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Abstract: - Engineering students starting their studies in engineering find it difficult to understand and appreciate 
the value of undergraduate education. Our group has experimented with various robotic projects for diverse 
engineering students designed specifically to improve their learning and understanding of the subjects taught. In 
particular, we are interested in teaching the basics of control architectures, and robotics has given us the clue to 
get this objective. The wide variety of projects, their quality and originality gives us confidence that these 
students can become far more fruitful engineers if we employ the right strategy of education. In this work we 
present some developed projects related to control architectures applied to robotics, the results obtained and the 
gained experiences. 
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1   Introduction 
Actually, the control of many systems is carried out 
by control architectures. We can find in literature 
diverse architectures such as behavior based, 
reactive, deliberative or multiagent architectures. In 
this work we present some instances to motivate the 
learning of control architectures by a specific robotic 
application. The instances we present were developed 
by diverse undergraduate students. 

At first, considering robot teleoperation on 
Internet is a complex problem, we have proposed and 
developed a multiagent control architecture, where 
information streams, including video data and voice 
commands, transmitted on Internet, are processed and 
managed using intelligent agents to successfully 
execute specific robotic tasks.  

The second application deals with the design and 
construction of an educational indoor cleaner robot 
named Crabot. Crabot is a Lego based autonomous 
mobile robot, which represents the prototype of a real 
robot for house cleaning, which requires a minimum 
of intelligence. Crabot is provided with necessary 
items for floor cleaning such as a small vacuum 
cleaner and a brush. The control system is based on 
the subsumption architecture with memory and 
offers a repertoire of behaviors for navigation and 
cleaning. This kind of control system allows mixing 
real-time distributed control with behaviors triggered 
by robot sensors. The processing is carried out in a 
pair of Lego RCX microcomputers. Crabot was 
tested in an artificial world and in competition where 
its performance was very acceptable. 

Finally we present a control architecture based on 
membrane systems emulating a behavior based 
architecture. The idea is to exploit the parallel 
computing characteristic of membranes in a specific 
robotic application: house cleaning. We try to map 
behaviors to membranes to build the proposed 
architecture. The developed architecture was tested in 
an educational Lego robot: Crabot M. 
 
 
2   Control Architectures Essentials 
From robotics perspective, control architecture is the 
interaction between sensors, processors and actuators 
to produce an intelligent behavior according the 
world where the robot interacts. The importance of 
control architecture relies on the fact that mobile 
robots are systems with a high degree of complexity, 
and then, if the system is more complex, the 
organization of the components is more important. A 
mobile robot is also considered as a system where the 
inputs are sensorial data and the outputs are all 
possible commands to actuators. In brief, the 
architecture is the interface between sensors and 
actuators.  

The architecture determines the robot behavior 
when interacting with the world. In this sense, the 
architecture selects the stimuli to accept, search or 
produce; it also determines how to select the most 
appropriate action to execute according the 
perception. Briefly, the architecture must have the 
capacity for selective perception and adequate action. 
Traditionally, there are three robotic architectures: 
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Deliberative, Reactive and Hybrid. There is an 
additional class inspired on ethology: Behavior 
Based. 

The different responses produced by the 
architectures allow establishing comparisons 
evaluating each approach, attending criteria such as: 
robustness, reactivity, finality and scalability.  

Besides, we can find new control architectures 
proposals, which can fit perfectly in any of the three 
architectures mentioned above, such as the membrane 
architecture presented in this work. 

Finally, the multiagent architecture, employed in 
one of the developed projects presented in this work, 
corresponds to a Belief-Desire-Intention (BDI) 
architecture, which is one of the most successful 
agent architecture. The properties of this architecture 
resemble a behavior based architecture where agents 
can be considered behaviors. 

Next, we briefly describe the principal control 
architectures for robots previously mentioned. 
 
2.1. Deliberative Architectures 
Architectures traditionally considered deliberative are 
heiress to classic artificial intelligence research. They 
emerge first in the world of mobile robotics 
generating behavior, and being dominant until the 
end of 80’s. They produce behavior executing a plan, 
and reasoning on certain symbolic model of the 
world. The robot intelligence in locate in a module 
named the planner, which deliberates on the world 
model symbols and produces an explicit actuation 
plan. The plan is a sequence of actions to execute to 
pursuit the goal. 

