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Abstract: Given the values of function f on a uniform grid of a step size h in the real line, we construct the spline
interpolant of order m, defect 1 using the B-spline basis obtained by wavelet-type dilation and shifts from the
father B-spline which can be considered as a scaling function for a special (nonorthogonal) spline-wavelet system.
We establish an unimprovable error estimate on the class of functions with bounded mth derivative, and we show
that in the sense of worst case, other approximations to f using the same information about f are more coarse than
the spline interpolant. Some further results of this type are established.

Key–Words: splines, nonorthogonal wavelets, interpolation, error estimates, exact constants

1 Introduction
This paper is devoted to unimprovable error esti-
mates for spline interpolation and to the optimality of
spline interpolants compared with other approxima-
tions. The spline interpolation has been widely exam-
ined during the last 40–50 years, see in particular the
monographs [1, 3, 5, 6, 10] and the references there.
Nevertheless, there are open problems concerning ex-
act (unimprovable) constants in error estimates for in-
terpolants and quasi-interpolants. Such results are of
great general interest; our special interest is caused by
examining fast solvers for integral equations (see, e.g.,
[7, 9]).

In Section 2 of the present paper we discuss the
construction of the spline interpolants of functions on
the real line. Given the values of a function f on a
uniform grid ∆h ⊂ R of a step size h, we construct
the spline interpolant Qh,mf of order m, defect 1 us-
ing the B-spline basis obtained by wavelet-type di-
lation and shifts from the father B-spline Bm which
can be considered as a scaling function for a special
(nonorthogonal) wavelet system, see [2]. Technically,
our approach is equivalent to that in [6] but we use
another start idea.

Our main results are presented in Section 3.
We establish an unimprovable estimate for ||f −
Qh,mf ||∞ on the class V m,∞(R) of functions with
bounded mth derivative. This estimate essentially ex-
tends a result of [3] concerning 1-periodic functions
f and the step size of the form h = 1/n with even
n ∈ N. Further, we show that in the sense of the

worst case in V m,∞(R), other approximations to f us-
ing the same information about f as Qh,mf are more
coarse than Qh,mf . We also present some further es-
timates for Qh,mf , in particular, error estimates for
derivatives and error estimates in the case of modestly
smooth f .

We use the following standard notations:

R = (−∞,∞), N = {1, 2, ...},
Z = {...,−2,−1, 0, 1, 2, ...}.

Let us characterise more precisely the spaces of func-
tions on R used in the sequel. As usual, C(R) is the
space of continuous functions on R, and Cm(R) is the
space of functions on R that have continuous deriva-
tives up to the order m. By BC(R) we mean the Ba-
nach space of bounded continuous functions f on R
equipped with the norm

||f ||∞ = sup
x∈R

|f(x)|;

BUC(R) is the (closed) subspace of BC(R) consist-
ing of bounded uniformly continuous functions on R.
The Sobolev space Wm,∞(R), m ∈ N, consists of
functions f such that f itself and its derivatives up
to the order m are measurable, bounded functions on
R (actually then f, f ′, ..., f (m−1) are continuous in R;
the derivatives are understood in the sense of distri-
butions). Finally, the Sobolev space V m,∞(R) con-
sists of functions f such that f (m) is measurable and
bounded in R; then f, f ′, ..., f (m−1) are continuous
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but not necessarily bounded in R. With the help of the
Taylor formula

f(x)=
m−1∑
l=0

f (l)(0)
l!

xl+
1

(m−1)!

x∫
0

(x−t)m−1f (m)(t)dt

we observe that for f ∈ V m,∞(R), |x| → ∞ it holds

|f(x)| ≤ 1
m!

||f (m)||∞ |x|m + O(xm−1).

There is an equivalent way to define V m,∞(R)
as the space of functions f ∈ C(m−1)(R) such that
f (m−1) is uniformly Lipschitz continuous:

|f (m−1)(x1)−f (m−1)(x2)|≤Lf |x1−x2|, x1, x2∈R.

A Lipschitz continuous function, f (m−1)in our case,
is differentiable almost everywhere as well as diffe-
rentiable in the sense of distributions, and

inf Lf = ||f (m)||∞ = vraisupx∈R|f (m)(x)|

where the infimum is taken over all Lipschitz cons-
tants Lf for f (m−1).

