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Abstract: The physical and mathematical models of free-clamped elastic half ring, used as gripper and spring 

element, with an acting force at the free end are constructed, based on the balance conditions of forces and 

Euler's constitutive law for the bending moment. By turning the model into a pendulum equation, the large 

deformation of the half ring, especially the multiplicity of the solutions of the corresponding model is discussed. 

With the aid of manifold method, the approximate critical values for bifurcation and loss of stability are found, 

the configurations of the deformed elastic half ring for different parameter values are obtained. 
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1  Introduction 

Study on deformation of elastic rod has been an 

active part in elastic theory, because of its wide use 

in practical equipment and applied technologies, for 

instance gripper structure in micro machinery and 

spring elements in the moving system of micro 

robots. The existing results on elastic deformations 

and motion caused by them are mainly about small 

deformations, owning to the nonlinearity of large 

deformation and unusual phenomenon accompanied 

with it, such as bifurcation and loss of stability. This  

 

paper will be concentrated on the large deformations 

of elastic half ring used frequently as gripper and 

spring element. By constructing the physical and 

mathematical models, the multiplicity and 

bifurcation as well as loss of stability brought about 

by the large deformation are studied with manifold 

method and numerical treatment. This paper gives a 

special attention to the critical value for bifurcation 

and loss of stability because of its theoretical and 

practical significance, the configurations of deformed 

elastic half ring are also discussed numerically.   
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2  Physical and Mathematical Model 
For simplicity we consider a gripper consisting of 

two elastic clamped-free half rings whose physical 

model is shown in Fig. 1a, where R1 and R2 are 

elastic rods being half ring in undeformed form, 

clamped at 0. The principle of the gripper is: the 

gripper is opened by the forces lF  and rF  acting at 

the free ends, when the forces are moved, a body of 

weight G is hold by the elastic force. Owing to the 

symmetry of Fig. 1a, only the part shown in Fig. 1b 

is to be discussed. In [1, 2] some methods of 

handling small deformations of elastic rings and 

straight rods were given.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With

Fig.1

unde

deformed elastic half ring can then be parameterized 

by its arc length [0, ]s L∈  in the form of ( ( ), ( ))X s Y s  

with 0s =  at the clamped end, s L=  at the free end. 

Based on the curve geometry, balance conditions of 

the forces and Euler's constitutive law for the 

bending moment [3], ( ( ), ( ))X s Y s  is described by 

the following system: 
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  (1)         

where is the moment of inertia andI E is the modulus 

of elasticity of the material, Lκ π=  is the 

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006       444
o

r

curvature of the undeformed elastic half ring, we 

assume  are constants in Eq.(1). |,I E | ,F F=  

other symbols appeared in Eq.(1) are as shown in Fig. 

1b.  
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Fig.1a Elastic gripper system 

3  Method and Result 

After making the following non-dimensional 
transformation   

2L F
 
ut loss of generality, the elastic half ring in 

b is assumed to be non-extensible and 

goes only pure bending, the configuration of 
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Fig.1b Simplified form of Fig.1a 
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and differentiating the third equation in Eq.(1) 
with respect to give the following pendulum 
equation

t

" sin , [0, ]
3 , '( )

t f

f f

ψ ψ
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= − ∈

(0) = −       = − .         
2

 (2)           

At the same time system (1) is shown up as 
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where 0 (0)ω ψ ′=  and 

0 [ sin cos ]e ef L p x yω κ α α= + − . 

Obviously, for solution of (3), the value of 0ω  in (3) 

should be found first. Using the manifold method 

introduced in [4], instead of direct discussing Eq.(3), 

the corresponding initial value problem of Eq.(2) 

0sin , (0) 3 / 2 , (0)ψ ψ ψ π α ψ ω′′ ′= − = − =     (4)                                     

is treated. It is clear that if a solution 0( , , )tψ α ω of 

Eq.(4) is to be a solution of Eq.(2), the following 

equation 

0( , , )f fψ α ω π′ = −               (5)    

should be satisfied. We handle the problem in the 

following way: solving Eq.(4) to get its solutions for 

all possible 0 ,ω  from these solutions choosing the 

ones for which Eq.(5) is valid, then the values of 0ω  

related to those solutions are the values needed for 

solving Eq.(3). After the values of 0ω  being 

obtained and substituted into Eq.(3), Eq.(3) becomes 

an initial value problem for two order ordinary 

differential equation. 

Using some mathematical software, for instance 

Mathematica, with the following program，we can 

get the schematic expression of relation between 

f and 0ω for some selected .α  

Remove["Global`*"]; Off[General::spell1]; 

Off[FindRoot::frsec]; Off[FindRoot::frmp]; 

ende[p_, om_, alpha_] := Module[{x, y}, 

Evaluate[{x[N[Sqrt[p]]], y[N[Sqrt[p]]]}] /.  

