximize hd(S): 

.m,...,1k  ,d,...,1i,Iw for apq)w(z kik
1

k
O

k === − ε   (38)  

where qk is the measure Ik, and }{ iλ are as in (21).  The 
optimum a is found by maximizing the function  

∑∑
= =

−+=
d
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m
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1
kk ]apq1log[q)a(g       (39)                    

under the constraints (21). 
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