We do not need norms in Wm,∞(R) and
V m,∞(R).

Clearly, Wm,∞(R) + Pm ⊂ V m,∞(R); this in-
clusion is strict.

2 Construction of the interpolant
The formula for the father B-spline Bm is given by

Bm(x) = 1
(m−1)!

m∑
i=0

(−1)i

(
m
i

)
(x− i)m−1

+ ,

x ∈ R, m ∈ N,

where, as usual, 0! = 1, 00 := limx↓0x
x = 1,

(x− i)m−1
+ :=

{
(x− i)m−1, x− i ≥ 0

0, x− i < 0

}
.

Some properties of Bm, m ≥ 2, are as follows:

Bm|[i,i+1] ∈ Pm−1 (polynomials of degree m− 1),

i ∈ Z, Bm ∈ C(m−2)(R), i.e., Bm is a spline of
degree m− 1, defect 1 on the “cardinal” knot set Z,

supp Bm = [0,m], Bm(x) > 0 for 0 < x < m,
Bm (x) = Bm (m− x) , 0 ≤ x ≤ m,

Bm

(
m
2

)
= max

x∈R
Bm(x),∫

R
Bm(x)dx = 1,

∑
j∈Z

Bm(x− j) = 1, x ∈ R.

Introduce in R the uniform grid hZ = {ih : i∈Z}
of a step size h > 0. Denote by Sh,m, m ∈ N, the
space of splines of order m (or, of degree m− 1) and
defect 1 with the knot set hZ. Clearly the dilated and
shifted B-splines Bm(h−1x − j), j ∈ Z, belong to
Sh,m, and the same is true for

∑
j∈Z

djBm(h−1x − j)

with arbitrary coefficients dj ; there are no problems
with the convergence of the series since it is locally
finite: for x ∈ [ih, (i + 1)h)), i ∈ Z, it holds

∑
j∈Z

djBm(h−1x− j) =
i∑

j=i−m+1

djBm(h−1x− j).

Given a function f ∈ C(R) of possibly polyno-
mial growth as |x| → ∞, we look for the interpolant
Qh,mf∈ Sh,m in the form

(Qh,mf)(x) =
∑
j∈Z

djBm(h−1x− j), x ∈ R, (1)

and determine the coefficients dj from the interpola-
tion conditions

(Qh,mf)((k+
m

2
)h) = f((k+

m

2
)h), k ∈ Z. (2)

This leads to the bi-infinite system of linear equa-
tions∑

j∈Z
Bm(k +

m

2
− j)dj = f((k +

m

2
)h), k ∈ Z,

or ∑
j∈Z

bk−jdj = fk, k ∈ Z, (3)

where for k ∈ Z

bk =bk,m =Bm(k+
m

2
), fk =fk,h,m =f((k+

m

2
)h),
(4)

bk = b−k > 0 for |k| ≤ µ,

bk = 0 for |k| > µ,
∑
|k|≤µ

bk = 1, (5)

µ := int ((m− 1)/2) =
{

(m− 2)/2, m even
(m− 1)/2, m odd

}
.

Thus (3) is a bi-infinite system with the symmet-
ric Toeplitz band matrix B = (bk−j)k,j∈Z of the
band width 2µ + 1. For m = 2, system (3) re-
duces to relations dk = f((k + 1)h)), k ∈ Z, and
(Qh,2f)(x) =

∑
j∈Z

f((j+1)h))B2(nx−j) is the usual

piecewise linear interpolant which can be constructed
on every subinterval [ih, (i+1)h] independently from
other subintervals. All is clear in the cases m = 1, 2

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006       460



and we focuse our attention to the case m ≥ 3. A de-
licate problem appears that the solution of system (3)
always exists but is nonunique for m ≥ 3 if we allow
an exponential growth of |dj | as |j| → ∞. Only one
of the solutions of system (3) is reasonable. We call
it the Wiener solution since it is related to the Wiener
theorem (see [11]) about trigonometric (or equivalent
Laurent) series. The following construction of the
Wiener interpolant is in more details elaborated in [8]
and it is equivalent to that in [6].

