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Abstract: In this paper, we propose a relaxation-based method with Fast Automatic Differentiation (FAD) for
solving nonlinear problems. We called this method as R-FAD in this paper. By the proposed R-FAD the large
circuits of neurons having complex nonlinear and Piece-Wise Linear (PWL) functions are modeled in terms of
macro-models and can be analyzed by relaxation-based algorithm keeping the structure of Jacobian matrix. In this
method, the differential elements of the complex nonlinear function f(x) are computed by the FAD and added to
the Jacobian matrix. In simulation, we had interesting synchronization phenomena.
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1 Introduction

The most important points in R-FAD are that it
has parallelism, connective representation for neuron
macro-model and capacity to analyze any nonlinear-
ity of each neuron without user’s program. The Gauss
Seidel Method (GSM) which is a kind of relaxation-
based algorithm has been used in R-FAD because the
basic computation of each neuron processor in a set
of neural parallel processors can be done by sum of
products for weights and state voltages transferred
from neighboring neuron processors in each iteration.
The computation can be realized by virtual parallel
computers (brain computer) architecture or by many
threads in software.
The SPICE is general to use for analyzing transis-
tor circuits [1],[2]. And the fundamental of SPICE
is Newton Raphson Method (NRM) with LU decom-
position. Different than the SPICE the R-FAD con-
tains FAD for the analysis of nonlinearity as well as in
R-FAD the user defines only the description of many
nonlinear functions as their equations in the input file
without program. Due to this application it is easier to
analyze neurons with nonlinear functions in R-FAD.
The R-FAD models and analyzes the neural networks
having any complex nonlinear function i = f(v) for
each neuron state voltage v.
The FAD is a chain ruled-based technique to com-
pute partial derivative value of a composite function
[3],[4]. The FAD makes to compute the element of
Jacobean matrix automatically.

In our proposed method, the relaxation method is used
to solve the linearized equation for NRM. It is very
important that a virtual capacitor between each node
and the reference node is inserted to guarantee the
diagonal dominant of Jacobian matrix for its conver-
gence because the “Relaxation Method” can’t be ap-
plied without the diagonal dominant of Jacobian Ma-
trix [5],[6]. In simulation, we have shown the interest-
ing phenomena for neural networks by our method.

2 Relaxation Method
We call the virtual relaxation method applied in this
paper as Sophia Relaxation Program (SRP). Though
the SRP has been used to analyze MOS and Bipo-
lar transistor circuits [5] without the FAD as SPICE,
we consider here the real application of the SRP is to
analyze neural networks for parallelism and for non-
linearity by adding the FAD. It is important that any
neuron described by nonlinear equation with respect
to capacitive voltage can be analyzed based on nu-
merical stability for nonlinear stiffness and keeping
structure of Jacobian matrix for parallelism. The stiff
nonlinear state equation is given by

dv
dt

= −F(v,u, t) (1)

where v and u are node and input voltage vectors re-
spectively. The function F represents the sum of cur-
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Figure 1: Flowchart of SRP.

rents flowing out from each node to incident conduc-
tive elements. The equation (1) is converted to non-
linear nodal algebraic equations by Backward Euler
Method (BEM) in each real time step ∆t as

f =
1

∆t
(v(m+1) − v(m)) + F(m+1) (2)

where superscript (m + 1) and (m) are discrete times.
Let J be a Jacobian matrix by FAD as

J =
∂f
∂v

∣∣∣
v=vm

k

(3)

then, NRM for f = 0 is

J·ṽm+1
k = fk (4)

where ṽm+1
k = vm+1

k − vm+1
k+1 for k, the step of

NRM. The convergence criterion for solving the lin-
earized equation by relaxation method must depend
on whether J is diagonal dominant.

It is possible that the linearized equation (4) is as-
sumed to be a linear virtual circuit. To make relax-
ation methods applicable for analysis of the virtual
circuit, each adaptive virtual capacitor is inserted from
less diagonal dominant node to the grounded node. It
is unnecessary for each virtual capacitor to be inserted
to the node having diagonal dominant to avoid redun-
dant process as inserting the capacitor. In other words,
the value of the adaptive virtual capacitors for the di-
agonal dominant node is zero. The linearized nodal
equations are mapped by inserting adaptive virtual ca-
pacitors to the state equation as

Cvirtual
dṽm+1

k

dtvirtual
= −J·ṽm+1

k + fk (5)

where Cvirtual is decided as making J more diagonal
dominant. The solution of the linearized equation (4)
is derived as a steady solution of the virtual state equa-
tion (5). The virtual state equation should be numer-
ically integrated by the BEM. Each virtual capacitor
for the diagonal virtual matrix C is inserted based on

Si =
n∑

j=1,j �=i

| Jij| (6)

where the Si is sum of absolute value of non diagonal
part of J. Each capacitor Ci is determined by

Ci =

{
0 (Jii ≥ L × Si)
L × Si − Jii (Jii < L × Si).