The epistemological origin of deliberative 
approach is found in the Cartesian philosophy that 
considers the soul as the being, which decides the 
behavior [1]. It sinks its roots in the cognitive and 
represents a complete theory of the intelligent 
operation. Naturally, the artificial intelligence will 
look for approbation, testing the capacity to generate 
intelligent behavior. 

The principal characteristics of these architectures 
are the necessity of planning and the modeling of the 
world, the use of hierarchy and the execution of the 
traditional cycle sense-model-plan-act. 
 
2.2. Reactive Architectures 
At the end of 80’s, the lack of flexibility in robots 
controlled by deliberative architectures was notable. 
Perhaps it was the reason many researchers began to 
think again how to generate behavior, and the use of 
plans, which was the masterpiece of the deliberative 

paradigm [2, 3, 4]. For instance, Firby speaks about 
the necessity to monitor the plan execution 
continually because there are events that cannot be 
anticipated due to failures when acting, or to the 
dynamic changes of the world. As result of this 
rethinking, the reactive approach was born. The 
reactive architecture, guided by the works of Rodney 
Brooks [5, 6] caused an important turn in the way to 
produce behavior  

The new approach points at the necessity of a 
most direct link between sensors and actuators, 
avoiding intermediate layers employed by 
deliberative robots. In this way, events reaction is 
faster. The world model and management of symbols 
were considered unnecessary. In this way the reactive 
approach is sub symbolic, and argues that it is not 
necessary the symbolic representation or the 
reasoning of symbols to produce behavior. According 
to Murphy [7], this approach reduces the essential 
primitives to sense and act, which are directly linked, 
and left besides the planning. 

If epistemologically the deliberative paradigm is 
related to the classic cognitive and the introspection, 
then, the reactive approach is related to conducts, and 
specifically to connectionism. In fact, the 
fundamental hypothesis is that behavior can be 
produced as an amalgam of reflex, which connects 
sensorial data to actuator values.  
 
2.3. Behavior Based Architectures 
Behavior based systems (BBS) emerge inside the 
reactive approach, and the most representative 
models are the works of Rodney Brooks [5]. Similar 
to Mataric [8], the reactive aspects have been 
separated from distribution and emergency behavior 
aspects. The principal BBS’s characteristics are the 
control distribution and the perception in many units 
operating in parallel. This decomposition contrasts 
with the functional decomposition and the monolithic 
control, typical of deliberative architectures.  

The underlying idea is that in a system complex 
behavior is an emergent property, which arises from 
the interactions between the basic components and 
the environment. Each component is a rapid cycle, 
reactive, from sensors to actuators, which have their 
own objective. In general, each unitary component 
implements the adequate reactions according the 
stimuli, accessing directly to necessary sensorial data 
and emitting control to actuators. Then, this paradigm 
also proposes the perception distribution. In this 
sense, this architecture does not need a central 
representation of the world or symbolic models to 
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produce behavior.  
 
2.4. Hybrid Architectures 
As a consequence of the limitations observed in the 
reactive and deliberative approaches [6, 9] many 
hybrid approaches emerged, pretending to mix the 
advantages of both architectures as a unique 
architecture. Actually, hybrid architectures are the 
most employed. It is difficult to find an autonomous 
robot, which does not have some reactive 
components and certain degree of deliberation. In 
fact, there is an extended consensus in the fact that 
the reactive part is the right way to perform low-level 
control, perhaps supported by its practical success. 

The differences inside the hybrid architectures are 
principally the way to introduce the deliberative part 
without fissures and breaking the reactive operation. 
In this way, there are hierarchic systems that employ 
symbolic deliberation as principal motor, but they 
allow the activation of some basic reactive routines 
as primitive actions. 

This descendent essence appears in concrete 
architectures as Saphira [10] or TCA [11]. Other 
hybrid approaches have a marked ascendant essence 
as RAP by Firby [12], where small actuation units are 
built in the reactive part, introducing re-planning, or 
the DAMN architecture [13] that introduces some 
deliberative behaviors in a reactive system. 

The principal characteristics of the deliberative 
systems (objective oriented, planning, tasks 
decomposition in subtasks and modeling) and those 
offered by the behavior-based architectures 
(reactivity, world oriented) are recommended for a 
real robot. A robot in the real world needs to have 
both capacities, it needs to be reactive to work in 
higher dynamic worlds but they also need to be able 
to carry out complex tasks that may need certain 
planning. 

