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Abstract: - In this paper, we introduce a new model of urban traffic networks by using Petri Nets. Based on dioid

algebra, the behavior of the system is described by (Max,+)-linear equations. This will allow to approach the
traffic control problems which rise issues of cycle times and of synchronization. As a result, we show how we

can solve shared resource problems inherent in dioid modelling. Besides, the proposed model provides us with

interesting performance evaluations, such as real-time counts of vehicles and bounds of sojourn time in each part

of the studied crossroad.
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1 Introduction

Despite several existing models of traffic networks

[1, 2, 3], there is still plenty of scope for the traf-

fic modelling improvement. Indeed, the traffic signal

control with variable cycles is often treated by means

of averaged models, which are not suitable for short

sections generally encountered in factory sites or in

downtowns. Moreover, on the one hand, macroscopic

models remain rough to consider the real-time signal

problems. This is due to the fact that such models do

not take into account the individual arrival of vehicles.

On the other hand, microscopic models become com-

plicated when we try to study the behavior of a set of

vehicles. It is basically these facts which motivate us

to introduce a new traffic model.

Since through the problem of the traffic control we

have to tackle cycle time and synchronization issues,

a model based on Timed Event Graph (TEG) allows

us to carry out our modelling objective. Indeed, it is

widely known that the TEG is well adapted to deal

with periodic and synchronization phenomena. Be-

sides, the TEG can be described as a system of linear

equations by using the dioid algebra. This has mo-

tivated several researches dealing with modelization,

performance evaluation [4, 5] and the computation of

control laws for (Max,+)-linear systems [6].

The aim of this paper is to define a Max
in Jγ, δK

model of urban crossroad compatible with an existing

model of a lonely street in this dioid [7]. Thus, present

paper tends to expand the scope of dioids as a pow-

erful tool to study urban traffic networks. More pre-

cisely, it deals with live TEG endowed with invariant

resource sharing systems, which means that the num-

ber of shared resources remains constant. In order to

compute the instantaneous number of tokens, a new

operator is introduced. As a result, a new dioid model

of a elementary crossroad is proposed. This model

does not require any specific controller.

The next section presents an overview of the dioid

algebra and the TEG. Section 3 describes the traffic

crossroad and its model. The latter is analysed in sec-

tion 4.

2 Notions about dioid algebra and

TEG

Since the traffic modelling presented in this paper is

based on dioid algebra, we give here a brief introduc-

tion of the necessary background.

2.1 Dioid algebra

The dioid Zmax, commonly known as (Max,+) al-
gebra, is the set Z = Z ∪ {−∞,+∞} endowed with
both following operations [5, 8]:

a ⊕ b = Max(a, b) ,

a ⊗ b = a + b ,

for ”scalars” a, b ∈ Z, and

[A ⊕ B]ij=aij ⊕ bij = Max(aij , bij) ,

[A ⊗ C]ij=

n
⊕

k=1

aik ⊗ ckj = Max
k=1,...,n

(aik + ckj),
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for matrices A,B ∈ Z
m×n

and C ∈ Z
n×p
.

The dual dioid Zmin, also called (Min,+) algebra,
is obtained by replacing Max with Min in all previ-

ous equations.

Each dioid D has by definition the following intrin-
sic properties, for all a, b ∈ D:

• a neutral element, denoted ε: a ⊕ ε = a and a ⊗
ε = ε ⊗ a = ε;

• an identity element, denoted e: a⊗e = e⊗a = a;

• an order relation, given by: a � b ⇔ a ⊕ b = b.

2.2 State equations of a TEG

A TEG is a Petri Net (PN) in which each place

has exactly one upstream and one downstream transi-

tion. We are able to write the (Max,+)- or (Min,+)-
linear state equations that describes the firings of the

transitions of a TEG since it respects the Just In Time

(JIT) operational rule. For each transition x, we can

either evaluate the dater function x(k), which gives
the date of its kth firing, or the counter function x(t),
which gives the number of times it has been fired until

the date t.

We illustrate this by means of the following exam-

ple.

2
u1

u2

y

Figure 1: A simple TEG.

Consider the TEG model of figure 1. We want to

describe the behavior of transition y, then:

• the associated dater is given by

y(k) = Max(u1(k) + 2, u2(k − 1)) ,

= 2 ⊗ u1(k) ⊕ u2(k − 1) in Zmax;

• the associated counter is given by

y(t) = Min(u1(t − 2), u2(t) + 1) ,

= u1(t − 2) ⊕ 1 ⊗ u2(t) in Zmin.

Like the z-transform for series in classical algebra,

the γ- and δ-transforms allow to translate daters and

counters functions, respectively, to formal series:

• γ is the backward shift operator in the event do-

main, e.g.x(k − 1)
γ

−→ γx(γ),

• δ is the backward shift operator in the time do-

main, e.g.x(t − 1)
δ

−→ δx(δ).