With bk = bk,m = Bm(k + m
2 ) defined in (4),

introduce the following functions:

b(z) = bm(z) :=
∑
|k|≤µ

bkz
k = b0 +

µ∑
k=1

bk(zk + z−k),

(6)
P2µ(z) = Pm

2µ(z) = zµb(z) (7)

(the characteristic polynomial of Bm). Denote by
zν = zν,m, ν = 1, ..., 2µ, the roots of the characteris-
tic polynomial Pm

2µ ∈ P2µ (we call them the charac-
teristic roots). From (6) we observe that together with
zν also 1/zν is a characteristic root. The polynomials
(7) were introduced in [6] starting from different con-
siderations. As proved in [6], all characteristic roots
are real and simple; then clearly zν < 0, ν = 1, ..., 2µ,
and zν 6= −1, ν = 1, ..., 2µ, thus there are exactly
µ characteristic roots zν , ν = 1, ..., µ, in the inter-
val (−1, 0) and µ characteristic roots zµ+ν = 1/zν ,
ν = 1, ..., µ in the interval (−∞,−1). It is not comp-
licated to show that the function

a(z) = am(z) := 1/bm(z) = zµ/Pm
2µ(z) (8)

has the Laurent expansion am(z)=
∑
k∈Z

ak,mzk with

ak,m =
µ∑

ν=1

zµ−1
ν,m

P ′
2µ(zν,m)

z|k|ν,m = a−k,m, k ∈ Z, (9)

and the Wiener solution of system (3) is given by

dk =
∑
j∈Z

ak−j,mf((j +
m

2
)h), k ∈ Z. (10)

An important observation from (9) is that ak,m de-
cays exponentially as |k| → ∞, thus the series in (10)
converges provided that f is bounded or of a polyno-
mial growth as |x| → ∞. Thus we have the following
result.

Theorem 1 For a bounded or polynomially growing
f ∈ C(R), the Wiener interpolant Qh,mf is well de-
fined by the formulae (1), (9), (10).

Further properties of ak,m is that∑
k∈Z

ak,m = 1,
∑
k∈Z

|ak,m| = (−1)µ

P2µ(−1) ,

ak,m = (−1)k|ak,m| 6= 0, k ∈ Z.

In the vector space X of all bisequences (dj)j∈Z,
the null space N (B) of the matrix B = (bk−j)k,j∈Z
of system (3) is of dimension 2µ being spanned by
bisequences (zj

ν)j∈Z, ν = 1, ..., 2µ. Hence for any
nontrivial (d(0)

j ) ∈ N (B), d
(0)
j grows exponentially as

j →∞ or as j → −∞.
Clearly, ||Qh,m||BC(R)→BC(R) ≤

∑
k∈Z

|ak,m| but

this estimate is coarse. To present an exact formula
for ||Qh,m||BC(R)→BC(R), introduce the fundamental
spline Fm(x) :=

∑
k∈Z

ak,mBm(x−k); it decays expo-

nentially as |x| → ∞ and satisfies Fm(j + m
2 ) = δj,0,

j ∈ Z, where δj,k is the Kronecker symbol. Clearly,

(Qh,mf)(x) =
∑
j∈Z

f((j +
m

2
)h)Fm(h−1x + j),

and this implies

||Qh,m||BC(R)→BC(R)

= sup
x∈R

∑
j∈Z

|Fm(x + j)|

= max
x∈[m

2
, m+1

2
]

∑
j∈Z

|Fm(x + j)|.

Numerical values of qm := ||Qh,m||BC(R)→BC(R)

and αm :=
∑
k∈Z

|ak,m| for some m are presented in the

following table taken from [4]:

m 3 4 5 9 10 20
qm 1.414 1.549 1.706 2.075 2.142 2.583
αm 2.000 3.000 4.800 29.11 45.73 4182

For 4 ≤ m ≤ 20, the computed values of qm fit into
the model qm ≤ e

4 + 2
π logm, and it seems that qm −

( e
4 + 2

π logm) → 0 as m → ∞; for m = 20 this
difference is of order 0.001. We can also observe that
αm+1/αm → π/2 = 1.5707963268... as m → ∞;
for m = 20 this ratio is 1.570796327, already very
close to π/2. It is challenging to confirm these empiric
guesses analytically.

