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Abstract: Given the values of function f on a uniform grid of a step size h in the real line, we construct the spline
interpolant of order m, defect 1 using the B-spline basis obtained by wavelet-type dilation and shifts from the
father B-spline which can be considered as a scaling function for a special (nonorthogonal) spline-wavelet system.
We establish an unimprovable error estimate on the class of functions with bounded mth derivative, and we show
that in the sense of worst case, other approximations to f using the same information about f are more coarse than
the spline interpolant. Some further results of this type are established.
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1 Introduction

This paper is devoted to unimprovable error esti-
mates for spline interpolation and to the optimality of
spline interpolants compared with other approxima-
tions. The spline interpolation has been widely exam-
ined during the last 40-50 years, see in particular the
monographs [1, 3, 5, 6, 10] and the references there.
Nevertheless, there are open problems concerning ex-
act (unimprovable) constants in error estimates for in-
terpolants and quasi-interpolants. Such results are of
great general interest; our special interest is caused by
examining fast solvers for integral equations (see, e.g.,
[7,9D]).

In Section 2 of the present paper we discuss the
construction of the spline interpolants of functions on
the real line. Given the values of a function f on a
uniform grid A;, C R of a step size h, we construct
the spline interpolant @)y, ,,, f of order m, defect 1 us-
ing the B-spline basis obtained by wavelet-type di-
lation and shifts from the father B-spline B,,, which
can be considered as a scaling function for a special
(nonorthogonal) wavelet system, see [2]. Technically,
our approach is equivalent to that in [6] but we use
another start idea.

Our main results are presented in Section 3.
We establish an unimprovable estimate for ||f —
Qnmf|lc on the class V™°(R) of functions with
bounded mth derivative. This estimate essentially ex-
tends a result of [3] concerning 1-periodic functions
f and the step size of the form h = 1/n with even
n € N. Further, we show that in the sense of the

worst case in V"°°(RR), other approximations to f us-
ing the same information about f as Q) f are more
coarse than @)y, ,, f. We also present some further es-
timates for (), ,, f, in particular, error estimates for
derivatives and error estimates in the case of modestly
smooth f.

We use the following standard notations:

R=(-00,00), N={1,2,...},
Z=1{.,-2-1,012..}.

Let us characterise more precisely the spaces of func-
tions on R used in the sequel. As usual, C(R) is the
space of continuous functions on R, and C™(R) is the
space of functions on R that have continuous deriva-
tives up to the order m. By BC'(R) we mean the Ba-
nach space of bounded continuous functions f on R
equipped with the norm

[ flloo = sup | f()];
z€eR

BUC(R) is the (closed) subspace of BC(R) consist-
ing of bounded uniformly continuous functions on R.
The Sobolev space W™ (R), m € N, consists of
functions f such that f itself and its derivatives up
to the order m are measurable, bounded functions on
R (actually then f, f', ..., ™=V are continuous in R;
the derivatives are understood in the sense of distri-
butions). Finally, the Sobolev space V"™ *°(RR) con-
sists of functions f such that f(™) is measurable and
bounded in R; then f, f/, ..., f(™ 1 are continuous
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but not necessarily bounded in R. With the help of the
Taylor formula

ml ) [
f(:B): f l!(0)$l+ (mil)!/(x_t)m—lf(m)(t)dt

l: 0

o

we observe that for f € V"™°(R), |z| — oo it holds
1 (m) m m—1
[f@)] = — 1™ oo |2]™ + O™ ).

There is an equivalent way to define V""*°(R)
as the space of functions f € C(™~1)(R) such that
=1 js uniformly Lipschitz continuous:

£ (1) = FO ) (29)| < Lylwy — o], @1, 29 €R.

A Lipschitz continuous function, f (m=Din our case,
is differentiable almost everywhere as well as diffe-
rentiable in the sense of distributions, and

inf Ly = [|f"™|]o = vraisup,eg|f™ (2)|

where the infimum is taken over all Lipschitz cons-
tants Ly for fm=1),

We do not need norms in W™°°(R) and
Voo(R).

