
Learning Control Architectures by Robotics Application

R. MONTUFAR-CHAVEZNAVA, V. DE LA CUEVA HERNANDEZ AND M. ALI YOUSUF
GIRATE Group, Engineering Division

ITESM Santa Fe
Av. Carlos Lazo 100, Col. Santa Fe, Del. Álvaro Obregón, México D. F.

MEXICO

Abstract: - Engineering students starting their studies in engineering find it difficult to understand and appreciate
the value of undergraduate education. Our group has experimented with various robotic projects for diverse
engineering students designed specifically to improve their learning and understanding of the subjects taught. In
particular, we are interested in teaching the basics of control architectures, and robotics has given us the clue to
get this objective. The wide variety of projects, their quality and originality gives us confidence that these
students can become far more fruitful engineers if we employ the right strategy of education. In this work we
present some developed projects related to control architectures applied to robotics, the results obtained and the
gained experiences.

Key-Words: -Control Architectures, Robotics, Control Applications.

1 Introduction
Actually, the control of many systems is carried out
by control architectures. We can find in literature
diverse architectures such as behavior based,
reactive, deliberative or multiagent architectures. In
this work we present some instances to motivate the
learning of control architectures by a specific robotic
application. The instances we present were developed
by diverse undergraduate students.

At first, considering robot teleoperation on
Internet is a complex problem, we have proposed and
developed a multiagent control architecture, where
information streams, including video data and voice
commands, transmitted on Internet, are processed and
managed using intelligent agents to successfully
execute specific robotic tasks.

The second application deals with the design and
construction of an educational indoor cleaner robot
named Crabot. Crabot is a Lego based autonomous
mobile robot, which represents the prototype of a real
robot for house cleaning, which requires a minimum
of intelligence. Crabot is provided with necessary
items for floor cleaning such as a small vacuum
cleaner and a brush. The control system is based on
the subsumption architecture with memory and
offers a repertoire of behaviors for navigation and
cleaning. This kind of control system allows mixing
real-time distributed control with behaviors triggered
by robot sensors. The processing is carried out in a
pair of Lego RCX microcomputers. Crabot was
tested in an artificial world and in competition where
its performance was very acceptable.

Finally we present a control architecture based on
membrane systems emulating a behavior based
architecture. The idea is to exploit the parallel
computing characteristic of membranes in a specific
robotic application: house cleaning. We try to map
behaviors to membranes to build the proposed
architecture. The developed architecture was tested in
an educational Lego robot: Crabot M.

2 Control Architectures Essentials
From robotics perspective, control architecture is the
interaction between sensors, processors and actuators
to produce an intelligent behavior according the
world where the robot interacts. The importance of
control architecture relies on the fact that mobile
robots are systems with a high degree of complexity,
and then, if the system is more complex, the
organization of the components is more important. A
mobile robot is also considered as a system where the
inputs are sensorial data and the outputs are all
possible commands to actuators. In brief, the
architecture is the interface between sensors and
actuators.

The architecture determines the robot behavior
when interacting with the world. In this sense, the
architecture selects the stimuli to accept, search or
produce; it also determines how to select the most
appropriate action to execute according the
perception. Briefly, the architecture must have the
capacity for selective perception and adequate action.
Traditionally, there are three robotic architectures:

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 222

Deliberative, Reactive and Hybrid. There is an
additional class inspired on ethology: Behavior
Based.

The different responses produced by the
architectures allow establishing comparisons
evaluating each approach, attending criteria such as:
robustness, reactivity, finality and scalability.

Besides, we can find new control architectures
proposals, which can fit perfectly in any of the three
architectures mentioned above, such as the membrane
architecture presented in this work.

Finally, the multiagent architecture, employed in
one of the developed projects presented in this work,
corresponds to a Belief-Desire-Intention (BDI)
architecture, which is one of the most successful
agent architecture. The properties of this architecture
resemble a behavior based architecture where agents
can be considered behaviors.

Next, we briefly describe the principal control
architectures for robots previously mentioned.

2.1. Deliberative Architectures
Architectures traditionally considered deliberative are
heiress to classic artificial intelligence research. They
emerge first in the world of mobile robotics
generating behavior, and being dominant until the
end of 80’s. They produce behavior executing a plan,
and reasoning on certain symbolic model of the
world. The robot intelligence in locate in a module
named the planner, which deliberates on the world
model symbols and produces an explicit actuation
plan. The plan is a sequence of actions to execute to
pursuit the goal.