The behavior (sense, planning and act) in hybrid 
approaches is organized as two interrelated blocks. 
The first one is in charge of planning, and interacts 
with the second one, which constantly executes 
associations between sense and act. Then, the 
organization will be: planning, sense-act. 
 
 
3   Multiagent System Essentials 
The agent concept is important in artificial 
intelligence and computer science. An agent is 
considered a hardware or software based computer 
system that posses autonomy, social ability, reactivity 
and proactiveness. Furthermore, an agent is 
envisioned or implemented using concepts that are 

more usually applied to human beings [14]. Mobility, 
veracity, benevolence and rationality are other 
particularities eventually discussed in the context of 
agency. 

We can define intelligent agents as systems that 
execute an unsupervised labor and apply some degree 
of intelligence to perform their job. The intelligence 
can be almost insignificant but it includes some 
measure of learning from past experiences. In this 
way the agent can be trained to be more successful in 
the future. Some intelligent agents can interact with 
another. At present, intelligent agents are used to 
model simple rational behaviors in distributed 
applications. 

Multiagent system (MAS) is defined as a loosely 
coupled network of agents that interact to solve 
problems that are beyond the individual capabilities 
or knowledge of each agent [15].  

The principal characteristics of MAS are they have 
a limited vision due the possession of a deficient 
information or ability; they do not have a global 
system control; their information is distributed; and 
their computation is asynchronous. Alternatively, 
MAS presents other characteristics, such as the 
ability to solve problems considered enormous for a 
sole agent or allow interconnection and 
interoperation between multiple agents. 

MAS follows the lineaments of agent architecture. 
Agent architecture is considered a particular 
methodology for building agents, which encompasses 
techniques and algorithms that support this 
methodology [16]. 

As mentioned in previus section, the principal 
kinds of control architectures are deliberative, 
reactive, hybrid and behavior based architectures. 
However, one of the most successful agent 
architecture is the deliberative Belief-Desire-
Intention (BDI) architecture [17]. 

The BDI architecture is based on the 
correspondence between beliefs, desires and 
intentions with reciprocal identifiable data structures. 
The identification of beliefs, desires and intentions is 
beneficial when the system must communicate with 
humans or other agents and it is desired the 
simplification in construction, maintenance and 
verification of application systems. 

BDI architecture consists of three dynamic data 
structures representing the beliefs, desires and 
intentions of agents, combined with an input queue of 
events [18]. This architecture allows updating and 
querying operations on the three data structures, 
where update operations are subject to compatibility 
requirements. 

BDI architecture captures the theory of practical 
reasoning, where intentions play significant and 
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distinct roles in practical reasoning and cannot be 
reduced to beliefs and desires [19]. The BDI 
architecture is based on a closed set of beliefs, desires 
and intentions and the required probability 
procedures are not computable. 
 
 
4   Membrane Systems Essentials 
Membrane computing was introduced as an answer to 
the metaphor: “A living cell is a computer and the 
processes taking place are computations” [20]. The 
principal characteristic of living cells is the complex 
compartmentation by means of a membrane structure 
where multisets of chemical substances are processed 
(evolve) according to some prescribed rules. 

A membrane structure is a hierarchical 
organization of membranes contained into a skin 
membrane, where the skin confines the system from 
the environment. A membrane labels a region, 
considered the space between the membrane and, if 
any exists, the inner membranes. An elementary 
membrane does not contain membranes inside. 

We can allocate sets or multisets of objects (data, 
information) into regions of a membrane structure. A 
multiset is a simple set containing multiplicities of 
the objects; it means every object can appear in a 
number of identical copies in a given region. Fig. 1 
shows the basic membrane structure. 
 

 
 
Fig. 1. The membrane structure. We can appreciate the 
skin (the main membrane) confining the system, some 
membranes, elementary membranes and regions. We 
observe that each membrane is labeled; this is useful when 
we design the architecture following a hierarchical 
representation. 

 
The objects evolve according to some rules, which 

are associated to the regions. The rules specify the 
object transformations and the transferences between 
regions. The rules are employed in a non-
deterministic maximally parallel mode, it means, the 
rules to be applied to objects are selected in a non-
deterministic mode. Sometimes, the rules preference 

is considered to provide priority between rules.  
The membrane structure and the objects define the 

configuration. The use of rules defines the transitions 
between configurations. A sequence of transitions is 
considered a computation.  

