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Abstract: Anti-angiogenic therapy is a novel treatment approach for cancer that aims at preventing a tumor from
developing its own blood supply system that it needs for growth. Since it does not target cancer cells, but healthy
cells instead, it is not prone to developing drug resistance, the main obstacleto successful cancer chemotherapy.
In this paper a class of systems for anti-angiogenic treatments is consideredas optimal control problems and the
optimality of singular controls is analyzed.
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1 Introduction
The reason for the failure of most cancer chemother-
apy treatments lies in both intrinsic and acquired drug
resistance. Malignant cancer cell populations are
highly heterogeneous and fast duplications combined
with genetic instabilities provide just one of several
mechanisms which allow for quickly developing ac-
quired resistance to anti-cancer drugs. In addition,
intrinsic resistance makes some cancer cells not sus-
ceptible to many cytotoxic agents. Healthy cells, on
the other hand, are genetically very stable and do not
develop similar features. So, while the cancer popula-
tion becomes increasingly more resistant to the drugs,
these keep on killing the healthy cells eventually lead-
ing to a failure of the therapy.

One approach to cancer treatments that tries to
circumvent the problem of drug resistance is tumor
anti-angiogenesis. A growing tumor, after it reaches
just a few millimeters in size, no longer can rely on
blood vessels of the host for its supply of nutrients, but
it needs to develop its own vascular system for blood
supply. In this process, calledangiogenesis, endothe-
lial cells produce growth factors that stimulate the pro-
liferation of the tumor cell population. Angiogenic in-
hibitors target the endothelial cells aiming to prevent
the tumor from developing its own blood vessel sys-
tem and thus blocking its growth. Ideally, the tumor,
deprived of necessary nutrition, regresses. Since the
treatment targets normal cells, no occurrence of drug
resistance has been reported in lab studies.

In this paper we consider the question of how
to schedule a given amount of angiogenic inhibitors
to achieve a maximum tumor reduction as an opti-

mal control problem. The underlying model is a two-
dimensional system with the volume of primary tu-
mor cells,p, and the volume of the vascular endothe-
lial cells, q, as variables. The basic structure of the
dynamical model follows the mathematical model for
the evolution of tumor anti-angiogenesis as it was for-
mulated and clinically validated by Hahnfeldt, Pan-
igrahy, Folkman and Hlatky in [5] and we use this
model and two of its modifications, one considered
by d’Onofrio and Gandolfi in [3], the other by Er-
gun, Camphausen and Wein [4], to illustrate our com-
putations. However, much of the analysis can be
carried out for models with general inhibition terms
I = I(p, q) and stimulations termsS = S(p, q) that
define the dynamics of the endothelial cells. A Gom-
pertzian growth model with a variable carrying capac-
ity defined by the endothelial cells is used for the pri-
mary tumor volume.

2 Mathematical Models for Dynamic
Anti-Angiogenic Monotherapy

The mathematical model we consider is based on the
underlying medical research performed by Hahnfeldt,
Panigrahy, Folkman and Hlatky [5], but for mathemat-
ical reasons we slightly modify their notation. Letp
denote the volume of primary tumor cells and letq
denote the volume of the vascular endothelial cells. A
growth function describes the size of the tumor and
here is chosen as Gompertzian with a variable car-
rying capacity defined by the volume of endothelial
cells,q. Thus the rate of change in the volume of pri-
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mary tumor cells is given by

ṗ = −ξp ln

(

p

q

)

(1)

whereξ denotes a tumor growth parameter. The mod-
els we consider differ in the equation modelling the
rate of change in the volume of vascular endothelial
cells. Endothelial cells produce growth factors that
stimulate the proliferation of the tumor cell popula-
tion, but also have receptors which make them sensi-
tive to inhibitors of inducers of angiogenesis like, for
example, endostatin. Thus the overall dynamics is a
balance between stimulation and inhibition and its ba-
sic structure is of the form

q̇ = −µq + S(p, q) − I(p, q) − Guq (2)

whereI andS denote inhibition and stimulation terms
and the termsµq andGuq that have been separated
from the general terms, describe, respectively, loss
to the endothelial cells through natural causes (death
etc.), and loss of endothelial cells due to additional
outside inhibition. The variableu represents the con-
trol in the system and corresponds to the angiogenic
dose rate whileG is a constant that represents the anti-
angiogenic killing parameter. Generallyµ is small and
often this term is negligible compared to the other fac-
tors and thus in the literature oftenµ is set to0 in this
equation.

