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Abstract: - The H∞ is a modern and efficient control method and guarantees closed loop stability.  The 
purpose of this paper is to use a combination of the classical P.I control method with H∞ in order to produce 
an efficient controller for a real application, which concerns the design of a control scheme for an air blown 
gasification cycle unit plant (gasifier) for the production of environmentally clean energy.  The gasifier is a 
multivariable six input four output plant.  For a successful design there is a need for a proper weighting 
functions selection.  This case study is based upon the data provided for the 100% load operating point of the 
gasifier. 
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1   Introduction. 
Year by year the pollution of planet earth is 
increasing and electrical power generation makes a 
big contribution to it.  As a consequence the 
protection of the environment has become a 
necessity in every engineering design regarding 
power generation.  Integrated Gasification 
Combined Cycle (IGCC) power plants are being 
developed around the world in order to provide 
environmentally clean and efficient power 
generation from coal.  The plant can be considered 
as a reactor and its operation is based on a combined 
gasification with a gas and steam cycle.   

The aim of this research is the development of a 
dynamic simulation model and a controller using the 
H∞ method for the plant (gasifier).  This case study 
is based upon the data provided for the 100% load 
operating point of the gasifier.  The problem of 
controlling this plant is that it is numerically ill-
conditioned.  This means that commercial software 
packages have a strong chance of failing to provide 
an accurate solution for the problem because their 
algorithms cannot handle such numerics. 
 
 
2   Problem Specification. 
     Schematically the gasifier unit is described in 
Figure 1.  A brief description of the gasifier is that it 
is a non-linear, truly multivariable system, having 
five inputs (coal, limestone, air, steam and char 
extraction) and four outputs (pressure, temperature, 

bed mass and gas quality) with a high degree of 
cross coupling between 
them. 
The control inputs are: 
WCHR char extraction 
flow (kg/s) 
WAIR air mass flow 
(kg/s) 
WCOL coal flow (kg/s) 
WSTM  steam mass 
flow (kg/s) 
WLS limestone mass 
flow (kg/s) 

 Fig. 1: The Gasifier             The disturbance input is  
PSINK  sink pressure (N/m^2) (This represents the 
pressure upstream of the gas turbine that would vary 
according to the position of the gas turbine fuel 
valve.) 

The outputs to be controlled are: 
CVGAS fuel gas calorific value (J/Kg), 
MASS bed mass (Kg), 
PGAS fuel gas pressure (N/m2), 
TGAS fuel gas temperature (K). 

Note that: 
1)  The output vectors in the state – space model 

are ordered as given above.   
2) Limestone absorbs sulphur in the coal so 

WLS should be at least set to a fixed ratio of 
WCOL.  Nominally this should be to 1:10 limestone 
to coal.  This leaves effectively 4 degrees of 
freedom for the control design. 

MASS 
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3) The data provided for the linear models 
provided (100%, 50%, 0% load) are completely 
open loop meaning that the bedmass controller is 
added solely for the validation of the simulation.   

4) The order of the system under consideration 
is 25 and no model reduction has been applied to the 
data provided. 

The proposed controller should be able to 
regulate the outputs bearing in mind that the input 
and output limits must not be exceeded. 

 
Table 1:  Input limits 

      Max 
    (Kg/s) 

Min 
(Kg/s) 

   Rate 
  (Kg/s2) 

  WCOL        10         0      0.2 
  WAIR          0         0       1.0 
  WSTM           6         0      1.0 
  WCHR           3.5         0      0.2 

 
For the output limits the following applies: 
1) The CV fluctuation should be minimized, but 

must always be less than ±10 KJ/Kg 
2) The pressure fluctuation should be 

minimized, but must always be less than ± 0.1 bar. 
3) The bed mass should fluctuate by less than 

5% of the nominal 
4) Temperature fluctuation should kept to a 

minimum, but must always be less than ± 1 C. [12] 
 
 

2.1 H∞ Optimal Control. 
There are many process control problems where 
significant uncertainties exist in the system models, 
which therefore require robust control designs.  
Robust control design procedures enable good 
performance to be maintained even though 
significant modeling errors exist in the system 
description. [1], [2]. 

If a system has disturbance rejection robustness, 
the output will not be unduly influenced by the 
presence of disturbances.  However, stability 
robustness is the most important requirement, since 
the final closed loop design should be stable despite 
modeling errors. 