The epistemological origin of deliberative
approach is found in the Cartesian philosophy that
considers the soul as the being, which decides the
behavior [1]. It sinks its roots in the cognitive and
represents a complete theory of the intelligent
operation. Naturally, the artificial intelligence will
look for approbation, testing the capacity to generate
intelligent behavior.

The principal characteristics of these architectures
are the necessity of planning and the modeling of the
world, the use of hierarchy and the execution of the
traditional cycle sense-model-plan-act.

2.2. Reactive Architectures
At the end of 80’s, the lack of flexibility in robots
controlled by deliberative architectures was notable.
Perhaps it was the reason many researchers began to
think again how to generate behavior, and the use of
plans, which was the masterpiece of the deliberative

paradigm [2, 3, 4]. For instance, Firby speaks about
the necessity to monitor the plan execution
continually because there are events that cannot be
anticipated due to failures when acting, or to the
dynamic changes of the world. As result of this
rethinking, the reactive approach was born. The
reactive architecture, guided by the works of Rodney
Brooks [5, 6] caused an important turn in the way to
produce behavior

The new approach points at the necessity of a
most direct link between sensors and actuators,
avoiding intermediate layers employed by
deliberative robots. In this way, events reaction is
faster. The world model and management of symbols
were considered unnecessary. In this way the reactive
approach is sub symbolic, and argues that it is not
necessary the symbolic representation or the
reasoning of symbols to produce behavior. According
to Murphy [7], this approach reduces the essential
primitives to sense and act, which are directly linked,
and left besides the planning.

If epistemologically the deliberative paradigm is
related to the classic cognitive and the introspection,
then, the reactive approach is related to conducts, and
specifically to connectionism. In fact, the
fundamental hypothesis is that behavior can be
produced as an amalgam of reflex, which connects
sensorial data to actuator values.

2.3. Behavior Based Architectures
Behavior based systems (BBS) emerge inside the
reactive approach, and the most representative
models are the works of Rodney Brooks [5]. Similar
to Mataric [8], the reactive aspects have been
separated from distribution and emergency behavior
aspects. The principal BBS’s characteristics are the
control distribution and the perception in many units
operating in parallel. This decomposition contrasts
with the functional decomposition and the monolithic
control, typical of deliberative architectures.

The underlying idea is that in a system complex
behavior is an emergent property, which arises from
the interactions between the basic components and
the environment. Each component is a rapid cycle,
reactive, from sensors to actuators, which have their
own objective. In general, each unitary component
implements the adequate reactions according the
stimuli, accessing directly to necessary sensorial data
and emitting control to actuators. Then, this paradigm
also proposes the perception distribution. In this
sense, this architecture does not need a central
representation of the world or symbolic models to

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 223

produce behavior.

2.4. Hybrid Architectures
As a consequence of the limitations observed in the
reactive and deliberative approaches [6, 9] many
hybrid approaches emerged, pretending to mix the
advantages of both architectures as a unique
architecture. Actually, hybrid architectures are the
most employed. It is difficult to find an autonomous
robot, which does not have some reactive
components and certain degree of deliberation. In
fact, there is an extended consensus in the fact that
the reactive part is the right way to perform low-level
control, perhaps supported by its practical success.

The differences inside the hybrid architectures are
principally the way to introduce the deliberative part
without fissures and breaking the reactive operation.
In this way, there are hierarchic systems that employ
symbolic deliberation as principal motor, but they
allow the activation of some basic reactive routines
as primitive actions.

This descendent essence appears in concrete
architectures as Saphira [10] or TCA [11]. Other
hybrid approaches have a marked ascendant essence
as RAP by Firby [12], where small actuation units are
built in the reactive part, introducing re-planning, or
the DAMN architecture [13] that introduces some
deliberative behaviors in a reactive system.

The principal characteristics of the deliberative
systems (objective oriented, planning, tasks
decomposition in subtasks and modeling) and those
offered by the behavior-based architectures
(reactivity, world oriented) are recommended for a
real robot. A robot in the real world needs to have
both capacities, it needs to be reactive to work in
higher dynamic worlds but they also need to be able
to carry out complex tasks that may need certain
planning.

