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Abstract: In this study, a game theoretic solution is proposed for urban traffic control. The concept relies on the
idea that an urban network equipped by traffic lights in junctions can be considered as a multi-agent scenario.
Every agent is a junctions and each of them has the right to make an own decision on the distribution of the green
time lengths in its crossing. Any decision made by a junction intends to minimize the number of vehicles within
its incoming road-links but any distribution of the leaving vehicles caused by adecision sets back the receiving
junctions. The technique proposed in this paper converts the conflict situation arisen into a game theoretic problem.
A suboptimal noncooperative solution for green time distribution of the junctions is also provided through an
illustrative example of simple traffic network.
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1 Introduction
The growing traffic of urban areas requires efficient
control system to avoid heavy congestion problems. A
most common tool for control applies traffic lights in
the junctions (also used the synonym term crossing).
The goal of traffic control, based on the measurement
of most relevant traffic properties, consists of finding
a green time distribution for traffic lights used in the
same junction such that the overall behavior of junc-
tions assists to pass as many vehicles through the net-
work as possible.

The literature of developed traffic modeling and
proposed control strategies are growing fast, but they
still meet a lot of challenges. Some promising ap-
proaches apply cell-transformation model which is a
discrete approximation to the hydrodynamic model of
traffic flow [1], [2]. In general, the computational
complexity allows often only heuristic-based or soft
computing methods as successful representations of
control strategies. In [1], genetic algorithm is applied
for optimization, but fuzzy experts [3] and knowledge
based methods [4] were also successfully tested in
applications. Some recent works reported different
techniques, as well. Control strategy on the base of
stochastic system modeling is able to release incident-
induced traffic congestion in [5]. The methodology in
[6] organizes traffic flow into arterial structure which
is especially useful to establish green corridors in traf-
fic network [7]. The store-and-forward model de-
scribed in [8] relies on state-space representation often
preferred in control engineering. The control strategy

discussed in this paper applies optimal LQ control.
Each junction in the network has a right to make

own decision, hence any junction (agent or player,
all of them are considered synonyms in this paper)
corresponds to an agent in the environment. Interac-
tion among agents are realized by the control strate-
gies they carry out through the chosen green time
distribution, as decision. It is possible to define a
game in many multi-agent applications. Games assign
cost function to every agent for every combination of
agents’ decisions. The game is cooperative if agents
are cooperating for a common goal usually on the base
of a command arriving from a higher level supervisor
[9]. In many cases, however, the game is noncoop-
erative [10], mainly if agents are opponents in their
goal (zero-sum games) or they pursue different goals
(nonzero-sum games) or there is a common goal but
there is also an individual goal for each agent [11].
In order to find an optimal decision, different types of
equilibrium points have been elaborated. Ones of the
most widely used equilibrium point in noncooperative
games is the Nash equilibrium point. If there exist
a hierarchy among agents, Stackelberg strategies also
lead to optimal solution.

This paper shows how the urban traffic control
problem should be converted to game theoretic prob-
lem. As a result, a suboptimal game theoretic solution
is also provided to the problem. An illustrative exam-
ple of traffic control demonstrates the efficiency of the
proposed solution.

The paper is organized, as follows. Section 2 de-
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scribes a traffic model applied in the simulation test.
Section 3 presents the proposed control algorithm.
The simulation results on a regular traffic network (in-
spired by many North American cities) with size 5×5
are illustrated in Section 4. Finally, Section 5 draws
some conclusions.

2 The Traffic Model
For the traffic modeling, the Store-and-Forward model
is used. The main notations and the concept are
borrowed from [8], however, it contains some minor
changes in the notation, assumptions and interpreta-
tion to fit the model to game theoretic description.

In the model, the urban network is realized by a
graph having edges and nodes. The edges represent
road-links, the nodes represent junctions. Consider a
junction j. Let I j be a set containing the incoming
road links of j. Similarly, let O j be a set containing
the outgoing road links ofj. The model are based on
the following assumptions:
(ASF1): The vehicles pass every road link in a con-
stant time. If the inflow is higher than the outflow at
the end of the road link, the vehicles are stored (at the
end of the road link). For each outcome link, a sep-
arated lane is designated from the incoming links of
the junctions
(ASF2): Junctions assure at least a minimal green
time from their any incoming road link to to their ev-
ery outgoing road links. The minimal green time of
jth junction fromwth incoming road link toith outgo-
ing road link is denoted byg j

w,i,min.
(ASF3): The cycle timeCj and the total lost timeL j
of junction j are given. In addition,Cj = C for all j.
(ASF4): The relative offsets of cycles between any
two junctions are fixed (and consistent to others).
(ASF5): The saturation flowsSz, z∈ I j are known for
every junction.
(ASF6): The turning ratestz,w, z ∈ I j , w ∈ O j are
known or estimated for every junction.
(ASF7): The junctions are arranged in a matrix struc-
ture. Every junction has 4 incoming road link and 4
outgoing link road(This often occurs in many North
American cities.)
(ASF8): Road links are able to accept new vehicles
from their source link without congestion. Based on
the assumptions above, one writes that