 
 
 
 
 
 
 
 

Fig.2: Standard representation of inaccurately 
known plant under feedback control 

The uncertainty inherent in a plant model can be 
obtained by the representation of Figure 2, where 
P(s) is the plant to be controlled, K(s) is the 
designed controller and ∆(s) is the perturbation.  It 
should be noted that the external inputs “w” is a 
vector of all the signals entering the system, and the 
“error” (z) is a vector of all the signals required to 
characterize the behavior of the closed loop system. 
Both of these vectors may contain elements, which 
are abstract in the sense that they may be defined 
mathematically, but do not represent signals that 
actually exist at any point in the system. u is the 
vector of control signals, and y is the vector of 
measured outputs. 

If the perturbation ∆(s) is not present the system 
is more simplified.  P(s) is now derived from the 
nominal plant model.  However, it may also include 
weighting functions, which depend on the design 
problem that is being solved. Suppose that P(s) is 

partitioned as 11 12

21 22

P (s) P (s)
P(s)=

P (s) P (s)
 
 
 

                     (1) 

so that  
 z  =   P11w  +  P12u,                                          (2) 
y  =   P21w +  P22u.                                                  (3) 
 

Then, u and y can be eliminated using u=Ky, to 
obtain  
z = [ P11 + P12K(I - P22K)-1 P21]w.                           (4) 
 
For convenience, expression (4) can be written as 
follows:  z = F1(P,K)w.  

By suitably defining w and z (or, equivalently, 
P), it is possible to put a number of practical design 
problems into the form 
 

minimise ∞K)(P,F1  
 
where the minimisation is over all realisable 
controllers K(s) that stabilise the closed loop system, 
and 

∞
.  is defined as   G ∞ = 

ω
sup σ (G(jω)). 

This is known as the H∞ - optimisation problem.  
 

2.2 Solution of the H∞ problem. 
2.2.1   Equivalence to the model matching 
problem. 
It was shown earlier that the general H∞ could be 
formulated as minimize K)(P,F1 ∞  over the 
stabilising compensator K.  

Combining P and J of Figure 3 into a transfer 
function T and assuming that P22 = G, the following 
conclusions can be deducted:   
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Fig.3: Inaccurately known plant under feedback 
control 

z = F1(P,K)w = F1(T,Q)w =   
[T11 + T12Q(I – T22Q)-1T21]w.                                 (5) 

Here, T22 = 0  (for the scope of this research) so 
the previous expression can be simplified to   
z = [T11 + T12QT21]w.                                             (6) 

So it can be now said that all that is needed is to  
                                                                                                                             

11 21min
Q

T T
∞∈∞

+                                                        (7) 

This is sometimes known as the model - 
matching problem because to solve it we need to 
choose Q such that T12QT21 “matches” the model –
T11 as well as possible [3], [4]. 

 
 

2.2.2   Equivalence to Hankel Approximation 
From now on X*(s) will be used to denote XT(-s). 
Moreover, the argument (s) will be dropped for 
convenience reasons.  Assuming that the following 
relationships are valid  
 
T12 T*

12 = I  and  T*
21 T21 = I                                 (8) 

it is easy to show that, if X and Y are all-pass (or 
inner) and σ(.) denotes any singular value of (.), 
then σ(XAY) = σ(A), and that, for any σ(A*) = 
σ(A). Hence it can be said that 
 

=+=+ ∞∞ 21
*
2111

*
1212211211 Q)TTTT(TQTTT  

 ∞∞ +=+ QQ *
12

*
1121

*
2111

*
12 TTTTTT                (9) 

 
An all pass transfer function G(s) is one that: G(s) = 
Go(s)*A(s), A(s) = (s-a)/(s+a), where A(s)  = 1 
while its phase decreases. 
Since Q ∈ Η∞ and Tij ∈ Η∞, Q* has only unstable 
poles while T21T*

11T12 potentially has both stable and 
unstable poles. It can be shown, by a rather 
complicated analysis, that T21T*

11T12 in fact has only 
stable poles [5]. 
 