The behavior (sense, planning and act) in hybrid
approaches is organized as two interrelated blocks.
The first one is in charge of planning, and interacts
with the second one, which constantly executes
associations between sense and act. Then, the
organization will be: planning, sense-act.

3 Multiagent System Essentials
The agent concept is important in artificial
intelligence and computer science. An agent is
considered a hardware or software based computer
system that posses autonomy, social ability, reactivity
and proactiveness. Furthermore, an agent is
envisioned or implemented using concepts that are

more usually applied to human beings [14]. Mobility,
veracity, benevolence and rationality are other
particularities eventually discussed in the context of
agency.

We can define intelligent agents as systems that
execute an unsupervised labor and apply some degree
of intelligence to perform their job. The intelligence
can be almost insignificant but it includes some
measure of learning from past experiences. In this
way the agent can be trained to be more successful in
the future. Some intelligent agents can interact with
another. At present, intelligent agents are used to
model simple rational behaviors in distributed
applications.

Multiagent system (MAS) is defined as a loosely
coupled network of agents that interact to solve
problems that are beyond the individual capabilities
or knowledge of each agent [15].

The principal characteristics of MAS are they have
a limited vision due the possession of a deficient
information or ability; they do not have a global
system control; their information is distributed; and
their computation is asynchronous. Alternatively,
MAS presents other characteristics, such as the
ability to solve problems considered enormous for a
sole agent or allow interconnection and
interoperation between multiple agents.

MAS follows the lineaments of agent architecture.
Agent architecture is considered a particular
methodology for building agents, which encompasses
techniques and algorithms that support this
methodology [16].

As mentioned in previus section, the principal
kinds of control architectures are deliberative,
reactive, hybrid and behavior based architectures.
However, one of the most successful agent
architecture is the deliberative Belief-Desire-
Intention (BDI) architecture [17].

The BDI architecture is based on the
correspondence between beliefs, desires and
intentions with reciprocal identifiable data structures.
The identification of beliefs, desires and intentions is
beneficial when the system must communicate with
humans or other agents and it is desired the
simplification in construction, maintenance and
verification of application systems.

BDI architecture consists of three dynamic data
structures representing the beliefs, desires and
intentions of agents, combined with an input queue of
events [18]. This architecture allows updating and
querying operations on the three data structures,
where update operations are subject to compatibility
requirements.

BDI architecture captures the theory of practical
reasoning, where intentions play significant and

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 224

distinct roles in practical reasoning and cannot be
reduced to beliefs and desires [19]. The BDI
architecture is based on a closed set of beliefs, desires
and intentions and the required probability
procedures are not computable.

4 Membrane Systems Essentials
Membrane computing was introduced as an answer to
the metaphor: “A living cell is a computer and the
processes taking place are computations” [20]. The
principal characteristic of living cells is the complex
compartmentation by means of a membrane structure
where multisets of chemical substances are processed
(evolve) according to some prescribed rules.

A membrane structure is a hierarchical
organization of membranes contained into a skin
membrane, where the skin confines the system from
the environment. A membrane labels a region,
considered the space between the membrane and, if
any exists, the inner membranes. An elementary
membrane does not contain membranes inside.

We can allocate sets or multisets of objects (data,
information) into regions of a membrane structure. A
multiset is a simple set containing multiplicities of
the objects; it means every object can appear in a
number of identical copies in a given region. Fig. 1
shows the basic membrane structure.

Fig. 1. The membrane structure. We can appreciate the
skin (the main membrane) confining the system, some
membranes, elementary membranes and regions. We
observe that each membrane is labeled; this is useful when
we design the architecture following a hierarchical
representation.

The objects evolve according to some rules, which

are associated to the regions. The rules specify the
object transformations and the transferences between
regions. The rules are employed in a non-
deterministic maximally parallel mode, it means, the
rules to be applied to objects are selected in a non-
deterministic mode. Sometimes, the rules preference

is considered to provide priority between rules.
The membrane structure and the objects define the

configuration. The use of rules defines the transitions
between configurations. A sequence of transitions is
considered a computation.

The membrane systems consider that halting
computations are successful; it means we have
reached a configuration where no further rule can be
applied. A successful computation is associated to the
result.