Finally, it is easily seen that for any bisequence
dj , j ∈ Z, with supj |dj | < ∞, it holds

supj |dj |
αm

≤ sup
x∈R

|
∑
j∈Z

djB(h−1x− j)| ≤ sup
j
|dj |.
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3 Error estimates of the spline inter-
polant

To formulate the main results of the paper, we need
some information concerning the Euler splines [3]. A
spline E ∈ Sh,m satisfying

E(m−1)(x) = (−1)i for ih < x < (i+1)h, i ∈ Z,

is called perfect. If E ∈ Sh,m is perfect then so is
E + g with any g ∈ Pm−2.

For m = 1, the Euler perfect spline Eh,1 ∈ Sh,1

is defined by the formula

Eh,1(x)=sign sin(h−1πx)=
4
π

∞∑
k=0

sin(2k+1)h−1πx

2k + 1
.

(11)
For m ≥ 2, the Euler perfect spline Eh,m ∈ Sh,m is
determined recursively as a special integral function
of Eh,m−1, namely,

Eh,m(x) =


x∫

h/2

Eh,m−1(y)dy, m = 2l

x∫
0

Eh,m−1(y)dy, m = 2l + 1

 ;

the lower bounds of integration are chosen so that the
2h-periodicity and the zero mean value of Eh,m−1

over a period is inherited to Eh,m. Starting from (11)
we recursively find that

Eh,m(x)

=


4
π

(−1)lhm−1

πm−1

∞∑
k=0

cos(2k+1)h−1πx
(2k+1)m , m = 2l

4
π

(−1)lhm−1

πm−1

∞∑
k=0

sin(2k+1)h−1πx
(2k+1)m , m = 2l + 1

.

(12)
By construction, E′

h,m = Eh,m−1 for m ≥ 2. Furt-
her, we observe that x = (i + 1

2)h, i ∈ Z, are the
zeroes of Eh,m for even m, and x = ih, i ∈ Z, are
the zeroes of Eh,m for odd m. A unified formulation
is that x = (i + m−1

2 )h, i ∈ Z, are the zeroes of
Eh,m and x = (i + m

2 )h, i ∈ Z, are the local ext-
rema of Eh,m (the zeroes of E′

h,m = Eh,m−1). There
are no other zeroes and extrema of Eh,m – this can be
easily seen recursively, since by Rolle’s theorem an
additional zero of Eh,m involves an additional zero of
E′

h,m = Eh,m−1. It is clear also that the zeroes of
Eh,m are simple. Further, for m = 2l,

||Eh,m||∞ = |Eh,m(0)| = 4
π

hm−1

πm−1

∞∑
k=0

1
(2k + 1)m

(the absolute value of Eh,m at other local extremum
points x = ih is same). Similarly, for m = 2l + 1,

||Eh,m||∞ = |Eh,m(
h

2
)| = 4

π

hm−1

πm−1

∞∑
k=0

(−1)k

(2k + 1)m
.

Unifying these two formulae, we can write

||Eh,m||∞ = Φmπ−(m−1)hm−1, m ∈ N, (13)

with

Φm =
4
π


∞∑

k=0

1
(2k+1)m , m = 2l

∞∑
k=0

(−1)k

(2k+1)m , m = 2l + 1

 , m ∈ N,

(14)
known as the Favard constant. In particular,

Φ1 = 1, Φ2 = π/2, Φ3 = π2/8, Φ4 = π3/24,

and it holds limm→∞ Φm = 4
π ,

Φ1 < Φ3 < Φ5 < ... <
4
π

< ... < Φ6 < Φ4 < Φ2.

We are ready to formulate our main result.

Theorem 2 For f ∈ V m,∞(R), m ∈ N, there hold
the pointwise estimate

|f(x)−(Qh,mf)(x)|≤||f (m)||∞|Eh,m+1(x)|, x∈ R,
(15)

and the uniform estimate

||f −Qh,mf ||∞ ≤ Φm+1π
−mhm||f (m)||∞ . (16)

For f = Eh,m+1 ∈ Wm,∞(R) ⊂ V m,∞(R), inequa-
lities (15) and (16) turn into equalities.