The problem of how to administer a given amount
of inhibitors to achieve the “best possible” effect
arises naturally. One possible formulation, considered
also in [4], is to solve the following optimal control
problem: for a free terminal timeT , minimize the
valuep(T ) subject to the dynamics (1) and (2) over
all Lebesgue measurable functionsu : [0, T ] → [0, a]
which satisfy a constraint on the total amount of anti-
angiogenic inhibitors given,

∫ T

0

u(t)dt ≤ A. (3)

Herea is a maximum dose at which the inhibitors can
be given. The solution to this problem gives the maxi-
mum tumor reduction achievable with a given amount
of inhibitors. Mathematically it is more convenient
to adjoin the constraint as third variable and consider
the problem inR3. Hence we consider the following
optimal control problem:

[OC] For a free terminal timeT , minimize the value
p(T ) subject to the dynamics (1), (2), andẏ =
u with initial conditionsp0, q0 and y(0) = 0,
over all measurable functionsu : [0, T ] → [0, a]
for which the corresponding trajectory satisfies
y(T ) ≤ A.

In the paper by Hahnfeldt et al. [5] a spatial anal-
ysis of the underlying consumption-diffusion model
was carried out that led to the following two princi-
pal conclusions about the qualitative relationships be-
tween inhibition and stimulation terms:

1. The inhibitor will impact endothelial cells in a
way that grows like volume of cancer cells to the
power 2

3
. (The exponent2

3
arises through the in-

terplay between the surface of the tumor and the
volume of endothelial cells.)

Thus in [5] the inhibitor term is taken in the form

I(p, q) = dp
2

3 q (4)

with d a constant, the death rate. The second implica-
tion of the analysis in [5] is that:

2. The inhibitor term will tend to grow at a rate of
qαpβ faster than the stimulator term where

α + β =
2

3
. (5)

However, the choice ofα andβ is not imperative in
their analysis and in fact is one of the main sources
for other models considered in the literature [3, 4]. In
their original work [5], Hahnfeldt et al. selectα = 1
andβ = −1

3
resulting in the simple stimulation term

S(p, q) = bp (6)

with b a constant, the birth rate. However, other
choices are possible and, for example, choosingα = 0
andβ = 2

3
results in the equally simple form

S(p, q) = bq (7)

chosen in [3]. In that paper the dynamics for both
these models is analyzed and it is shown for the un-
controlled system that there exists a unique globally
asymptotically stable equilibrium (which, of course,
is not viable medically). Adding a control term, this
equilibrium can be shifted to lower values, or, de-
pending on the parameter values, even eliminated al-
together. In the latter case all trajectories converge to
the origin in infinite time. This, in principle, would be
the desired situation.

A characteristic of the dynamic behavior of ei-
ther system is that, compared with thep-dynamics,
the q-dynamics is fast; the system very much has a
differential-algebraic flavor. In fact, as is argued in
[4], compared to the real situation observed in labs,
in the model the system tends to reach its steady state
too fast. Sincep andq tend to move together in steady
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state, there is some freedom in selecting the terms in
the dynamics and Ergun, Camphausen and Wein in [4]
modify theq̇ equation to

q̇ = −µq + bq
2

3 − dq
4

3 − Guq. (8)

The justification for this change or approximation lies
in a better balance in the dynamics for the substitu-
tion of stimulation and inhibition, but the inhibitor in
this model is now only proportional to the tumor ra-
dius. Also, the dynamics itself is a simplification in
the sense that it eliminates a direct link between tu-
mor cellsp and endothelial cellsq. We summarize
the functional forms for the inhibition and stimulation
terms in these three models in Table 1:

Model I(p, q) S(p, q) Reference

(A) dp
2

3 q bp [5]

(B) dp
2

3 q bq [3]

(C) dq
4

3 bq
2

3 [4]

Table 1: Models for inhibition and stimulation

Models (A) and (B) have the same globally
asymptotically stable equilibrium point(p̄, q̄) for the
uncontrolled system,u = 0, namely p̄ = q̄ =
(

b−µ
d

) 3

2

. For model (C) this value shifts a bit, but

agrees forµ = 0. These values naturally are too high
to be acceptable and the medically relevant region is
contained in the domainD = {(p, q) : 0 < p ≤
p̄, 0 < q ≤ q̄}.