Finally, we can say that membrane systems can be
used to solve problems by means of generation,
computation and decision, such as robotic
architectures do.

5 Application Projects
We have designed several projects to teach control
architectures. These architectures are directly applied
to specific robotics tasks. The decision to employ
robotics projects to teach control is due to a general
observation: the materialization of the abstraction
present in different theoretical topics is a sort of
discovery for the students. Simply, we motivate the
basic student curiosity.

Some of the designed projects are described
below.

5.1. Telerobotics: Multiagent Architecture
Students have designed an architecture composed of
five agents, as shown in Fig. 2. The modularity of
MAS allows to the architecture increases their
capabilities adding more agents for new tasks as
necessary. Modularity provides flexibility to the
system and that is the principal reason the MAS
architecture was chosen. In addition to scalability,
system restructuring is also possible in an easy way.

The system was developed in Java, and it is
portable to almost any operating system with minimal
changes.

The user interacts with the robot using a Web
browser to connect to a Web server installed on the
robot computer. All communication between agents
is performed using a communication layer. Next we
describe the developed agents:

Receptor agent: This agent receives commands from
the servlet, then classify and transmit them to the
corresponding agent. The possible commands are
connect to simulator, connect to robot, go, stop,
increase speed, turn left and turn right. The agent
also obtains data information from the robot, such as
speed or position. It also can send commands to start
or stop the video transmission.

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 225

Video agent: This agent captures video from the
webcam located on the robot and establishes the
client communication to send the video. It responds
to commands from the receptor agent.

Interpreter agent: The interpreter agent establishes
communication to the client to receive oral
commands using RTP (Real Time Protocol). It
recognizes and interprets speech, and then sends
messages to controller agent for robot movement.

Controller agent: It executes all received commands
from interpreter or receptor agents. It is incharge of
robot locomotion. It is continuously monitoring
sensors to detect approaching objects and avoid
collisions or dangerous situations.

The students also have included a servlet agent in
the architecture. A servlet is a program that runs on a
Web server, acting as a middle layer between a
requests coming from an HTTP client and databases
or applications on the HTTP server. In this case, the
servlet mediates between the user interface and the
receptor agent.

5.2. Crabot: Subsumption Architecture
In this section we describe the architecture developed
for Crabot, a subsumption based architecture with
memory; and some additional aspects as behaviors,
communication and hardware. The subsumption
architecture is a particular behavior based
architecture.

Control Architecture.
The architecture was programmed in NQC, which is
a reduced C language specific for the RCX (named
bricks). Students employ a pair of bricks, one for
cleaning and other for navigation. As mentioned
above, the developed architecture is the subsumption
with memory, based on the approach of Brooks [6].
We developed a set of actuation modules to sense
relevant stimuli and produce a set of observable
behaviors.

The subsumption with memory architecture offers
a strategy to combine real time distributed control
with behaviors triggered by sensors. The principal
objective of this architecture is decomposing tasks in
serial modules or simple behaviors.

The modules operate in asynchrony and are
arranged as layers in a behaviors hierarchy: the upper
level module corresponds to the robot objective,
which is reached by executing all mediators in the

scheme. The modules link perception and action and
this correspondence represents a kind of behavior in
the sense that each module increases the robot
spectrum of abilities.

The modules are a collection of augmented finite
state machines (AFSM). An AFSM is an automaton
with timer; an input signal that comes from sensors or
other AFSM; and a signal output that is sent to robot
actuators or other AFSM. An AFSM can inhibit the
input of another, connecting its output to the registry
of the input (in this case, the message in the registry
is substituted by the suppressor message); an AFSM
can also suppress the output of another, connecting
its output to the output of the other depending on the
perceived sensor data. These mechanisms are the
essence of the resolution of conflicts and establish the
priority of the behaviors. An ASFM cannot share
states and, in particular, cannot read the registries of
another.

In this architecture, we establish one by one the
relationships between behaviors (inputs, outputs,
suppression and inhibition) to obtain the desired
robot behavior. Fig. 2 shows the architecture and
connections between sensors, modules and actuators.

The arbitration between behaviors is carried out by
inhibition and suppression mechanisms. These
mechanisms do not consider the fusion of commands,
it means, it is not possible to activate two behaviors
at the same time.