The behavior of transition y of figure 1 is described

by the following equation inMax
in Jγ, δK:

y(γ, δ) = δ2u1(γ, δ) ⊕ γ1u2(γ, δ) .

The behavior of a whole TEG can be described by

state equations that are linear in a dioid of formal se-

ries in two commutative variables γ, δ with exponents

in Z and with boolean coefficients [4]. This dioid, de-

noted by Max
in Jγ, δK allows to study both time and

event domains at a time [5]. Usually, we group the

series, which describe the firing of the

• n source transitions into the input vector U ,

• p well transitions into the output vector Y ,

• m other transitions into the state vector X.

State equations look like the following:
{

X(γ, δ) = A ⊗ X(γ, δ) ⊕ B ⊗ U(γ, δ) ,

Y (γ, δ) = C ⊗ X(γ, δ) .

2.3 Notations and additional results

The causal projection Pr+ allows to compute a
causal series by ”removing” the monomials with non-

positive exponants. A less naive definition is given in

[6].

The operator ’∗’ defined by

a∗ =
⊕

k∈Z

ak

is called Kleene star.

It is well known that the ⊗-multiplication of a
dioid D is rarely invertible. However, let us draw the
reader’s attention to the fact that the residuation theory

provides a ”pseudo-division” [5]. We denote

R♯
a(y) = y�a =

y

a
=

⊕

{x ∈ D | x ⊗ a � y}

the residuated of the mapping Ra : x 7→ x ⊗ a.

Since substraction of classical algebra is equivalent

to the right division in (Min,+) algebra [9], in any
case where at least one counter c(t) has an infinite
value (e.g. c(t) = ε), right division is ambiguous. To

overcome this inherent difficulty, which does not occur

in the classical algebra, a new operator is introduced,

which is defined as follows.

Definition 1 Let⊲ be an operator defined as follows:

c
⊲
−→ c⊲ =

{

e if c = ε,

c ⊗ 1 elsewhere,

for a scalar c ∈ Zmin.
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We draw the reader attention to the fact that this op-

erator preserves markings if it is applied to all transi-

tion counters of a live TEG [10].

3 Elementary crossroad modelling

Figure 2: An elementary crossroad.

In order to model a whole crossroad by a TEG, each

street is treated separately and discretized into seg-

ments where the characteristic variables of flow de-

pend only on the time but not on the position into the

segment [7]. Thus, both streets have a shared seg-

ment, which models the crossroad itself, and which is

our interest. We take into consideration its dimensions

(shared length can be different for each street) and the

maximal flow rate. The density is naturally limited in

the crossroad since we allow only one car to cross the

shared surface at a time.

3.1 TEG modelling

u1 x1

2

2

Pα

y2

x2

u2

v2

v1 y1

τ1

τ2

Pfr1

Pfr2

Figure 3: PN model of an elementary crossroad.

The model represents the averaged behavior of cars

evolving through an elementary crossroad. Along

paths delimited by transitions ui and yi, representing

street i, tokens representing cars evolves accross the

model part. Places Pfri
model the flow rate (one car

every two time units seems to be the usual value in the

litterature [11]). Place Pα represents the shared sur-

face on which at most one car can travel. A token is

present in this place at a date t iff crossroad is empty

at such a date. In this representation, we can observe

the counters for each transition. Table 1 details the

semantics of the model.

Label Meaning

ui input transition: ui(t) is the number of
cars that have entered street i until t

yi output transition: yi(t) is the number of
cars that have left street i until t

vi vi(t) is the number of times cars coming
from street i have engaged in the crossroad

until t

xi xi(t) is the number of times cars coming
from street i have left the crossroad until t

τi crossing time: it is computed from the

length of the crossroad along street i and

from the average speed of vehicles (fixed)

Table 1: Semantics of figure 3.

3.2 modelling in the dioidMax
in Jγ, δK

Since the PN model without crossroad is a TEG, the

PN model of figure 3 is split into two PN parts as it is

shown in figure 4, i.e. streets PN part, which holds all

sub-TEG representing streets appart from each other,

and the crossroad one. The latter, denoted Gα, is the

one of interest.

x1v1

x2

v2

x1v1

x2

v1

u1

2

2

y2

u2

y1

τ1

τ2

Pα

Gα

P1

P2

Figure 4: Split model of an elementary crossroad.

In order to study the behavior of cars driving

through the crossroad, transitions vi and xi are dupli-

cated. This aims at focusing the analysis on the cross-

road, regardless of streets external influence. Thus, we

consider Gα as the model of an elementary crossroad.