∑
w∈I j

∑
i∈O j

g j
w,i +L j = C

g j
w,i ≥ g j

w,i,min ∀ j (1)

whereg j
w,i is the effective green time of junctionj

from incoming road linkw to outgoing linki. Note

Figure 1: The schematics of a road link

that i,w ∈ {1, . . . ,4}. Of course, the expression (1)
generates an inequality constraint when cycle times
are set up at traffic lights. Considering a road-linkz
between junctionM and junctionN (z∈ IN,z∈ OM)
as shown in Figure 1, the discrete dynamics is given
by

xz(k+1) = xz(k)+T [qz(k)−sz(k)+dz(k)uz(k)]

where xz is the number of vehicles within linkz,
qz is its inflow, uz is its outflow in the time period
[kT,(k+1)T], k = 1,2, . . . with control time interval
T. The additional termsdz andsz denote the demand
and the exit flow, respectively. In the most cases, there
is a strong relation between the demand and the exit
flow described assz(k) = tz,0qz(k). The equation (2)
is described now as

xz(k+1) = xz(k)+T [(1− tz,0)qz(k)+dz(k)uz(k)]

(ASF9): The length of control time interval is at least
C.
If xz is sufficiently high, then (ASF8) and (ASF9) im-
ply that the average value of the outflow is

uz(k) =
SzGz(k)

C
(2)

where the effective green timeGz of the road linkz is

Gz(k) = ∑
i∈O j

g j
z,i(k) z∈ I j (3)

Exploiting that

qz(k) = ∑
w∈IM

tw,zuw(k) (4)

the final form of discrete dynamics related to road link
z is

xz(k+1) = xz(k) (5)

+ T

[

(1− tz,0) ∑
w∈IM

tw,z
Sw ∑i∈OM

gM
w,i

C

−
Sw ∑i∈ON

gN
w,i

C

]

, z∈ OM,z∈ IN
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Considering the equations (5) together for every road
link in the network, one arrives the nonlinear discrete
state equation of the urban traffic network. Note that
[8] focuses on the system dynamics around the aver-
age green time values and applies linear LQ controller.
In the next section, we propose a method to solve the
problem in game theoretic framework.

3 The Control Algorithm

This section proposes a game theoretic solution for ur-
ban traffic problem using Nash equilibrium point. The
idea of the concept is that urban traffic control can
be considered as a multi-agent game theoretic prob-
lem in which each junction tries to minimize the num-
ber of vehicles on its incoming road links (local task
with high priority) and taking a solidarity to an extent
with its play-mate junctions, it also tries to help them
(global task with lower priority). The decisions of the
junctions (players) reflect a behavior in the green time
distributions from incoming links to outgoing links.
For example, if an incoming road link of junctionj
contains significantly more vehicles than other incom-
ing road links, then junctionj endeavors to decrease
the load of this link by increasing the length of green
times from this road link. Depending on the turning
ratios, it increases the load on the incoming road link
of some neighboring junctions which generates a con-
flict situation.

For the more exact discussion, letJ denote the set
of junctions. In this case the number of players are
γ = |J|. Let G1

i1 denote the decision of the first player,
let G2

i2 denote the decision of the second player etc.,

where G j
i j

usually change somehow the green time
distribution

g j(k) =

(

g j
1,1(k), . . . ,g

j
1,|O j |

(k), . . . ,

g j

|I j |,1
(k), . . . ,g j

|I j |,|O j |
(k)

)

(6)

of junction j. Note that (ASF7) implies that the num-
ber of incoming and outgoing road links of junctionj
is

∣

∣I j
∣

∣ =
∣

∣O j
∣

∣ = 4. Numerous combinations of func-
tions are allowed to define ong j(k), as decision set.
Let Xn(G1

i1, . . . ,G
γ
iγ ) be the cost ofnth player and let

X(G1
i1, . . . ,G

γ
iγ ) be the cost vector including the cost of

all players. Then, a decision vector(G1∗
i1 , . . . ,Gγ

iγ∗) is
said to be a Nash equilibrium strategy in thekth con-

trol time period, if the inequalities

X1(k,G1∗
i1 ,G2∗

i1 . . . ,Gγ∗
iγ ) ≤ X1(k,G1

i1,G
2∗
i1 . . . ,Gγ∗

iγ )