The membrane systems consider that halting 
computations are successful; it means we have 
reached a configuration where no further rule can be 
applied. A successful computation is associated to the 
result.  

Finally, we can say that membrane systems can be 
used to solve problems by means of generation, 
computation and decision, such as robotic 
architectures do. 
 
 
5   Application Projects 
We have designed several projects to teach control 
architectures. These architectures are directly applied 
to specific robotics tasks. The decision to employ 
robotics projects to teach control is due to a general 
observation: the materialization of the abstraction 
present in different theoretical topics is a sort of 
discovery for the students. Simply, we motivate the 
basic student curiosity. 

Some of the designed projects are described 
below. 
 
5.1. Telerobotics: Multiagent Architecture 
Students have designed an architecture composed of 
five agents, as shown in Fig. 2. The modularity of 
MAS allows to the architecture increases their 
capabilities adding more agents for new tasks as 
necessary. Modularity provides flexibility to the 
system and that is the principal reason the MAS 
architecture was chosen. In addition to scalability, 
system restructuring is also possible in an easy way. 

The system was developed in Java, and it is 
portable to almost any operating system with minimal 
changes. 

The user interacts with the robot using a Web 
browser to connect to a Web server installed on the 
robot computer. All communication between agents 
is performed using a communication layer. Next we 
describe the developed agents: 
 
Receptor agent: This agent receives commands from 
the servlet, then classify and transmit them to the 
corresponding agent. The possible commands are 
connect to simulator, connect to robot, go, stop, 
increase speed, turn left and turn right. The agent 
also obtains data information from the robot, such as 
speed or position. It also can send commands to start 
or stop the video transmission. 
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Video agent: This agent captures video from the 
webcam located on the robot and establishes the 
client communication to send the video. It responds 
to commands from the receptor agent. 
 
Interpreter agent: The interpreter agent establishes 
communication to the client to receive oral 
commands using RTP (Real Time Protocol). It 
recognizes and interprets speech, and then sends 
messages to controller agent for robot movement. 
 
Controller agent: It executes all received commands 
from interpreter or receptor agents. It is incharge of 
robot locomotion. It is continuously monitoring 
sensors to detect approaching objects and avoid 
collisions or dangerous situations. 
 

The students also have included a servlet agent in 
the architecture. A servlet is a program that runs on a 
Web server, acting as a middle layer between a 
requests coming from an HTTP client and databases 
or applications on the HTTP server. In this case, the 
servlet mediates between the user interface and the 
receptor agent. 
 
5.2. Crabot: Subsumption Architecture 
In this section we describe the architecture developed 
for Crabot, a subsumption based architecture with 
memory; and some additional aspects as behaviors, 
communication and hardware. The subsumption 
architecture is a particular behavior based 
architecture. 
 
Control Architecture.  
The architecture was programmed in NQC, which is 
a reduced C language specific for the RCX (named 
bricks). Students employ a pair of bricks, one for 
cleaning and other for navigation. As mentioned 
above, the developed architecture is the subsumption 
with memory, based on the approach of Brooks [6]. 
We developed a set of actuation modules to sense 
relevant stimuli and produce a set of observable 
behaviors. 

The subsumption with memory architecture offers 
a strategy to combine real time distributed control 
with behaviors triggered by sensors. The principal 
objective of this architecture is decomposing tasks in 
serial modules or simple behaviors. 

The modules operate in asynchrony and are 
arranged as layers in a behaviors hierarchy: the upper 
level module corresponds to the robot objective, 
which is reached by executing all mediators in the 

scheme. The modules link perception and action and 
this correspondence represents a kind of behavior in 
the sense that each module increases the robot 
spectrum of abilities. 

The modules are a collection of augmented finite 
state machines (AFSM). An AFSM is an automaton 
with timer; an input signal that comes from sensors or 
other AFSM; and a signal output that is sent to robot 
actuators or other AFSM. An AFSM can inhibit the 
input of another, connecting its output to the registry 
of the input (in this case, the message in the registry 
is substituted by the suppressor message); an AFSM 
can also suppress the output of another, connecting 
its output to the output of the other depending on the 
perceived sensor data. These mechanisms are the 
essence of the resolution of conflicts and establish the 
priority of the behaviors. An ASFM cannot share 
states and, in particular, cannot read the registries of 
another. 