(7)

where Jij is (i, j) elements of Jacobian matrix and
L is a parameter that expresses the level of diagonal
dominant. The value of the parameter is determined
as L = 1.25 in this work. The Ci is virtual capac-
itor. The proposed relaxation method is configured
by triple loops of NRM, BEM and GSM as shown in
Fig.1. The SRP guarantee the parallelism in this work
by keeping the structure of the Jacobian matrix.

3 Fast Automatic Differentiation

The main objectives of this paper is to model and an-
alyze the neural networks having complex nonlinear
and PWL functions. And the FAD is applied here to
analyze such complex nonlinear functions. The per-
formance of these calculations depends greatly on the
accuracy of the partial derivatives that make up the
Jacobian matrix and on the efficiency by which they
are computed [7]. It can be done by going through
the computational graph of Fig.2. From the viewpoint
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Figure 2: The computational graph.

of graph, the computation of partial derivative func-
tion by FAD is a shortest route through a non-rotating
graph.

f(x1, x2, x3) =
x1 ∗ exp(x2) + x3

x3 − 1
. (8)

Let’s suppose the program has been assigned that halts
at the finite time to compute the function similar to
equation (8). These partial derivative obtained from
the graph theory makes the Jocobian Matrix which is
later on applied to NRM of the SRP.

4 Simulations and Results

4.1 LC Independent Oscillating Neural Net-
works

L C f

Figure 3: A LC model neuron with the function f .

To realize the LC independent oscillating neural
network with the functions f = (−v3 + v)/sin(v)
and f = (v3 − v)/cos(v), we simulated the neu-
ron as in the Fig.3. The simulation result is shown
in the Fig.4 analyzed by R-FAD. The same simula-
tion was conducted with Runge-Kutta method and the
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Figure 4: The R-FAD simulation result of LC oscil-
lating neurons for functions f = (−v3 + v)/sin(v)
and f = (v3 − v)/cos(v) with L=1[H], C=1[F].

result was found same as R-FAD. By the simulation
result of Fig.4, it can be said R-FAD is found ap-
propriate for the modeling and analysis of the neu-
ral networks having complex nonlinear function in it.
The oscillating neurons with the much complex func-
tions f = (0.001v9 − 0.5v)/(1.2 − sin(v × 1.1)),
f = (0.001v9 − 0.5v)/(1.2 − cos(v × 0.5)) and
f = (0.001v9 − 0.5v) was simulated. The simula-
tion result is shown in Fig.5. We can see clearly the
nonlinear wave propagation.

4.2 Oscillating CNN and Synchronization

We have carried out the simulation for the oscillation
of a CNN by applying complex nonlinear functions
by R-FAD with the L and C in the macro model form.
The value of L and C are 200µ[H] and 20µ[F ] re-
spectively. The main objectives of this simulation are
to see the synchronization of the neurons with small
modulations by sin(·) and cos(·).

The Fig. 6 shows neurons placed with odd num-
bers as 1,3,5,7,9,11,13,15 having a complex nonlinear
function f = (0.0001v3 + 0.09v)/(1.7− sin(v × 2))
as well as the neurons placed with even numbers as
2,4,6,8,10,12,14,16 having a complex nonlinear func-
tion f = (0.0001v3 + 0.09v)/(1.7 − cos(v × 2)).
Here, at the random initial values, the phase transient
phenomenon has taken place at first. However, while
the neurons keep on oscillating they overlap with each
other toward the direction of synchronization.That is,
a new discovery here is that there are clear synchro-
nizing phenomena for direction of amplitudes after
transient time region. Thus, the R-FAD can be used
for the analysis of nonlinear neural synchronization
which is important from the biological and environ-
mental viewpoints. The same simulation was con-
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Figure 5: The R-FAD simulation result of LC Os-
cillating neurons having complex nonlinear functions
f = (0.001v9 − 0.5v)/(1.2 − sin(v × 1.1)), f =
(0.001v9 − 0.5v)/(1.2 − cos(v × 0.5)) and f =
(0.001v9 − 0.5v) with L = 2µ[H], C = 200µ[F ].

ducted with Runge-Kutta method and the result was
found closely same as R-FAD.

5 Conclusion

The proposed SRP is expected to be used generally as
a new R-FAD which models and analyzes large cir-
cuit with neurons having complex nonlinear and PWL
functions. The proposed R-FAD has parallelism by
relaxation-based algorithm keeping the structure of
Jacobian matrix and general expression of nonlinear-
ity. That is, the FAD can compute complex nonlinear
functions by constructing the Jacobian matrix with its
elements automatically. The important points in the
proposed R-FAD are that the FAD, which is not used
in the SPICE, can be used and that the connection of
neural circuits which must be defined by differential
equations can be defined explicitly in the input net-
list file. We discovered interesting synchronization.
As our future work, we will develop the R-FAD that
can analyze the more multi-dimensional current vari-
able i as f(v1, · · · , vl). And, also we will add learn-
ing algorithm. The executable file is opened on web
(http://www.tlab.ee.sophia.ac.jp/SDP).
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Figure 6: The synchronization of the neurons hav-
ing random initial value. The functions are f =
(0.0001v3 + 0.09v)/(1.7 − sin(v × 2)) and f =
(0.0001v3 + 0.09v)/(1.7 − cos(v × 2)).
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