... (7)

Xγ(k,G1∗
i1 ,G2∗

i1 . . . ,Gγ∗
iγ ) ≤ Xγ(k,G1∗

i1 , . . . ,Gγ−1∗
iγ−1

Gγ
iγ )

are satisfied. It is easy to realize that if the number of
decisions overg j(k) and/or the size of network i.e. the
number of playersγ are increasing then it is not pos-
sible to find a solution of (7) in real time. In order to
overcome these problems, our method organizes junc-
tions into groups and operate only with few decisions.

A group includes at most 4 members as depicted
in Figure 2. As the figure shows, it is possible the
groups to contain different number of junctions. Ev-
ery group defines a subgame solved parallel to other
subgames. The concept relies on the idea that the
effect of a junction’s decision to the cost of another
junction is decreasing if the distance between the
junctions increases.

Figure 2: The grouping of junctions into subgames

Decisions are restricted to 4 different choices in
the proposed technique, each choice prefers exactly
one incoming road link of the junction at the other in-
coming road links’ expense. The total green time of
the junctions (and the cycle time) is maintained at con-
stant value with this strategy during the whole traffic
control. Of course, it is possible to choose other func-
tions overg j(k).

The algorithm of urban traffic control on game
theoretic basis requires some additional notations. Let
Z be the set of all road links. LetH( j, f ) be the (an
arbitrary ordered) set of junctions having a minimal
distancef from junction j. Distancef is measured by
road links, therefore it is an integer. DenoteHp( j, f )
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the pth element ofH( j, f ) and let |H( j, f )| be the
number of elements inH( j, f ). The proposed algo-
rithm for urban traffic control is the following.

Algorithm (Urban Traffic control in game theoretic
framework)
Input: g j

w,z,min, L j , C, Sz, xz(0), T, tz,0, tw,z, dz(0), g j
w,z,

∀ j ∈ J,∀z∈ O j ,∀w∈ I j .
Output:g j

w,z(k), ∀ j ∈ J,∀z∈ O j ,∀w∈ I j .
Steps:
Step 1) Initialization.
∆g the quantum of the change in green time.R > 0
The radius (measured in edges) in which a junction
considers the cost of other junctions, as well.

Step 2) Measure the characteristic of the actual traffic
atkth control time interval:Sz, tw,z, dz(k).

Step 3) Compute the potential decisions of each junc-
tion:

G j
i =

(

δ j
1,1(k), . . . ,δ

j
1,|O j |

(k), . . . ,

δ j

|I j |,1
(k), . . . ,δ j

|I j |,|O j |
(k)

)

(8)

Decisioni, i = 1, . . . ,
∣

∣I j
∣

∣ of junction j, j ∈ J satisfies

that δ j
p,w(k) = (

∣

∣I j
∣

∣− 1)∆g, if p = i, elseδ j
p,w(k) =

−∆g. If g j
p,w(k)+ δ j

p,w(k) < g j
p,w,min thenG j

i is set to
a zero vector. Note that (ASF7) makes

∣

∣I j
∣

∣ = 4 fix
for ∀ j. It means that each decision prefers only one
incoming road link increasing its green time by 3∆g
while the green times from other incoming road link
of junction j are decreasing by−∆g. During this oper-
ation the total green time in junctionj does not change
and does not change the cycle time either. The poten-
tial green time from incoming road linkp to outgoing
road linkw at junction j after decisionG j

i is

ĝ j
p,w(k) = g j

p,w(k)+δ j
p,w(k). (9)

Step 4) Compute to every decision of every junction
t ∈ J:

Xt(k,G1
i1, . . . ,G

γ
iγ ) = (10)

R

∑
h=0

1
h+1

|H(t,h)|

∑
p=1

∑
z∈IHp(t,h)

xz(k,G
1
i1, . . . ,G

γ
iγ )

wherexz(k) is computed by considering (5)

xz(k+1) = xz(k) (11)

+ T

[

(1− tz,0) ∑
w∈IM

tw,z
Sw ∑i∈OM

ĝM
w,i

C

−
Sw ∑i∈ON

ĝN
w,i

C

]

, z∈ OM,z∈ IN

Step 5) Build the normal form of the game. In order
to achieve normal form one should evaluate the vector
vector function

X(G1
i1, . . . ,G

γ
iγ ) = (12)

(

X1(G1
i1, . . . ,G

γ
iγ )), . . . ,X

γ(G1
i1, . . . ,G

γ
iγ )

)

for every combination of decisions. The vectors
should be arranged in a matrix with dimension|I1|×
|I2| . . .