The following statement about the dynamical be-
havior of systems (A) and (B) is an easy corollary of
the results proven in [3] and is also easily verified for
model (C) [7].

Proposition 1 For each of the models (A), (B) and
(C), given any admissible controlu and arbitrary pos-
itive initial conditionsp0 and q0, the corresponding
solution (p, q) exists for all timest ≥ 0 and bothp
andq remain positive.�

If we denote the region where the variables are
positive by P, P = {(p, q) : p > 0, q > 0},
then this is the statement thatP is positively invari-
ant for any admissible control. For arbitrary functions
I andS such a statement cannot be made a priori, but
clearly the state variables need to remain positive for
the model to make sense. In the general setting, we
therefore assume that

(+-inv) P is positively invariant for any admissible
controlu, i.e. given any admissible controlu and

arbitrary positive initial conditionsp0 andq0, the
solutions(p, q) to (1) and (2) exist for all times
t ≥ 0 and remain positive.

3 General Properties
of Optimal Solutions

It follows from classical results that there exists an op-
timal solution to our problem [2]. However, for some
initial conditions this may beT = 0, i.e. the mini-
mum value is already attained for the initial condition.
This situation arises when the amount of available in-
hibitors simply is not sufficient to reach a point that
would have a lowerp-value thanp0. Given the Gom-
pertzian growth dynamics (1) this happens since the
tumor volume increases in the regionP− = {(p, q) ∈
P : p < q} regardless of the control. In such a case,
tumor growth can only be delayed as much as possi-
ble by administering inhibitors at full dose until they
are exhausted, but mathematically this is not the “op-
timal” solution for problem [OC].

Definition 1 We say an initial condition(p0, q0) ∈
P− is ill-posed if for any admissible control it is not
possible to reach a point(p, q) with p < p0. In
this case the optimal solution for the problem [OC]
is given byT = 0. Otherwise(p0, q0) is well-posed
and the optimal timeT will be positive.

It is clear that all initial conditions with(p0, q0) ∈
P+ = {(p, q) ∈ P : p > q} are well-posed (sincep
decreases inP+). In this paper we only consider well-
posed initial conditions.

First-order necessary conditions for optimality of
a control u are given by thePontryagin Maximum
Principle [10, 1]: For a row-vectorλ = (λ1, λ2, λ3) ∈
(R3)∗, we define the HamiltonianH = H(λ, p, q, u)
as

H = −λ1ξp ln

(

p

q

)

+ λ3u (9)

+λ2 (−µq + S(p, q) − I(p, q) − Guq) .

Then, if u∗ is an optimal control defined over the in-
terval[0, T ] with corresponding trajectory(p∗, q∗, y∗),
there exist a constantλ0 ≥ 0 and an absolutely con-
tinuous co-vector,λ : [0, T ] → (R3)∗, such that the
following conditions hold: (a)(λ0, λ(t)) 6= (0, 0) for
all t ∈ [0, T ], (b) λ3 is constant andλ1 andλ2 satisfy
the adjoint equations

λ̇1 = −
∂H

∂p
(λ(t), p∗(t), q∗(t), u∗(t)), (10)

λ̇2 = −
∂H

∂q
(λ(t), p∗(t), q∗(t), u∗(t)), (11)
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with transversality conditionsλ1(T ) = λ0 and
λ2(T ) = 0, (c) the optimal controlu∗ minimizes the
Hamiltonian along(λ(t), p∗(t), q∗(t)) over the con-
trol set[0, a] with minimum value given by0. �

We call a pair ((p, q, y), u) consisting of an
admissible controlu with corresponding trajectory
(p, q, y) for which there exist multipliers(λ0, λ)
such that the conditions of the Maximum Princi-
ple are satisfied anextremal (pair) and the triple
((p, q, y), u, (λ0, λ)) is an extremal lift (to the cotan-
gent bundle). Extremals withλ0 = 0 are called ab-
normal while those with a positive multiplierλ0 are
called normal. The following Lemmas summarize
some properties of optimal controls and extremals for
problem [OC] for well-posed initial conditions that we
state without proofs.

Lemma 1 Extremals are normal. The multipliersλ1

and λ2 cannot vanish simultaneously;λ2 has only
simple zeroes. The multiplierλ3 is constant and non-
negative.