In this architecture, we establish one by one the 
relationships between behaviors (inputs, outputs, 
suppression and inhibition) to obtain the desired 
robot behavior. Fig. 2 shows the architecture and 
connections between sensors, modules and actuators. 

The arbitration between behaviors is carried out by 
inhibition and suppression mechanisms. These 
mechanisms do not consider the fusion of commands, 
it means, it is not possible to activate two behaviors 
at the same time.  

 
Fig. 3.  The architecture control for Crabot: Relationships 
between inputs (sensors), behaviors and outputs 
(actuators). 
 
Memory: The memory is an enhancement to 
subsumption. It is connected to the robot behaviors 
and provides memory to the robot. The memory of 
Crabot is a register to indicate when the garbage was 
sensed. If the garbage was not sensed, the Crabot 
executes the cleaning behavior again. The memory 
inclusion in the architecture is shown in Fig. 4. 
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Deliberative Architectures 
1) Cleaning. It is activated when Crabot senses 
garbage in the environment according the 
information provided by any of two light sensors. 
The cleaning brick performs cleaning. This behavior 
inhibits the flow of other behaviors when it sense 
garbage in the world. If the light sensor does not 
detects the garbage, it stops the inhibition to 
behaviors situated in the lower levels and the robot 
executes another behavior, following the rules 
dictated by the state. At programming level, when the 
cleaning brick senses garbage, it turns on the brush, 
the vacuum cleaner and sends the message 
SendMessage(1) to the navigation brick, which 
execute a sequence to go ahead and back repeatedly 
to clean. 
2) Unload. It is employed to unload the garbage. The 
information provided by the couple of light sensors in 
the cleaning brick activates this behavior and inhibits 
the flow of other commands. When the sensors detect 
the trash area, the cleaning brick opens the container 
and sends the message SendMessage(2), and then 
navigation brick stops. After the task was completed, 
the inhibition to other behaviors concludes. 
3) Go ahead. It is activated following the information 
provided by touch and light sensors. The navigation 
brick executes this behavior. “Go ahead” suppress the 
outputs of other behaviors when the path is free of 
obstacles, there are no dirty places, or the robot is not 
located in the trash area. 
4) Go back and turn. It is activated by the navigation 
brick and depends on the information provided by the 
touch sensors. The robot turns every time it finds an 
obstacle and continues moving ahead until other 
behavior is activated. 

 
Fig. 4.  The subsumption architecture with memory used 
in Crabot. We defined four basic behaviors for cleaning 
and navigation: Unload, Cleaning, Go ahead and Go back 
and Turn. 

Communication 
Messaging from cleaning to navigation bricks carries 
out communication between bricks. The messages are 

sent using the infrared port of RCX. 
There is a different message for every activated 

behavior. When the cleaning brick senses garbage, it 
sends the message SendMessage(1), associated to the 
behavior Cleaning. If the trash area is detected, the 
message SendMessage(2) is sent, which is related to 
the behavior Unload. If none of the mentioned 
situations is detected, the message SendMessage(0) is 
sent. This message means Go ahead, and Crabot is 
dedicated exclusively to wander. 

Hardware 
Crabot was built with a couple of Lego Mindstorms 
kits. These kits include two kinds of sensors: touch 
and light sensors. We can detect obstacles using the 
touch sensors. We can know if an object was detected 
by reading the collision status in the sensors. We can 
detect the light intensity or a color using the light 
sensors. These sensors deliver values from 0 (white) 
to 256 (black). 

The dimensions of “Crabot” are a base of 25×30 
cm2 and a high of 25 cm. It weights 1.5 kg. The robot 
base is a differential model with two wheels 
controlled by independent motors at front and two 
fixed wheels at back for stability. Crabot has two 
touch sensors and two light sensors at front. Light 
sensor point out to the floor to detect garbage or the 
trash area. A couple of motors control the wheels, a 
third motor is employed to clean the garbage 
container and a fourth motor activates the brush 
situated at front of Crabot. 

The garbage container was adapted as a slipper 
system to unload the garbage. The container has also 
a linear brush for cleaning and protection of the 
gages. We adapt a small vacuum cleaner at back of 
Crabot. The vacuum cleaner is turn on and off 
automatically. Crabot is shown in Fig. 5. 
 