If R is defined likewise as  
R = T21T*

11T12                                                       (10) 
then  

 
11 12 21min min

Q H Q H
T T QT R Q

∈ ∞ ∈ ∞
+ = +                         (11) 

 
which converts the model – matching problem into 
the problem of approximating a stable transfer 
function R by an unstable one (-Q*).  This is known 
as the Hankel approximation problem, or the Nehari 
extension problem. [6]  
 
2.2.3   Loop Shaping 
The loop shaping procedure described here is based 
on H∞ robust stabilisation combined with classical 
loop shaping, [9].  It is essentially a two-stage 
design process.  First, the open loop plant is 
augmented by pre and/or post – compensators to 
give a "desired" shape to the singular values of the 
open loop frequency response. Then, the resulting 
shaped plant is robustly stabilised with respect to 
coprime factor uncertainty using H∞ optimisation. 
An important advantage is that no problem – 
dependent uncertainty modelling, or weight 
selection, is required for this second step. 

A multivariable system described by a proper 
transfer function matrix G(s) can be described by the 
following state space equations  
x (t) = Ax(t) + Bu(t) 
y(t) = Cx(t) + Du(t) 
if and only if  
G(s) = C(sI-A)-1 B + D                                         (12) 

 
The matrices N, M ∈ H∞ constitute a right 

coprime factorisation (RCF) of G if and only if : 
 
G = NM-1                                                              (13) 
M is invertible, that is det(M) ≠ 0 
There exists UV ~,~

∈H∞ such that   
VM UN I+ =                                                       (14) 

An arbitrarily large number of RCF can be 
generated for a single system G. The normalised 
right and left coprime factor realisations are 

















+

+
=









−

−

−

2/1
1

2/1
1

2/1
1

DRDFC
R

BR
F

BFA

N
M s

                           (15)

 

[ ] 






 ++
= −−− DRRCR

HDBHHCA
2/1

2
2/1

2
2/1

2

~~ NM
            (16) 

where   

t

t

1tt

tt

DDI

DDI

)PCBD(

)QBCD(

+=

+=

+=

+=
−

2

1

2

1

R
R

R-H

-RF

           (17) 

 
and where P and Q are the solutions to the following 
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control and filter Riccati equations: 

0
0

1
1

1
2

1
2

1
1

=+−Φ+Φ

=+−Φ+Φ
−−

−−

ttt

ttt

BBRCPRPCPP
CRCQBQBRQQ

      (18)
 

where CRBDACDBRA tt 1
2

1
1

−− −=−=Φ  
 
The "central" controller of the set of all stabilising 
controllers for γ > γopt > 0 is [12] 










−
+++

=
−−

tt

tts

DQB
PCXDFCPCXBFA

K
1212 )( γγ

 (19) 
where IPQIX 2γ−+=                                (20) 

and  )*(1 max QPλγ +=                                  (21) 

 
It should be noticed that low values of γ, for 

example up to 5, lead to a desirable closed loop 
response, since the controlled shaped plant does not 
change the ‘loop shape’ significantly. High values 
of γ lead to large differences between the shaped and 
controlled plant, and this may lead to possibly poor 
robustness and / or performance which indicate a 
poor open loop shaping strategy.  Moreover, for 
plants with D matrix zero, γ should be larger than  
[7], [8].   

The following assumptions are typically made in 
H∞ design: 

If  P(s) =  



















22

12

2

21

11

1

2

1

D
D

B

D
D

B

C
C

A

                        (22) 

(A, B2, C2) is stabilisable and detectable. 
D12 and D21 have full rank. 








 −

121

2

DC
BIjA ω

                                                (23) 

has full column and row  rank for all ω. 
D11 = 0 , D22 = 0.                                                  (24) 
If the Matlab computing facility is not going to be 
used, then these conditions must be checked before 
designing the controller.  However, if Matlab is to 
be used then these criteria are checked, internally by 
the algorithm provided. 
 
2.3 Design Procedure  
As was mentioned earlier, a robust design 
specification is one where the sensitivity 

1)GKI( −+=oS ,                                                (25) 
is at frequencies less than some low frequency 
below the crossover satisfies: 
σ LGKI /1)( 1 <+ −   ω < ωL < ωc      (26) 

 
where L is some high gain for ω < ωL < ωc. 
Typically, at low frequencies σ 1)( >>GK , so the 
requirement becomes one of satisfying 
σ LGK >)(            ω < ωL < ωc           (27) 
For the performance objectives, the closed loop 
response at frequencies higher than some frequency 
above the crossover frequency needs to satisfy  
σ UGKGKI <+ − ))(( 1  ω > ωH > ωc     (28) 
where U is some low gain for ω > ωH > ωc. 
Typically, at high frequencies    σ (GK) << 1, so 
the requirement  becomes one of satisfying 
σ (GK)  < U  ω > ωH > ωc.                          (29) 
 
 
3   Problem Solution. 

In order to understand how the gasifier system 
should be approached the following notes could be 
useful: 

1)  The system has to examined in terms of 
controllability, observability and stability 

2)  Any possible model order reduction should 
be carried out at the beginning of the design.  The 
resulting reduced system should be check again as 
for (1) 

3)  The selection of the weights is very 
important in H∞.  The better the weight selection the 
better the produced results.   