Clearly, W™ >°(R) 4+ P,, C
clusion is strict.

V7:2°(R); this in-

2 Construction of the interpolant

The formula for the father B-spline B, is given by

1 - if m m—1
Bm(z) = Gy 'Zo(_l) ;)@=
1=
reR, meN,
where, as usual, 0! = 1, 0°
_am—1 (x =)™t x2—i>0
(= a)¥ '_{ 0, z—i<0 [

Some properties of B,,, m > 2, are as follows:

= limxigxl’ =1,

Buji;i+1] € Pm—1 (polynomials of degree m — 1),

i € Z, B, € C"™2(R), ie., B, is a spline of
degree m — 1, defect 1 on the “cardinal” knot set Z,

supp B, = [0,m], Bp(z) >0 for0<z<m,

By, (x) m(m—x), 0<z<m,
Bm 7)) = Bm 5
(2) rfgé{ (z)
[ By(x)dz =1, Y Bp(z—j)=1, xz€eR.

R JEL
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Introduce in R the uniform grid hZ = {ih: i€ Z}
of a step size h > 0. Denote by S, n,, m € N, the
space of splines of order m (or, of degree m — 1) and
defect 1 with the knot set hZ Clearly the dilated and
shifted B-splines B,,(h~tz — j), j € Z, belong to
Sh.m» and the same is true for Y d;Bp,(h~ 1z — )

JEZ
with arbitrary coefficients d;; there are no problems
with the convergence of the series since it is locally
finite: for x € [ih, (i + 1)h)), i € Z, it holds

ZdB “lr—j) = Z d; By,

JEZ Jj=t—m+1

o —j).

Given a function f € C(R) of possibly polyno-
mial growth as |x| — oo, we look for the interpolant
QnmfE Sh,m in the form

= diBpn(h 'z - j),

JEZ

(Qnmf)(x zeR, (1)

and determine the coefficients d; from the interpola-
tion conditions

(Qh,mf)((k +

m

5)h) = f((k+

: ™R, kez. )

2

This leads to the bi-infinite system of linear equa-
tions

> Bulk+ % =) = f(k+5)h), kel
JEZ
or
> bijdj = fr, k€L, (3)

JEZ.

where for k € Z

b =bim = B (k+3), fi=finm =1 ((h+)h),

4)
bp =b_ >0 for ‘k’ <u,

d k=1,

by =0 for |k| > pu,

|kI<p
. _ [ (m—=2)/2, m even
w = int ((m 1)/2)—{ (m—1)/2. modd |-
Thus (3) is a bi-infinite system with the symmet-
ric Toeplitz band matrix B = (by_;)i jcz of the
band width 2y + 1. For m = 2, system (3) re-

duces to relations d, = f((k 4+ 1)h)), k € Z, and
(Qnaf)(x) = sz((j+1)h))Bg(n:c—j)is the usual
JjE€

piecewise linear interpolant which can be constructed
on every subinterval [ih, (i + 1)h] independently from
other subintervals. All is clear in the cases m = 1,2
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and we focuse our attention to the case m > 3. A de-
licate problem appears that the solution of system (3)
always exists but is nonunique for m > 3 if we allow
an exponential growth of |d;| as |j| — oo. Only one
of the solutions of system (3) is reasonable. We call
it the Wiener solution since it is related to the Wiener
theorem (see [11]) about trigonometric (or equivalent
Laurent) series. The following construction of the
Wiener interpolant is in more details elaborated in [8]
and it is equivalent to that in [6].
With b, = bk,m = Bm(k +
introduce the following functions:

b(z) = bzt _b0+Zbkz +27F),

%) defined in (4),

lk|<p
(6)
Pyu(2) = Py (2) = 2b(z) @)
(the characteristic polynomial of B,,). Denote by