Fig. 3. The architecture control for Crabot: Relationships
between inputs (sensors), behaviors and outputs
(actuators).

Memory: The memory is an enhancement to
subsumption. It is connected to the robot behaviors
and provides memory to the robot. The memory of
Crabot is a register to indicate when the garbage was
sensed. If the garbage was not sensed, the Crabot
executes the cleaning behavior again. The memory
inclusion in the architecture is shown in Fig. 4.

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 226

Deliberative Architectures
1) Cleaning. It is activated when Crabot senses
garbage in the environment according the
information provided by any of two light sensors.
The cleaning brick performs cleaning. This behavior
inhibits the flow of other behaviors when it sense
garbage in the world. If the light sensor does not
detects the garbage, it stops the inhibition to
behaviors situated in the lower levels and the robot
executes another behavior, following the rules
dictated by the state. At programming level, when the
cleaning brick senses garbage, it turns on the brush,
the vacuum cleaner and sends the message
SendMessage(1) to the navigation brick, which
execute a sequence to go ahead and back repeatedly
to clean.
2) Unload. It is employed to unload the garbage. The
information provided by the couple of light sensors in
the cleaning brick activates this behavior and inhibits
the flow of other commands. When the sensors detect
the trash area, the cleaning brick opens the container
and sends the message SendMessage(2), and then
navigation brick stops. After the task was completed,
the inhibition to other behaviors concludes.
3) Go ahead. It is activated following the information
provided by touch and light sensors. The navigation
brick executes this behavior. “Go ahead” suppress the
outputs of other behaviors when the path is free of
obstacles, there are no dirty places, or the robot is not
located in the trash area.
4) Go back and turn. It is activated by the navigation
brick and depends on the information provided by the
touch sensors. The robot turns every time it finds an
obstacle and continues moving ahead until other
behavior is activated.

Fig. 4. The subsumption architecture with memory used
in Crabot. We defined four basic behaviors for cleaning
and navigation: Unload, Cleaning, Go ahead and Go back
and Turn.

Communication
Messaging from cleaning to navigation bricks carries
out communication between bricks. The messages are

sent using the infrared port of RCX.
There is a different message for every activated

behavior. When the cleaning brick senses garbage, it
sends the message SendMessage(1), associated to the
behavior Cleaning. If the trash area is detected, the
message SendMessage(2) is sent, which is related to
the behavior Unload. If none of the mentioned
situations is detected, the message SendMessage(0) is
sent. This message means Go ahead, and Crabot is
dedicated exclusively to wander.

Hardware
Crabot was built with a couple of Lego Mindstorms
kits. These kits include two kinds of sensors: touch
and light sensors. We can detect obstacles using the
touch sensors. We can know if an object was detected
by reading the collision status in the sensors. We can
detect the light intensity or a color using the light
sensors. These sensors deliver values from 0 (white)
to 256 (black).

The dimensions of “Crabot” are a base of 25×30
cm2 and a high of 25 cm. It weights 1.5 kg. The robot
base is a differential model with two wheels
controlled by independent motors at front and two
fixed wheels at back for stability. Crabot has two
touch sensors and two light sensors at front. Light
sensor point out to the floor to detect garbage or the
trash area. A couple of motors control the wheels, a
third motor is employed to clean the garbage
container and a fourth motor activates the brush
situated at front of Crabot.

The garbage container was adapted as a slipper
system to unload the garbage. The container has also
a linear brush for cleaning and protection of the
gages. We adapt a small vacuum cleaner at back of
Crabot. The vacuum cleaner is turn on and off
automatically. Crabot is shown in Fig. 5.

Fig. 5. The cleaning system and container of Crabot.

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 227

5.3. Crabot M: Membrane Architecture
The membrane architecture was programmed in the
core of an educational robot based on the Lego
Mindstorm kit: Crabot M. The architecture and the
robot were configured for cleaning purposes. It was
necessary to add some extra sensors and actuators
suitable for our purposes. The robot was configured
with a couple of bricks, one for actuators control and
other for sensor readings and basic functions. The
bricks are able to process up to ten tasks in parallel
and can be programmed in specific Java or C
languages. The use of C allows the use of threads,
providing the capability of carrying out parallel
processing.