This theorem is known [3] in the case of 1-
periodic f and h = 1/n with an even n ∈ N (then
also Qh,mf and Eh,m+1 are 1-periodic). Actually,
only (15) is a complicated assertion for the proof,
whereas (16) is an obvious consequence of (15), (13),
and the assertion about the sharpness of estimates for
f = Eh,m+1 is elementary. We step after step ex-
tend the theorem first for functions f with compact
support, then for f ∈ V m,∞(R) of slow growth as
|x| → ∞, and finally for arbitrary f ∈ V m,∞(R).
Technically, the extensions are based on the following
lemma; for details, see [8].

Lemma 3 Suppose that functions gδ ∈ C(R), δ > 0,
satisfy

gδ(x) → 0 as δ → 0 ∀x ∈ R,
|gδ(x)| ≤ c(1 + |x|r) ∀x ∈ R

where r ≥ 0. Then

(Qh,mgδ)(x) → 0 as δ → 0 ∀x ∈ R.
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Remark 4 Using Banach–Steinhaus theorem and
Theorem 2, it is easily seen that for f ∈ BUC(R),
||f −Qh,mf ||∞ → 0 as h → 0.

Let us discuss optimality properties of the
spline interpolation compared with other methods
that use the same information about the values of f
on the uniform grid ∆h = {(j + m

2 )h : j ∈ Z}.
Such a method can be identified with a mapping Mh :
C(∆h) → C(R) where C(∆h) is the vector space of
grid functions defined on ∆h and having values in R
or C.

Remark 5 For given γ > 0, we have in accordance
to Theorem 2

sup
f∈V m,∞(R), ||f (m)||∞≤γ

||f−Qh,mf||∞=Φm+1π
−mhmγ

whereas for any mapping Mh : C(∆h) → C(R)
(linear or nonlinear, continuous or discontinuous), it
holds

sup
f∈V m,∞(R), ||f (m)||∞≤γ

||f −Mh(f |∆h
)||∞

≥ Φm+1π
−mhmγ. (17)

Indeed, (17) is trivially fulfilled if Mh(0) /∈
BC(R), so we may assume that Mh(0) ∈ BC(R).
Consider two functions f± = ±γEh,m+1. Clearly,
f± ∈ Wm,∞(R) ⊂ V m,∞(R), ||f (m)

± ||∞ = γ, and
since Eh,m+1|∆h

= 0, we obtain (17) by the follow-
ing argument:

sup
f∈V m,∞(R),||f (m)||∞≤γ

||f −Mh(f |∆h
)||∞

≥max{||f+−Mh(f+|∆h
)||∞, ||f−−Mh(f−|∆h

)||∞}

= max{||f+ −Mh(0)||∞, ||f− −Mh(0)||∞}

≥ 1
2(||f+ −Mh(0)||∞ + ||f− −Mh(0)||∞)

≥ 1
2 ||f+−f−||∞= ||Eh,m+1||∞γ=Φm+1π

−mhmγ.

Remark 6 Let h = 1/n with an even n ∈ N.
Consider the subspace Cper(R) of C(R) consisting
of 1-periodic continuous functions on R, and de-
note Wm,∞

per (R) = Cper(R) ∩ Wm,∞(R); denote by
Cper(∆h) the space of 1-periodic (grid) functions on
the grid ∆h, i.e., fh(ih) = fh(1 + ih), i ∈ Z,
for fh ∈ Cper(∆h). Then for any mapping Mh :
Cper(∆h) → Cper(R), it holds

sup
f∈W m,∞

per (R),||f (m)||∞≤γ

||f −Mh(f |∆h
)||∞

≥ Φm+1π
−mhmγ .

The proof is same as in the case of Remark 5, we
only need to observe that Eh,m+1 ∈ Wm,∞

per (R) for
h = 1/n with an even n ∈ N.

Remark 7 For functions with compact supports, si-
milar result as Remark 5 holds asymptotically as h →
0. Denote by Wm,∞

0 (R) the subspace of Wm,∞(R)
consisting of functions f ∈ Wm,∞(R) with support
in [0, 1]. For any mapping Mh : C(∆h) → C(R), it
holds

lim inf
h→0

sup
f∈W m,∞

0 (R),||f (m)||∞≤γ

||f −Mh(f |∆h
)||∞

Φm+1π−mhmγ
≥1 .