2y = Zym, V = 1,..., 2, the roots of the characteris-
tic polynomial P53 € Py, (we call them the charac-
teristic roots). From (6) we observe that together with
2z, also 1/z, is a characteristic root. The polynomials
(7) were introduced in [6] starting from different con-
siderations. As proved in [6], all characteristic roots
are real and simple; then clearly z, < 0,v =1, ..., 24,
and z, # —1, v = 1,...,2pu, thus there are exactly
p characteristic roots z,, v = 1,..., u, in the inter-
val (—1,0) and p characteristic roots 2,1, = 1/z,,
v =1, ..., v in the interval (—oo, —1). It is not comp-
licated to show that the function

a(z) = a™(z) = 1/b"(2) = 2/ Py, (2)  (8)

has the Laurent expansion a™(z)=>" aj, ,,2z* with

keZ
Z[L 1
v,m k|l
ZP, o) L,'n a_gm, k€Z, 9

and the Wiener solution of system (3) is given by

de =Y arjmf (G +5)h), keZ.  (10)

JEZ

An important observation from (9) is that ay, ,,, de-
cays exponentially as |k| — oo, thus the series in (10)
converges provided that f is bounded or of a polyno-
mial growth as |z| — co. Thus we have the following
result.

Theorem 1 For a bounded or polynomially growing
f € C(R), the Wiener interpolant Qp, ,, f is well de-
fined by the formulae (1), (9), (10).
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Further properties of ay, ,, is that

> akm =1, 3 lakm| = 2oy
kEZ keZ

akm = (—1)*lagm| # 0, k € Z.

In the vector space X of all bisequences (d;) ez,
the null space NV (B) of the matrix B = (by—;)k jez
of system (3) is of dimension 2u being spanned by
bisequences (zlj,)jez, v = 1 ..,2u. Hence for any
nontrivial ( ) e N(B),d
j — ooor as j— —o0.

Clearly, ||Qn,mllBc(r)

grows exponentially as

< > |ag,m| but
keZ
this estimate is coarse. To present an exact formula
for ||Qn,m||Bo®r)—BC(R)> introduce the fundamental
spline Fy,(z) := Y apmBm(x —k); it decays expo-
keZ
nentially as |z — oo and satisfies Fy,(j + %) = d;,0,
J € Z, where ¢, 1, is the Kronecker symbol. Clearly,

R)—BC(R

@nmf) (@) =D F(( + Fn(h™ 'z +j),
JEZ
and this implies
[1Qn,m|| Bo®R)—BC®)
=sup > |Fn (2 +j)]
z€R jeZ
— max 3 [Fule+ ).
ze(y, M) jer
Numerical values of ¢, := ||Qnm|| Bo(®r)—BO®)
and oy, 1= ) |a,m| for some m are presented in the
keZ
following table taken from [4]:
m 3 4 5 9 10 20

gm 1.414 1.549 1.706 2.075 2.142 2.583
o, 2.000 3.000 4.800 29.11 45.73 4182

For 4 < m < 20, the computed values of g, fit into
the model ¢,, < § + %logm, and it seems that ¢, —
(¢ + 2logm) — 0 as m — oo; for m = 20 this
difference is of order 0.001. We can also observe that
Qmt1/Qm — /2 = 1.5707963268... as m — o0;
for m = 20 this ratio is 1.570796327, already very
close to /2. Itis challenging to confirm these empiric
guesses analytically.

