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Abstract: An open queueing network model in light traffic has been developed. The theorem on the law of the
iterated logarithm for the idle time process of customers in an open queueing network has been presented. Finally,
we present an application of the theorem - a idle time model from computer network practice.
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1 Introduction
One can apply the law of the iterated logarithm to

the waiting time of customers, virtual waiting time
of a customer, and the queue length of customers to
get more important probabilistic characteristics of the
queueing theory in heavy traffic (see, for example, [1]-
[7], [9]-[11]). A single - phase case, where intervals
of time between the arrival of customers to queue are
independent identically distributed random variables
and there is a single device working independently of
the output in heavy traffic, has been completely inves-
tigated (see, for example, [1]-[2]). But there are only
several papers on the theory of open queueing net-
works in heavy traffic (see [9]-[10]) and no proof the-
orems on laws of the iterated logarithm for the main
probabilistic characteristics of an open queueing net-
work in heavy traffic (for example, sojourn time of a
customer, a virtual waiting time of a customer and
idle time process of customers).

So in this paper, we present a theorem on the law
of the iterated logarithm for the idle time process of
customers in the queueing network. The service dis-
cipline is “first come, first served” (FCFS).

We consider open queueing networks with the
FCFS service discipline at each station and general
distributions of interarrival and service time.

The queueing network we studied has k single
server stations, each of which has an associated in-
finite capacity waiting room.

Every station has an arrival stream from outside
the network, and the arrival streams are assumed to be
mutually independent renewal processes. Customers
are served in the order of arrival and after service they
are randomly routed to either another station in the

network, or out of the network entirely. Service times
and routing decisions form mutually independent se-
quences of independent identically distributed ran-
dom variables. The basic components of the queueing
network are arrival processes, service processes, and
routing processes.

We begin with a probability space (Ω, B, P )
on which these processes are defined. In partic-
ular, there are mutually independent sequences of
independent identically distributed random variables{
z
(j)
n , n ≥ 1

}
,
{
S

(j)
n , n ≥ 1

}
and

{
Φ(j)

n , n ≥ 1
}

for
j = 1, 2, ..., k; defined on the probability space.
Random variables z

(j)
n and S

(j)
n are strictly positive,

and Φ(j)
n have support in {0, 1, 2, ..., k}. We de-

fine µj =
(
E

[
S

(j)
n

])−1
, σj = D

(
S

(j)
n

)
and

λj =
(
E

[
z
(j)
n

])−1
, aj = D

(
z
(j)
n

)
, j = 1, 2, ..., k;

with all of these terms assumed finite. Denote pij =
P

(
Φ(i)

n = j
)

, i, j = 1, 2, ..., k. The k × k matrix
P = (pij) is assumed to have a spectral radius strictly
smaller than a unit (see [9]). The matrix P is called a
routing matrix.

In the context of the queueing network, the ran-
dom variables z

(j)
n function as interarrival times (from

outside the network) at the station j, while S
(j)
n is the

nth service time at the station j, and Φ(j)
n is a routing

indicator for the nth customer served at the station j.
If Φ(i)

n = j (which occurs with probability pij), then
the nth customer served at the station i is routed to
the station j. When Φ(i)

n = 0, the associated customer
leaves the network.

At first let us define Ij(t) as the idle time pro-
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cess of customers at the jth station of the queue-

ing network in time t, β̂j =
λj +

k∑
i=1

µi · pij

µj
−

1, σ̂2
j =

k∑

i=1

p2
ij · µi ·


σj +

(
µi

µj

)2

· σi


 + λj ·


σj +

(
λj

µj

)2

· aj


 , j = 1, 2, · · · , k and t >

0.
We suppose that the following conditions are ful-

filled:

λj +
k∑

i=1

µi · pij < µj , j = 1, 2, . . . , k. (1)

Note that this conditions quarantees that, with
probability one there exists a idle time process of cus-
tomers and this idle time process of customers is con-
stantly growing.

In addition, we assume throughout that

max
1≤j≤k

sup
n≥1

E

{(
z(j)
n

)2+ε
}

< ∞ for some ε > 0,

(2)

max
1≤j≤k

sup
n≥1

E

{(
S(j)

n

)2+ε
}

< ∞ for some ε > 0.

(3)
Conditions (2) and (3) imply the Lindeberg con-

dition for the respective sequences, and are easier to
verify in practice (usually ε = 1 works).