Lemma 2 If u∗ is an optimal control with corre-
sponding trajectory(p∗, q∗, y∗), then at the final time
p∗(T ) = q∗(T ). If the inhibition term at the endpoint
is larger than the stimulation term,

S(p∗(T ), q∗(T )) < I(p∗(T ), q∗(T ))+(µ+Ga)p∗(T ),
(12)

then y∗(T ) = A, i.e. all available inhibitors have
been used up.

An optimal controlu∗ minimizes the Hamiltonian
H over the interval[0, a]. This is equivalent to mini-
mizing the linear function(λ3 − λ2(t)Gq∗(t))v over
v ∈ [0, a]. Thus, if we define the so-calledswitching
functionΦ as

Φ(t) = λ3 − λ2(t)Gq∗(t), (13)

then optimal controls satisfy

u∗(t) =

{

0 if Φ(t) > 0
a if Φ(t) < 0

. (14)

A priori the control is not determined by the mini-
mum condition at times whenΦ(t) = 0. However,
if Φ(t) ≡ 0 on an open interval, then also all deriva-
tives ofΦ(t) must vanish and this may determine the
control. Controls of this kind are calledsingularwhile
we refer to the constant controls asbangcontrols. Op-
timal controls then need to be synthesized from these
candidates through an analysis of the switching func-
tion. For example, ifΦ(τ) = 0, but Φ̇(τ) 6= 0, then
the control switches betweenu = 0 andu = a de-
pending on the sign oḟΦ(τ). In this paper we investi-
gate the local optimality of singular controls.

4 Analysis of Singular Controls
We need to analyze the switching function and its
derivatives. These computations can be expressed
concisely within the framework of geometric optimal
control theory and we therefore now write the state as
z = (p, q, y)T and express the dynamics in the form

ż = f(z) + ug(z) (15)

where

f(z) =







−ξp ln
(

p
q

)

−µq + S(p, q) − I(p, q)
0






(16)

and

g(z) =





0
−Gq

1



 . (17)

The derivatives of the switching function can easily be
computed using the following well-known result that
can be verified by a direct calculation.

Proposition 2 Let h be a continuously differentiable
vector field (written as a column vector),h ∈ R

3, and
define

Ψ(t) = λ(t)h(z(t)). (18)

Then the derivative ofΨ along a solution to the system
equation (15) for controlu and a solutionλ to the
corresponding adjoint equations is given by

Ψ̇(t) = λ(t)[f + ug, h](z(t)), (19)

where[f, h] denotes the Lie bracket of the vector fields
f and h. In local coordinates the Lie bracket is
expressed as[f, h](z) = Dh(z)f(z) − Df(z)h(z)
with Df andDh denoting the matrices of the partial
derivatives off andh, respectively.�

For the switching functionΦ,

Φ(t) = λ(t)g(z(t)) (20)

we therefore have that

Φ̇(t) = λ(t)[f, g](z(t)), (21)

Φ̈(t) = λ(t)[f + ug, [f, g]](z(t)). (22)

These formulas are crucial in the analysis of singular
controls: If u∗ is singular on some open intervalJ ,
then the switching function and all its derivatives van-
ish onJ . It is a second-order necessary condition for
minimality, the so-called Legendre-Clebsch condition
[6], that

λ(t)[g, [f, g]](z(t)) ≤ 0 (23)
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and if this quantity is negative, we say thestrength-
ened Legendre-Clebsch conditionis satisfied. In this
case the singular control indeed is locally optimal and
we can formally solve the equation̈Φ(t) = 0 for the
singular control as

usin(t) = −
λ(t)[f, [f, g]](z(t))

λ(t)[g, [f, g]](z(t))
. (24)

Because of the special form of the control vector
field g, even for the general model these Lie brack-
ets withg can be expressed in a succinct form: Let
I denote the interval(0,∞) and for an infinitely of-
ten continuously differentiable functionf ∈ C∞(I)
denote byL the linear differential operator

L : C∞(I) → C∞(I), f 7→ Lf, (25)

defined by

(Lf) (t) = tf ′(t) − f(t). (26)

Note that for anyα ∈ R the functionsf(t) = tα are
eigenfunctions of this operator with eigenvalue(α −
1), i.e.