Finally, it is easily seen that for any bisequence
dj, j € Z, with sup; |d;| < oo, it holds

sup; |d;
M<sup\2d3h x—])|<sup|d|
Qm z€R jez
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3 Error estimates of the spline inter-
polant
To formulate the main results of the paper, we need

some information concerning the Euler splines [3]. A
spline E € Sy, ,, satisfying

EMmD(z) = (=1)" for ih <z < (i+1)h, i € Z,

is called perfect. If E € Sp,,, is perfect then so is
E + g with any g € Pp,_o.
For m = 1, the Euler perfect spline Ej, 1 € Sp 1

is defined by the formula
4 Ssin(2k+1)h
E = (! —
h1(x)=sign sin(h™ mx) sz_o 1
1)

For m > 2, the Euler perfect spline Ej, ,, € Sh, p, is
determined recursively as a special integral function
of B} y—1, namely,

f Eh,m—l(y)dya m =2l
Epm(x) = h/zz )

f Enm-1(y)dy, m=20+1

0

the lower bounds of integration are chosen so that the
2h-periodicity and the zero mean value of Ej ,,—1
over a period is inherited to E}, ,,,. Starting from (11)
we recursively find that

Ep ()
4(=1)!hm=1 & cos(2k+1)h~! _
T am—1 Z (2k+1)m Wx) m = 21

_\lpm—1 X2 . —1n :
A S ™ m=2l+1

(12)
= Ej m—1 for m > 2. Furt-
her, we observe that z = (i + %)h i € Z, are the
zeroes of Ej, ,,, for even m, and x = ih, 1 € Z, are
the zeroes of E}, ,,, for odd m. A unified formulation
is that z = (z + 7”T_l)h, i € Z, are the zeroes of
Epm and x = (i 4 §)h, i € Z, are the local ext-
rema of £}, ,,, (the zeroes of Eh m = Enm—1). There
are no other zeroes and extrema of E}, p, — this can be
easily seen recursively, since by Rolle’s theorem an
additional zero of E}, ,,, involves an additional zero of
E;Lm = Epm—1. Itis clear also that the zeroes of
E}, , are simple. Further, for m = 21,

By construction, E}

4hm—1 x 1
F = |F 0)]=—
H h,m”oo ‘ h,m( )| - (2k+1)m

T 7-[-m—l
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(the absolute value of Ej, ,,, at other local extremum
points x = ¢h is same). Similarly, for m = 2] 4 1,

h e S DL

E = |Epm(5)] = =
|| h,mHoo ‘ h7m(2)‘ T am—1 P (2k+1)m

Unifying these two formulae, we can write
||Eh,m”oo = (I)mﬂ'_(m_l)hm_l, méeN, (13)

with

271
—, m =2l
4] 0(2k+1)

o, = —{ k= 1y , meN,
T _
(14)
known as the Favard constant. In particular,
b =1, ®y=7/2, ®3=72/8, &;=r>/24,
4

and it holds lim,;, o0 @), = =

T°

P < P3 <P < ... < —< ... <P <Py < Py
T

We are ready to formulate our main result.

Theorem 2 For f € V"™>(R), m € N, there hold
the pointwise estimate

(@)= (@nan @) 1™ oo By (2)], z€ R,
(15)

and the uniform estimate

1f = Qumflloo < Prmarm ™A™ (| f™|o. (16)

For f = Epmi1 € W™2(R) C V"™*®(R), inequa-
lities (15) and (16) turn into equalities.

This theorem is known [3] in the case of 1-
periodic f and h = 1/n with an even n € N (then
also Qpmf and Ej, 41 are 1-periodic). Actually,
only (15) is a complicated assertion for the proof,
whereas (16) is an obvious consequence of (15), (13),
and the assertion about the sharpness of estimates for
f = Epjm+1 is elementary. We step after step ex-
tend the theorem first for functions f with compact
support, then for f € V"(R) of slow growth as
|| — oo, and finally for arbitrary f € V">°(R).
Technically, the extensions are based on the following
lemma; for details, see [8].

Lemma 3 Suppose that functions gs € C(R), 6 > 0,
satisfy

6—0 VzeR,
VereR

gs(x) — 0 as
195 ()] < e(1 + [a]")

where r > 0. Then

(Qhmgs)(x) =0 as 6§ —0 VYreR.
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Remark 4 Using Banach-Steinhaus theorem and
Theorem 2, it is easily seen that for f € BUC(R),
lf = @nmflloc = 0ash — 0.