 
  
 

 
 
 
 
 
 
 
 
 
Fig.4: H∞ Design:  Loss function for one degree 

of freedom 
Wa is the weight that minimizes the actuator 

variations, 
Ws is the weight that minimizes the noise rejection. 
Wt is the weight that minimizes the error in the gain 
from the reference to input. 

For the gasifier system only Wt and Ws are used 
and their value is presented at the next section.  The 
loss function for the H∞ approach is given by: 
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( ) * ( )
( ) * ( )
( ) * ( )

Ws s S s
Wa s R s
Wt s T s

 
 
 
  

                                                     (30) 

where  
S(s) = (I + GK)-1 is the noise rejection and 
sensitivity function 
R(s) = (I + GK)-1 K the gain from output noise to 
actuator output 
T(s) = (I + GK)-1 GK is the complementary 
sensitivity function [10]. 

If up to this stage everything is calculated 
correctly, then the H∞ approach should provide an 
appropriate controller for the system. 

4)  Matlab provides efficient routines for both 
model order reduction and the H∞ controller 
calculation. [13] 

 
 

4   Results. 
It was known from the previous design [11] that if 
the bed mass loop were closed first then the rest of 
the system would be much easier to control.  So this 
was exactly the thing to do, and of course, the 
weighting functions were appropriately designed in 
order for the H∞ algorithm to successfully pass all 
the relevant tests.  The steps related to this design 
and the results of this study are presented below. 

Step 1: The system was made square 4x4, 
the third and the fifth input were combined and the 
first two outputs were interchanged so as to control 
the bed mass loop first, by manipulating the char 
offtake. 

Step 2:  A simple input and output scaling was 
applied to the system of the form 

[ ]( )Pre  diagonal 1 1 1 1= −  and 

[ ]( )Post=diagonal 0.001 0.00001 0.001 0.1  
       Step 3:  A P.I controller was designed in order 
to close the first loop successfully.  This controller is  

 100*(s 0.001)Pi(s)
s
+

=  

        Step 4: Since the bedmass/char offtake loop 
was closed using this P.I controller extract the 
resulting system a 3x3 subsystem was extracted, 
using the following matrices: 

PRE = 
















1000
0100
0010

, POST  



















100
010
001
000

 

       Step 5: Normalisation and alignment was 
applied to the new 3x3 subsystem at the frequency 
point of 0.0001 rad/sec  [10].   
      Step 6:  Set the weights as in (31). 

Step 7:  Use Matlab, to obtain an H∞ controller 
was produced.   

Step 8: All of the scaling matrices produced 
during this procedure for the 3x3 subsystem were 
augmented in order to become 4x4, matrices and the 
original 4x4 gasifier was cascaded with them. The 
resulting closed – loop system, shown in Figure 5 
was simulated and the step responses of this system 
were obtained, Figure 6. 
 

input
0.0001 0.002 0.0001W (3 3)

0.0003 0.005 0.05
x diagonal

s s s
 =  + + + 

6 5 8

output
1*10 1*10 1*10W (3 3)

1 0.1 1
s s sx diagonal

s s s

− − − + + +
=  + + + 

                                                                              (31) 
   
 
 
 
 
 
 
 
 

Fig.5: Resulting Closed Loop System 
 

 
5   Conclusions. 
As can be seen from Fig.10, the performance of the 
system in the time domain is very good and satisfies 
the problem’s specifications.  The system is now 
diagonal dominant and the elements of the main 
diagonal reach their steady state values rapidly.  
Moreover, most the interaction has been eliminated, 
since all of the off diagonal elements settle at the 
zero level well before the two hours time limit. 
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Fig 6:  Step Responses of the Full Gasifier Model (The first loop was closed first using a P.I controller) 
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