 
Fig. 5.  The cleaning system and container of Crabot. 
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5.3. Crabot M: Membrane Architecture 
The membrane architecture was programmed in the 
core of an educational robot based on the Lego 
Mindstorm kit: Crabot M. The architecture and the 
robot were configured for cleaning purposes. It was 
necessary to add some extra sensors and actuators 
suitable for our purposes. The robot was configured 
with a couple of bricks, one for actuators control and 
other for sensor readings and basic functions. The 
bricks are able to process up to ten tasks in parallel 
and can be programmed in specific Java or C 
languages. The use of C allows the use of threads, 
providing the capability of carrying out parallel 
processing. 

In the case of the control architecture, students 
carefully carry out the definition of rules and the 
communication between membranes to preserve the 
schema states and arbitration. The proposed 
architecture is composed of the skin and eight 
membranes, which are defined as follows: 

 
Sensors membrane: It is essential in the architecture 
because it is in charge of getting all information from 
the world. This membrane reads data from sensors 
and processes it to send messages to other 
membranes. 
 
Light sensor membrane: It reads a value between 0 
and 100 and passes it to the upper membrane. The 
value is got from a photo resistor and its magnitude 
depends on the zone where the robot is located or the 
kind of object detected under the body of the robot.  
 
Touch sensor membrane: This membrane manages a 
boolean value, provided by a touch sensor located in 
the front of the robot. The value indicates when robot 
has reached the end of the world or has collided with 
an object. 
 
Task actuators membrane: It carries out the control 
of the actuators corresponding to the brush, dustpan 
and dustpan lift. The actions depend of the 
information that the sensors membrane provides. 
 
Dustpan lift membrane: If certain zone, object or 
garbage is detected this membrane commands to the 
dustpan lift to go up or down. Physically, the dustpan 
lift is a structure where the dustpan and the brush are 
fixed. This membrane manages two bits for three 
possible states: up, down and stop. 
 
Dustpan membrane: This membrane controls the 
dustpan and also receives from the upper membrane a 
two bits word for the same states. 

 
Brush membrane: It controls the brush through a 
two bits word. The commands to send are spin up, 
spin down and stop. 
 
Motion actuators membrane: This membrane 
controls the robot navigation. It uses a three bits word 
for five states or actions, such actions are: go ahead, 
go back, turn left, turn right and stop. The action is 
selected depending whether the robot is wandering or 
it has detected an object or a particular zone. 
 

The membrane architecture is presented in Fig. 6, 
where we can observe the communications between 
some of the membranes.  

Crabot M is presented in Fig. 7, where we can 
observe their actuators, sensors, processors and tools 
for cleaning tasks. 

 

 

Fig. 6. The membrane architecture for robot control. The 
robot is designed for cleaning tasks and the membranes are 
implemented following the rules of the objectives. The 
architecture has a skin and eight inner membranes. 

 
 
Fig. 7. Crabot M. It has two bricks where the control 
architecture resides. We note the dustpan lift structure 
where the brush and the dustpan are fixed. Some 
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arrangements were made to make sure the cleaning task 
was successfully carried out.  

Crabot M was used in a competition for house 
cleaning. Initially, it wanders around the world, a 
white square room, where there are several kinds of 
garbage, some objects to avoid and garbage dumps. 
During wandering the sensors and motion actuators 
membranes are working. If some garbage or a 
garbage dump is detected an interchange of 
information is produced activating some membranes 
and halting or keeping in stand by others.  

Rules and goals were determined in the 
architecture. The system is started and when it 
completely halts, we know that the goals have been 
reached. In this case, it means that the world has been 
cleaned and the garbage has been put in the 
corresponding dump. 
 
 
6   Conclusions 
In this work we have presented three projects 
developed for students. The idea behind each project 
is to materialize the control architecture theory 
through the development of them. 

We note that students appreciate at best the 
knowledge when it has a practical application. We 
also observe the challenge in a competition is a 
motivational factor for learning, and that is the reason 
we look for different events where the results of the 
students work be presented and in competition with 
other students work. 

The results obtained from the projects presented in 
this work are excellent. The objectives proposed for 
each project were reached in time and form. In fact, a 
set of articles were accepted and presented in 
international forums [21, 22, 23]. 

Considering the results we have obtained [24], we 
will continue proposing different projects, not only 
for advanced studies as control, but also for basic 
courses such as mathematics or physics, where the 
students usually are very unmotivated and do not 
have any interest in them. 
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