Let us discuss optimality properties of the
spline interpolation compared with other methods
that use the same information about the values of f
on the uniform grid A, = {(j + §)h : j € Z}.
Such a method can be identified with a mapping M}, :
C(Ap) — C(R) where C(Ay,) is the vector space of
grid functions defined on Ay and having values in R
or C.

Remark 5 For given v > 0, we have in accordance
to Theorem 2

sup Hf_Qh,mfl ‘oo: q’m+177_mhm7
FEVMO(R), || fm)]|oo <y

whereas for any mapping My, : C(Ap) — C(R)
(linear or nonlinear, continuous or discontinuous), it
holds

sup 1 = Mi(flan)llo
eV (), [IF™ |l <y

> Dy Ry (17)

Indeed, (17) is trivially fulfilled if M,(0) ¢
BC(R), so we may assume that M} (0) € BC(R).
Consider two functions fy = FyEj p41. Clearly,

fe € Wme(R) € V™R(R), [|f{]l = 7, and
since Ep m11|a, = 0, we obtain (17) by the follow-
ing argument:

sup 1 = Mi(flan)lloo
FEVm R £ oo <y

zmax{‘[f+—Mh(f+’A;L)|’ooa Hf—_Mh(f—|Ah)HOO}
= max{||f+ — Mu(0)|[o, ||/~ — Mp(0)c}
> 1(1f+ = Mu(0)lloo + 11/ — M3(0)|c)

> 11/ - lloo =1 B llocy = B ™.
Remark 6 Let h = 1/n with an even n € N.
Consider the subspace Cper(R) of C(R) consisting
of I-periodic continuous functions on R, and de-
note Wpe ™" (R) = Cher(R) N W™(R); denote by
Cher(Ap) the space of 1-periodic (grid) functions on
the grid Ay, ie., fn(ih) = fn(1 +ih), i € Z,
for fr, € Cper(Ap). Then for any mapping My, :
Cper(Ap) = Cper(R), it holds

sup 1f = Mn(f|a)loo
FEWiy ™ (B), || £ ™) |0 <y

> DT Ry
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The proof is same as in the case of Remark 5, we
only need to observe that Ej, ;11 € Wper ~(R) for
h =1/n with an even n € N.

Remark 7 For functions with compact supports, si-
milar result as Remark 5 holds asymptotically as h —
0. Denote by Wy (R) the subspace of W (R)
consisting of functions f € W (R) with support
in [0,1]. For any mapping My, : C(Ay) — C(R), it
holds

HOO>1.

lim inf sup If — My (fla,)
h—0 fGWOW’OO(R)ny(m)HooS’Y ®m+17r—mhm,.y

This follows by a slight modification of the ar-
gument in Remark 5. Namely, instead of fi =
+vEp m+1, use f+ = £yeE} ;41 where e € C™(R)
is supported in (0,1), 0 < e(z) < 1forall z € R
and e(z) = 1 for % <=z S%. Then for sufficiently
small A, it still holds ||eEp, y41]loc = || Ehm+1lloo =
D1 ™h™, and the Leibniz differentiation rule
yields ||(eEpmi1) ™ ||oo — 1ash — 0.

Next we formulate some further error estimates.

Theorem 8 For f € V™>(R), [ = 1,...

holds
||f(l) - (Qh,mf)(l)Hoo
< B IR 4 ) £ o, (18)

,m — 1, it

17D = (Qnm )Vl
< By IR+ g 1am) 1™ |oo
(19)

where vy = > |k m,
keZ

=) | )

keZ ||j|<int{(m—1-1)/2}

akfj,mbj,mfl < O,

(20)
Gm—1 = [|Qnm—1llBc®)—BC®R)
bjm—1 = Bm_i(j + mT_l) (cf. (4)), and ay, p, are de-
fined in (9).

Remark 9 For f € VL°(R) with f) ¢ BUC(R),
0 <1 < m,itholds || f" — (Qumf) V|l — 0 as
h — 0.