This follows by a slight modification of the ar-
gument in Remark 5. Namely, instead of f± =
±γEh,m+1, use f± = ±γeEh,m+1 where e ∈ Cm(R)
is supported in (0, 1), 0 ≤ e(x) ≤ 1 for all x ∈ R
and e(x) = 1 for 1

3 ≤ x ≤2
3 . Then for sufficiently

small h, it still holds ||eEh,m+1||∞ = ||Eh,m+1||∞ =
Φm+1π

−mhm, and the Leibniz differentiation rule
yields ||(eEh,m+1)(m)||∞ → 1 as h → 0.

Next we formulate some further error estimates.

Theorem 8 For f ∈ V m,∞(R), l = 1, ...,m − 1, it
holds

||f (l) − (Qh,mf)(l)||∞

≤ Φm−l+1π
−(m−l)hm−l (1 + αm) ||f (m)||∞, (18)

||f (l) − (Qh,mf)(l)||∞

≤ Φm−l+1π
−(m−l)hm−l (1 + qm−lαm,l) ||f (m)||∞

(19)
where αm =

∑
k∈Z

|ak,m|,

αm,l =
∑
k∈Z

∣∣∣∣∣∣
∑

|j|≤int{(m−l−1)/2}

ak−j,mbj,m−l

∣∣∣∣∣∣ < αm,

(20)
qm−l = ||Qh,m−l||BC(R)→BC(R),
bj,m−l = Bm−l(j + m−l

2 ) (cf. (4)), and ak,m are de-
fined in (9).

Remark 9 For f ∈ V l,∞(R) with f (l) ∈ BUC(R),
0 < l < m, it holds ||f (l) − (Qh,mf)(l)||∞ → 0 as
h → 0.

Theorem 10 For f ∈ V l,∞(R), 0 < l < m, it holds

||f −Qh,mf ||∞ ≤ Φl+1π
−lhl (1 + αm) ||f (l)||∞,

(21)
||f−Qh,mf||∞ ≤ Φl+1π

−lhl (1 + qm−lαm,l) ||f (l)||∞
(22)
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with constants αm and αm,l defined in (20). If, in ad-
dition, f (l) ∈ BUC(R) then

||f −Qh,mf ||∞ = o(hl) as h → 0.

The proof of Theorems 8 and 10 is based on the
following lemma.

Lemma 11 For f ∈V l,∞(R), N3 l<m, it holds

||(Qh,mf)(l)||∞ ≤ αm||f (l)||∞
||(Qh,mf)(l)||∞ ≤ qm−lαm,l||f (l)||∞

with constants defined in Theorem 8.

Introduce the space V m,∞
h (R), m ≥ 2, of func-

tions g ∈ Cm−2(R) such that the derivatives g(m−1),
g(m) exist on every interval (ih, (i + 1)h) and

g(m−1)|(ih,(i+1)h) ∈ C((ih, (i + 1)h)),
g(m)|(ih,(i+1)h) ∈ L∞((ih, (i + 1)h)), i ∈ Z,

σh,m(g) := sup
i∈Z

sup
ih<x<(i+1)h)

|g(m)(x)| < ∞.

Clearly, V m,∞(R) ⊂ V m,∞
h (R) and ||f (m)||∞ =

σh,m(f) for f ∈ V m,∞(R).

Lemma 12 For m ≥ 2, it holds

V m,∞
h (R) = V m,∞(R) + Sh,m,

i.e., every g ∈ V m,∞
h (R) has a representation

g = f + gh, f ∈ V m,∞(R), gh ∈ Sh,m. (23)

In particular, (23) holds with

f(x) =
1

(m− 1)!

x∫
0

(x− t)m−1Gm(t)dt, x ∈ R,

(24)
where Gm ∈ L∞(R) is defined by Gm(x) = g(m)(x)
for x ∈ (ih, (i + 1)h), i ∈ Z (and other f in (23)
differ from (24) by an additive polynomial of degree
m− 1).

As the consequence of Theorem 2 and Lemma 12 we
obtain the following result.

Theorem 13 Let m ≥ 2. Assume that g ∈ V m,∞
h (R)

satisfies the inequality

|g(x)| ≤ c(1 + |x|r), x ∈ R, (25)

where r ≥ 0 and c ≥ 0. Then

|g(x)−(Qh,mg)(x)| ≤ σh,m(g)|Eh,m+1(x)|, x∈ R,
(26)

||g −Qh,mg||∞ ≤ Φm+1π
−mhmσh,m(g). (27)
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