In the case of the control architecture, students
carefully carry out the definition of rules and the
communication between membranes to preserve the
schema states and arbitration. The proposed
architecture is composed of the skin and eight
membranes, which are defined as follows:

Sensors membrane: It is essential in the architecture
because it is in charge of getting all information from
the world. This membrane reads data from sensors
and processes it to send messages to other
membranes.

Light sensor membrane: It reads a value between 0
and 100 and passes it to the upper membrane. The
value is got from a photo resistor and its magnitude
depends on the zone where the robot is located or the
kind of object detected under the body of the robot.

Touch sensor membrane: This membrane manages a
boolean value, provided by a touch sensor located in
the front of the robot. The value indicates when robot
has reached the end of the world or has collided with
an object.

Task actuators membrane: It carries out the control
of the actuators corresponding to the brush, dustpan
and dustpan lift. The actions depend of the
information that the sensors membrane provides.

Dustpan lift membrane: If certain zone, object or
garbage is detected this membrane commands to the
dustpan lift to go up or down. Physically, the dustpan
lift is a structure where the dustpan and the brush are
fixed. This membrane manages two bits for three
possible states: up, down and stop.

Dustpan membrane: This membrane controls the
dustpan and also receives from the upper membrane a
two bits word for the same states.

Brush membrane: It controls the brush through a
two bits word. The commands to send are spin up,
spin down and stop.

Motion actuators membrane: This membrane
controls the robot navigation. It uses a three bits word
for five states or actions, such actions are: go ahead,
go back, turn left, turn right and stop. The action is
selected depending whether the robot is wandering or
it has detected an object or a particular zone.

The membrane architecture is presented in Fig. 6,
where we can observe the communications between
some of the membranes.

Crabot M is presented in Fig. 7, where we can
observe their actuators, sensors, processors and tools
for cleaning tasks.

Fig. 6. The membrane architecture for robot control. The
robot is designed for cleaning tasks and the membranes are
implemented following the rules of the objectives. The
architecture has a skin and eight inner membranes.

Fig. 7. Crabot M. It has two bricks where the control
architecture resides. We note the dustpan lift structure
where the brush and the dustpan are fixed. Some

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 228

arrangements were made to make sure the cleaning task
was successfully carried out.

Crabot M was used in a competition for house
cleaning. Initially, it wanders around the world, a
white square room, where there are several kinds of
garbage, some objects to avoid and garbage dumps.
During wandering the sensors and motion actuators
membranes are working. If some garbage or a
garbage dump is detected an interchange of
information is produced activating some membranes
and halting or keeping in stand by others.

Rules and goals were determined in the
architecture. The system is started and when it
completely halts, we know that the goals have been
reached. In this case, it means that the world has been
cleaned and the garbage has been put in the
corresponding dump.

6 Conclusions
In this work we have presented three projects
developed for students. The idea behind each project
is to materialize the control architecture theory
through the development of them.

We note that students appreciate at best the
knowledge when it has a practical application. We
also observe the challenge in a competition is a
motivational factor for learning, and that is the reason
we look for different events where the results of the
students work be presented and in competition with
other students work.

The results obtained from the projects presented in
this work are excellent. The objectives proposed for
each project were reached in time and form. In fact, a
set of articles were accepted and presented in
international forums [21, 22, 23].

Considering the results we have obtained [24], we
will continue proposing different projects, not only
for advanced studies as control, but also for basic
courses such as mathematics or physics, where the
students usually are very unmotivated and do not
have any interest in them.

References:
[1] McFarland, D. and Bosser, T. Intelligent behavior
in animals and robots. The MIT Press, 1993. ISBN-
0-262-13293-1.
[2] Payton, D. W. “Internalized plans: a
representation for action resources”. Robotics and
Autonomous Systems, 6:89–103, 1990.
[3] Agre, P. E. and Chapman, D. “What are plans
for?” In Designing Autonomous Agents: theory and
practice from Biology to Engineering and Back,
Pattie Maes, editor, pp. 17–34. MIT Press, 1990.