     NDSolve[{Derivative[1][x][t] == y[t], 

Derivative[1][y][t] == -Sin[x[t]], x[0] == 

1.5*Pi-alpha, y[0] == om}, {x, y},  

{t, 0, N[Sqrt[p]]}]];  

Alpha=the given value; 

ContourPlot[ende[p, om, alpha][[1,2]] 

+Pi/Sqrt[p] , {p, 0.1, 50}, {om, -2, 2}, 

 ContourShading -> None, Contours ->{0,0},  

PlotLabel->ToString[alpha]] 
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Fig.2a Relation 0f vs ω  for 0.98α = −  
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Fig.2b Relation f vs 0ω  for 0.79α = −
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The above figures show clearly that for each 

fixed α , the relation between f and 0ω  is not 

always one-to-one. For enough large given f , 

one f will correspond to more than one 0ω , and the 

greater f  is, the more 0ω  corresponds. That 

means for these values of f , Eq.(3) has more than 

one solutions. In these cases the uniqueness 

conditions for Eq.(3) are broken, the stability of the 

system is therefore lost. 

From the above figures we can also see that for 

smaller f , the relation between f and 0ω is exactly 

one-to-one. But for eachα , there are some values 

of f for which the number of deformed 

configurations will be changed, these values are 

called bifurcation value or critical value. The 

approximate critical values for 0.25 ,0.5α π= π are 

28.3f =  and 20.8 separately, at these values the 

number of deformed configurations changes from 1 

to 3. From Fig. 2a and Fig.2b we see that between 
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0.98α = −  and -0.79 there will be a 0ω  for which 

the 0f vs ω figure has a pitch-fork bifurcation 

point. 

For numerical discussion of the deformed elastic 

half ring, we use Eq. 4 ,5 and Matehmatica to get 

the values of 0ω  first. Fig.2c Relation 0f vs ω  for 0.25α π=  

Remove["Global`*"] 
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Off[General::spell1] 
Off[FindRoot::frsec] 
Off[FindRoot::frmp] 
al = 0.5*Pi; gamma=0.5*Pi; 
ende[om_, p_] := Module[{x, y}, 

Evaluate[{x[N[Sqrt[p]]], y[N[Sqrt[p]]]}] /.  
     NDSolve[{Derivative[1][x][t] == y[t],  
     Derivative[1][y][t] == -Sin[x[t]], x[0] 

==Pi+gamma-al, y[0] == om},  
      {x, y}, {t, 0, N[Sqrt[p]]}]];  Fig.2d Relation 0f vs ω  for 0.5α π=  

tab1 = Table[{om, ende[om, p][[1,2]] 
+2*gamma/Sqrt[p]}, {om, -3, 2, 0.001}];  
g1 = Interpolation[tab1];  
g1[om];  
Table[{p,FindRoot[g1[om]==0,{om,-1,-0.5] 
[[1,2]]}] 
Table[{p,FindRoot[g1[om]==0,{om,-0.5,-0.3}][
[1,2]]}] 

Table[{p,FindRoot[g1[om]==0,{om,-0.2,
0}][[1,2]]}]. 
Then substitute the values of 0ω  into Eq.(3) to 

obtain the corresponding numerical solutions of it. 

Remove["Global`*"]; Off[General::spell1] 
Off[FindRoot::frsec]; Off[FindRoot::frmp]  
gamma=0.5*Pi; 
al = 0.5*Pi; om = om_0;  
NDSolve[{Derivative[1][u][t] == v[t], 

Derivative[1][v][t] == -Sin[u[t]],  
     u[0] == Pi+gamma-al, v[0] == om}, {u[t], 

v[t]}, {t, 0, Sqrt[p]}] 
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ParametricPlot[{u[t], v[t]} /. %, {t, 0, Sqrt[p]}, 
PlotLabel -> ToString[p],  

     Axes -> True, Frame -> True] 
NDSolve[{Derivative[1][x][t] == Cos[th[t]], 

Derivative[1][y][t] == Sin[th[t]],  
    Derivative[1][th][t] == p*(Cos[al]*y[t] 

-Sin[al]*x[t]) +om*Sqrt[p],  
    x[0] == 0, y[0] == 0, th[0] == gamma}, {x[t], 

y[t], th[t]}, {t, 0, 1}];  
ParametricPlot[{x[t], y[t]} /. %, {t, 0, 1}, 
PlotLabel -> ToString[p], Frame -> True,  

Axes -> None] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Take 0.5α π=  for example. Fig.3a shows the 

unique and stable deformed elastic half ring 

for , Fig.3b shows the two configurations 5f =

for  and Fig.3c shows the three 20.9855f =

deformed configurations for . The system 22f =

(3) for 20.9855f =  and  is unstable 22f =

with respect to f . 
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Fig.3c Configuration of deformed elastic 
half ring for 22f =  
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Fig.3a Configuration of deformed elastic  
half ring for  5f =
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Fig.3b Configuration of deformed elastic 

half ring for  20.9855f =
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