One of the results of the paper is a following the-
orem on the law of the iterated logarithm for the idle
time process of customers in an open queueing net-
work (proof can be found in [7]).

Theorem 1 If conditions (1) - (3) are fulfilled, then

P

(
lim
t→∞

Ij(t)− β̂j · t
σ̂j · a(t)

= 1

)
=

P

(
lim
t→∞

Ij(t)− β̂j · t
σ̂j · a(t)

= −1

)
= 1,

j = 1, 2, . . . , k and a(t) =
√

2t ln ln t.

2 Idle Time Function of Computer
Network

Now we present a technical example from the com-
puter network practice. Assume that queues arrive at

the computer vj at a rate λj per hour during business
hours, j = 1, 2, . . . , k. These queues are served at the
rate µj per hour by the computer vj , j = 1, 2, . . . , k.
After service in the computer vj , with probability pj

(usually pj ≥ 0.9), they leave the network and with
probability pji, i 6= j, 1 ≤ i ≤ k (usually 0 <
pji ≤ 0.1) arrive at the computer vi, i = 1, 2, . . . , k.
Also, we assume the computer vj is idle when the
idle time of waiting for service computer is less than
kj , j = 1, 2, . . . , k.

Therefore, using Theorem 1 we get for 0 < ε < 1

P

(
lim
t→∞

Ij(t)− β̂j · t
σ̂j · a(t)

< 1− ε

)
= 0, j = 1, 2, . . . , k.

(4)
Let us investigate a computer network which con-

sists of the elements (computers) vj that are indicators
of stations Xj , j = 1, 2, . . . , k.

Denote

Xj =

{
1, if the element vj is idle
0, if the element vj is not idle,

j = 1, 2, . . . , k.
Note that {Xj = 1} = {Ij(t) < kj}, j =

1, 2, . . . , k.
Denote the structural function of the system of el-

ements connected by scheme 1 from k (see, for exam-
ple, [8]) as follows:

φ(X1, X2, . . . , Xk) =

{
1,

∑k
i=1 Xi ≥ 1

0,
∑k

i=1 Xi < 1.

Denote y =
∑k

i=2 Xi. Estimate the idle function
of the system (computer network) using the formula
of full conditional probability

h(X1, X2, . . . , Xk) = Eφ(X1, X2, . . . , Xk) =

P (φ(X1, X2, . . . , Xk) = 1) = P (
k∑

i=1

Xi ≥ 1) =

P (X1 + y ≥ 1) = P (X1 + y ≥ 1|y = 1)·
P (y = 1) + P (X1 + y ≥ 1|y = 0) · P (y = 0) =

P (X1 ≥ 0) · P (y = 1) + P (X1 ≥ 1) · P (y = 0)

≤ P (y = 1)+P (X1 ≥ 1) = P (y = 1)+P (X1 = 1)

≤ P (y ≥ 1) + P (X1 = 1) = P (
k∑

i=2

Xi ≥ 1)+

P (X1 = 1) ≤ · · · ≤
k∑

i=1

P (Xi = 1) =
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k∑

i=1

P (Ii(t) ≤ ki).

Thus,

0 ≤ h(X1, X2, . . . , Xk) ≤
k∑

i=1

P (Ii(t) ≤ ki). (5)

However, for t ≥ max
1≤j≤k

kj

β̂j

and 0 < ε < 1 (see

(4))

0 ≤ lim
t→∞P (Ij(t) < kj) ≤ lim

t→∞P (Ij(t) <

(1− ε) · a(t) · σ̂j + β̂j · t) =

lim
t→∞P

(
Ij(t)− β̂j · t

σ̂j · a(t)
< 1− ε

)
≤

lim
t→∞P

(
Ij(t)− β̂j · t

σ̂j · a(t)
< 1− ε

)
=

P

(
lim
t→∞

Ij(t)− β̂j · t
σ̂j · a(t)

< 1− ε

)
= 0, (6)

j = 1, 2, . . . , k.
Thus (see (6)),

lim
t→∞P (Ij(t) < kj) = 0, j = 1, 2, . . . , k. (7)

So, (see (5) and (6)), h(X1, X2, . . . , Xk) = 0.
Consequently, we have proved the following the-

orem on the idle time of computer network.

Theorem 2 t ≥ max
1≤j≤k

kj

β̂j

and conditions (1) - (3) are

fulfilled, all computer in the network are idle.
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