[4] Firby, R. J. “An investigation into reactive
planning in complex domains”. In Proceedings of the
6th AAAI National Conference on Artificial
Intelligence, pp. 202–206, Seattle, WA, 1987.
[5] Brooks, R. A. “A robust layered control system
for a mobile robot”. IEEE Journal of Robotics and
Automation, 2(1):14–23, March 1986.
[6] Brooks, R. A. “Intelligence without reason.” In
Proceedings of the International Joint Conference on
Artificial Intelligence, pp. 569–595, 1991.
[7] Murphy, R. R. “Dempster-shafer theory for
sensor fusion in autonomous mobile robots”. IEEE
Transactions on Robotics and Automation,
14(2):197–206, April 1998.
[8] Mataric, M. J. “Behavior-based control: main
properties and implications”. In Proceedings of the
IEEE International Conference on Robotics and
Automation, Workshop on Architectures for
Intelligent Control Systems, pp. 46–54, Nice
(France), May 1992.
[9] Brooks, R. A. “A hardware retargetable
distributed layered architecture for mobile robot
control”. In Proceedings of the 1987 International
Conference on Robotics and Automation, pp. 106–
110, Raleigh-NC, March 1987. Computer Society
Press. 645–649a, Perth (WA, Australia), 1999.
[10] Konolige, K. et al., “The Saphira Architecture:
A Design for Autonomy,” J. of Experimental and
Theoretical AI, vol. 9, no. 1, pp. 215-235, 1997.
[11] Simmons, R. G. “Structured control for
autonomous robots”. IEEE Journal of Robotics and
Automation, 10(1):34–43, February 1994.
[12] R. James Firby. “Building symbolic primitives
with continuous control routines”. In Proceedings of
the 1st International Conference on AI Planning
Systems AIPS’92, pp. 62–69, College Park, MD
(USA), June 1992.
[13] Julio K. Rosenblatt and David W. Pyton. “A
fine-grained alternative to the subsumption
architecture for mobile robot control”. In
Proceedings of IEEE International Joint Conference
on Neural Networks, vol. 2, pp. 317–323,
Washington D.C., June 1989.
[14] Wooldridge, M. and Jennings, N. R. “Intelligent
Agents: Theory and Practice”. The Knowledge
Engineering Review. 10 (2). 1995. pp. 115-152.
[15] Sycara, K. P. “Multiagent Systems”. Artificial
Intelligence Magazine. 10 (2). 1998. pp. 79-93.
[16] Maes, P. “The Agent Network Architecture
(ANA)”. SIGART Bulletin, 2 (4), 1991. pp. 115-120.
[17] Busetta, P., Ronnquist, R., Hodgson, A. and
Lucas, “A. JACK Intelligent Agents – Components
for Intelligent Agents in Java.”, AgentLink Newsletter
2. January 1999.

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 229

[18] Rao, A. S. and Georgeff, M. P. “BDI Agents:
From Theory to Practice”. Technical Note 56.
Australian Artificial Intelligence Institute. Victoria,
Australia. 1995.
[19] Bratman, M. E. Intentions, Plans and Practical
Reason. Harvard University Press, Cambridge, MA,
USA. 1987.
[20] Păun, Gh. “Computing with Membranes”,
Journal of Computer and System Sciences, Vol. 61:1,
pp.108-143, August 2000.
[21] Montúfar-Chaveznava, R. and Fernández, Y.
“Crabot: Educational Robot Prototype for Cleaning.”
Proceeedings of 12th Portuguese Conference on
Artificial Intelligence (EPIA 2005): Covilha,
Portugal, December 5-8 2005, pp. 266-271.
[22] Montufar-Chaveznava, R and Méndez-Polanco,
J. A. “Multiagent Architecture for Telerobotics”,
Proc. Of 15th International Conference on
Electronics, Communications and Computers -
CONIELECOMP 2005: Puebla, México. February 28
to March 2nd 2005, pp. 149-153.
[23] Montufar-Chaveznava, R. and Méndez-Polanco,
J. A. “Multiagent Technology for Web Robot
Teleoperation,” in CD of the Seminario Anual de
Automática, Electrónica Industrial e Instrumentación
2004: Toulouse, France. September 15-17 2004.
[24] M. Ali Yousuf, R. Montúfar Chaveznava, and
V. de la Cueva Hernández. “Robotic Projects to
Enhance Student Participation, Motivation and
Learning”. Accepted in IV International Conference
on Multimedia and ICTs in Education (m-
ICTE2006), Sevilla (Spain), 22-25 November 2006.

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 230