Theorem 10 For f € Vi°(R), 0 < [ < m, it holds

Nf = Qnmflloo < @am B (14 am) |1fY]oos
(21)
f = Qo flloo < @m0 (1 + gt ) [[F Voo
(22)
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with constants o, and oy, defined in (20). If, in ad-
dition, f©) € BUC(R) then

||f - Qh,mf”oo — O(hl) as h — 0.

The proof of Theorems 8 and 10 is based on the
following lemma.

Lemma 11 For fc V2 (R), N31<m, it holds

1(Qnm f)P]oo < amllf V]|
H(Qh,mf)(l)Hoo < melam,le(l)Hoo

with constants defined in Theorem 8.

Introduce the space V,""*°(R), m > 2, of func-
tions g € C™~2(R) such that the derivatives g™,
g™ exist on every interval (ih, (i + 1)h) and

9" D ni+yn) € C((ih, (i + 1)h)),

9" ini+1yn) € L2((ih, (i + 1)h)), i € Z,

onm(g) ==sup  sup  [g"™(z)] < oo.
1€Z ih<z<(i+1)h)

Clearly, V™>=(R) C V;®(R) and ||f(™)||s =
o () for f € V().
Lemma 12 For m > 2, it holds
Vi " (R) = V™2(R) + Sp,m,
Le., every g € V;""°°(R) has a representation
g=f+gn fEV™OR), gn€ Shm (23)
In particular, (23) holds with

x

1
‘ / (@ — )" L Gm(D)dt, zER,

0

(24)
where G, € L™(R) is defined by G, (z) = ¢ (z)
for x € (ih,(i + 1)h), i € Z (and other f in (23)
differ from (24) by an additive polynomial of degree
m—1).

As the consequence of Theorem 2 and Lemma 12 we
obtain the following result.

Theorem 13 Let m > 2. Assume that g € V"™ (R)
satisfies the inequality

9(2)] < (1 + |2]"),

wherer > 0 and c > 0. Then
|g(x)_(Qh,mg)($)| < O'h,m(g)’Eh,m-ﬁ-l(x)’a T e Rv
(26)

Hg - Qh,mgHoo < q)m—l-lﬂ'imhmo'h,m(g)‘ (27)

z €R, (25)

Acknowledgements: This work was partly suppor-
ted by Estonian Science Foundation (research grant
No. 5859).

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006

References:

[1] C. de Boor, A practical Guide to Splines, Sprin-
ger, New York 2001.

[2] C. K. Chui, An Introduction to Wavelets, Acade-
mic Press, Boston 1992.

[3] N. P. Korneychuk, Splines in the Approximation
Theory, Nauka, Moscow 1984 (in Russian).

[4] E. Leetma and G. Vainikko, Quasi-interpolation
by splines on the uniform knot sets, Mathemati-
cal Modelling and Analysis (submitted).

[5] L. L. Schumaker, Spline Functions: Basic Theo-
ry, Krieger Publ., Malabar, Florida 1993.

[6] S. B. Stechkin and Yu. N. Subbotin, Splines in
Numerical Mathematics, Nauka, Moscow 1976
(in Russian).

[7]1 G. Vainikko, Fast solvers of integral equations of
the second kind: quadrature methods, J. Integral
Equations and Applications 17, 2005, pp. 91—
120.

[8] G. Vainikko, Error estimates for the spline inter-
polation on the real line (in progress).

[9] G. Vainikko, A. Kivinukk and J. Lippus, Fast
solvers of integral equations of the second kind:
wavelet methods, J. Complexity 21, 2005,
pp. 243-273.

[10] Yu. S.Zav’yalov and B. 1. Kvasov, V. L. Mirosh-
nichenko, Methods of Spline Functions, Nauka,
Moscow 1980 (in Russian).

[11] A. Zygmund, Trigonometric Series, 1, Camb-
ridge Univ. Press 1959.

464