L(tα) = (α − 1)tα. (27)

In particular, linear functions lie in the kernel of the
operator.

If we set∆ = S − I and let the operatorL act on
the variableq, then a direct computation verifies that
the Lie bracket off with g is given by

[f, g](z) = G





ξp

L(∆)(p, q)
0



 . (28)

For n ∈ N inductively defineLn asL ◦ Ln−1. Then
another computation verifies that

[g, [f, g]](z) = −G2





0
L2(∆)(p, q)

0



 (29)

and thus

λ(t)[g, [f, g]](z(t)) = −G2λ2(t)L
2(∆)(p(t), q(t)).

(30)
In these equations the operatorL only acts on the vari-
ableq with p as a parameter. Based on these compu-
tations the following result can be shown:

Theorem 1 If a control u∗ is singular on some open
interval (α, β), thenλ3 > 0 andλ2 is positive on the
closed interval[α, β]. If L2(∆)(p(t), q(t)) > 0 on
(α, β), then the singular control is of order1 and the
strengthened Legendre-Clebsch condition is satisfied.

In this case there exists a locally minimizing singular
curveS for problem [OC]. This curve is the locus of
the points(p, q) where the vector fieldsf and [f, g]
are linearly dependent, i.e.

∆(p, q) + L(∆)(p, q) ln

(

p

q

)

− µq = 0. (31)

The singular curve is admissible at points where the
singular control defined by (24) takes values in the
control interval[0, a].

In the models (A)-(C) introduced above, the in-
hibition termsI and stimulation termsS are always
given as powers ofq and thus are all eigenfunctions
of this operatorL. This allows for quick and simple
computations:

(A) For the model by Hahnfeldt et al. [5] we have
S(p, q) = bp andI(p, q) = dp

2

3 q and thus by (27)
L(S) = −S andL(I) = 0. HenceL(∆) = L(S) −
L(I) = −S and thus

L2(∆) = L(−S) = S > 0. (32)

Hence by Theorem 1 there exists a locally minimizing
singular curve for model (A). Fig. 1 depicts the sin-
gular curve for the following parameter values from
[5], ξ = 0.192

ln 10
= 0.084 per day (adjusted to the nat-

ural logarithm),b = 5.85 mm per day,d = 0.00873
per mm per day,G = 0.15 kg per mg of dose, and
µ = 0.02. The solid curve represents the admissible
portion of the petal like singular curveS for a = 75;
the full singular curve is shown dashed. The qualita-
tive structure shown in Fig. 1 is generally valid with
the admissible portion shrinking for smaller valuesa.
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Figure 1: The singular curve for model (A)

(B) In the model considered by d’Onofrio and
Gandolfi [3] both stimulation and inhibition are linear
in q and therefore

L(∆) = L2(∆) = 0. (33)
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Thus, while the Legendre-Clebsch condition is satis-
fied trivially, singular arcs would need to be of higher
order. However, it is easily seen that the vector fields
f , g and [f, g] are in fact everywhere linearly inde-
pendent in this case. But thenH, Φ andΦ̇ cannot all
vanish simultaneously and thus no singular curve ex-
ists. As shown in [9], for this system optimal controls
are bang-bang.

(C) For the model by Ergun, Camphausen and
Wein [4] we haveS(p, q) = bq

2

3 andI(p, q) = dq
4

3

and thusL(S) = −1

3
S andL(I) = 1

3
I. In this case

we therefore getL(∆) = −1

3
(S + I) and thus

L2(∆) =
1

9
∆. (34)

This quantity is positive in the relevant regionD and
thus, as for model (A), by Theorem 1 there exists a
locally minimizing singular curve. Fig. 2 depicts the
singular curve for this model with the same values as
above, but the variable on the horizontal axis scaled as
x = q

1

3 . Again the admissible portion is marked by
the solid line.
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Figure 2: The singular curve for model (C)

5 Conclusion
In this paper we presented a general framework that
allows for a quick determination of the local optimal-
ity status of singular controls for systems describing
tumor anti-angiogenesis. It is much more difficult to
establish the global optimality of these singular arcs
and this requires the construction of a local synthesis.
For both models (A) and (C) these constructions are
explained in [8] and [7] and indeed for both models
the singular arcs are also globally optimal and form
an integral part of the corresponding optimal synthe-
sis indicated in these papers.
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