∣

∣Iγ
∣

∣.

Step 6) Find a Nash equilibrium point of the game by
solving (7). If more than one Nash equilibrium exist,
agents select one by a known strategy. If there is no
Nash equilibrium point in pure strategies, a possible
alternative is to find a mixed equilibrium point as de-
scribed in Proposition 3.5 in [10].

Step 7) Modify the green times according to Nash
equilibrium point. It means thatg j

p,w(k) = ĝ j
p,w(k)

whereĝ j
p,w(k) is selected byG j∗

i j
.

Step 8) Repeat the procedure from Step 2) for the next
control time interval.

Nash equilibrium applied in the Algorithm tries
to achieve a balanced vehicle load on the road links of
a subnetwork. Since groups play subgames parallel,
the solution is suboptimal. It is easy to extend the al-
gorithm to dynamic and hierarchical games, however,
it threatens the chance of real time realization.

4 Simulation Results
The simulation results on 5×5 sized traffic network,
with T = 60 sec,C = 300 sec,tz,0 = 0.01, dz = 0.01,
Sz = 1, xz(0) = 30, ∆g = 3 sec,g j

w,z,min = 5 sec are
illustrated in Figure 3-Figure 8.

Typical green time distributions are illustrated on
two junctions with coordinates (2,4) and (3,4). By
definition, green times are never set up to a constant
values. It is seen from the figures that there is no in-
coming road link of the illustrated junctions that are
absolutely dominating the game. In fact, a dominat-
ing incoming road link may occur if it has heavy load
permanently in relative to others.

Figure 5 and Figure 6 provide a possible way to
compare the traffic control strategy to a constant green
time set up. Both strategies start from the same green
time values, however the proposed Algorithm allows
to adapt to network load by changing green times of
the traffic lights. The computation of cost function
(10) is carried out for each junction. The cost values
of individual junctions with constant green times are
shown in Figure 5 and with Nash equilibrium point
are shown in Figure 6. It is observed that the cost val-
ues are increasing in both cases which comes from the
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Figure 3: Green times in the junction (2,4)

Figure 4: Green times in the junction (3,4)

Figure 5: Induvidual costs with constant green times

Figure 6: Induvidual costs with Nash strategy

Figure 7: The total cost with constant green times

Figure 8: The total cost with Nash strategy
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fact that too many vehicles enter into the whole net-
work and the traffic lights cannot clear the road links
from the cars. Still, this phenomenon provides better
simulation environment to see the differences between
the two concepts. Using constant green times for traf-
fic light, relatively many junctions achieve cost values
around 3000 while the highest cost values occur for
Nash equilibrium strategies are lower than 2500. Of
course, it is possible to define other cost functions,
too. They may provide other green time distributions
in the network. The definition of the cost function de-
pends on the user. It is possible, for example, to define
a game in which a priority for vehicles with distin-
guished signal appears in the decisions. The new sce-
nario can be easily integrated in game theoretic frame-
work.

The efficiency of the whole network can be mea-
sured by the total cost of the junctions. The total cost
in case of constant green times is depicted in Figure
7, in case of Nash equilibrium strategy is depicted in
in Figure 8. As observed from the figures, the strategy
of constant green times leads to around 30% worse
performance than Nash equilibrium strategy.

The control strategy implemented in Mat-
lab2006a and executed on PC with 3Ghz Pentium pro-
cessor has been fulfilled the real time requirements.
The performance of game theoretic traffic control can
be further improved by considering bigger groups and
by more sophisticated decisions. Sophisticated meth-
ods require increasing number of alternatives in deci-
sion, i.e. improvements spoil the chance of real time
realization. Similar case occurs if junction plays dy-
namic games exploiting the effect of decisions in time.

5 Conclusion

A game theoretic framework using Nash equilibrium
point has been proposed in the paper. Simulation re-
sults were underlying the intuition that a game the-
oretic strategy is able to outperform constant green
times strategies. The solution is computationally ex-
pensive and can be realized only if some simplifica-
tions are carried out. The most important simplifica-
tions appear in bundling junctions into groups and de-
creasing the number of of decisions. In further studies,
we intend to increase the performance by establishing
a hierarchy among groups.
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