The structural analysis of Gα provide us with the fol-

lowing lemma.
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Lemma 1 (Constraint) Let two streets cross at an in-

tersection. We note the counters of their transitions

representing cars engaging and leaving the crossroad

are denoted vi(t) and xi(t), respectively. These coun-
ters verify the following inequality:

2
∑

i=1

(

vi(t) − xi(t)
)

≤ 1, ∀t . (1)

Proof: From the P-invariant property of Gα, we

have:

2
∑

i=1

Mt(Pi) + Mt(Pα) = 1 , (2)

where Mt(P) is the instantaneous marking of place
P at date t. It is well known [9] that

∑2
i=1

(

vi(t) −
xi(t)+M0(Pi)

)

+Mt(Pα) = 1. Hence, sinceMt(Pα)

is positive for all t and 1 −

2
∑

i=1

M0(Pi) = 1, then the

conclusion follows. �

It is important to note that this lemma is very pow-

erful to constraint the dealt system. Indeed, it provides

us with a relation which implies only counters of tran-

sitions involved in Gα. However, from theoretical and

practical points of view, it is interesting to check that

the constraint (1) is in agreement with the kind of the

behavior of an elementary crossroad. To do this, it suf-

fices to show that:

(i) the constraint denies the entrance for a car if

there is already a car driving through the cross-

road,

(ii) if the crossroad is free, the constraint must allow

the entrance of a car,

(iii) the constraint must not forbid a car to leave the

crossroad.

Note that, assertion (iii) is obviously verified since the

counter of output transitions xi(t) are multiplied by
−1 in (1). That means each firing of such a transition
relaxes the constraint. Hence, we only have to prove

(i) and (ii), which is the main concern of the following

lemma.

Lemma 2 Let an elementary crossroad PN model.

Then under the constraint (1):

(a) no transition vi can fire despite a car is driving

through the crossroad,

(b) a transition vi is allowed to fire if the crossroad

is free.

Proof: The proof of (a) is by contradiction. Indeed,
suppose that all transitions vi can be fired despite a car

is driving through the crossroad. In such a case, we

have [9]:

2
∑

i=1

(

vi(t) − xi(t) + M0(Pi)
)

> r .

But 1 =
2

∑

i=1

M0(Pi)+1, it follows that
∑2

i=1(vi(t)−

xi(t)) +
∑2

i=1 M0(Pi) > 1 +
∑2

i=1 M0(Pi). Hence,
we have

∑2
i=1(vi(t) − xi(t)) > 1, which contradict

(1). Thus, it is not possible to fire vi if a car is driving

through the crossroad. In order to prove (b), it suffices
to prove thatMt(Pα) > 0 implies the strict inequality
of (1). Indeed, if the crossroad is free, it follows:

Mt(Pα) > 0 . (3)

With this in mind, the number Mt(Pα) that let us
know wether the crossroad is free or not at date t,

equals to 1 −
∑2

i=1

(

vi(t) − xi(t) + M0(Pi)
)

. This

means that the crossroad is free iff no car is cross-

ing from any street. Thus, from (2) we can check

thatMt(Pα) = 1 +
∑2

i=1 M0(Pi)−
∑2

i=1 M0(Pi)−
∑2

i=1

(

vi(t) − xi(t)
)

. Which implies that Mt(Pα) =

1 −
∑2

i=1

(

vi(t) − xi(t)
)

. From (3), we obtain
∑2

i=1

(

vi(t) − xi(t)
)

< 1. Hence the conclusion fol-
lows. �

In summary, lemma 1 leads to the following theo-

rem.

Theorem 1 The behavior of an elementary crossroad

with two streets is described by the following state

equations:














X =

(

δτ1 ε

ε δτ2

)

V ,

Y =

(

e ε

ε e

)

X ,

under the constraints


















2
⊗

i=1

C⊲

(∆iV )(t)

C⊲

(∆iX)(t)
� 1, ∀t ≥ 0 ,

(

γδ2 ε

ε γδ2

)

V ⊕

(

e ε

ε e

)

U � V ,

where ∆⊤
i ∈ Max

in Jγ, δKn is defined by

[∆i]j =

{

e if j = i,

ε elsewhere.

C∆iV is the input (control) transition counter inven-

torying cars from street i that have been engaging in

the crossroad and C∆iX is the one inventorying cars

of street i that have been leaving the crossroad.
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4 Performance measures

We can retrieve from the proposed TEG model of

the elementary traffic system some of the main perfor-

mance measures, which are:

1. Instant count of vehicles driving in each segment

of the road,

2. Fundamental diagram.

4.1 State of traffic

Since in a TEG, each place has exactly one up-

stream and one downstream transition, we can easily

compute the instantaneous markings from the counters

describing their behavior.

Proposition 1 The markingMt(P) of a place P be-

tween two transitions xa and xb in a live TEG at in-

stant t ≥ 0 is given in Zmin by

M{P}(t) = M{P}(0) ⊗
x⊲

a (t)

x⊲

b (t)
, (4)

with xa(t) ≺ ⊤ and xb(t) ≺ ⊤.

Proof: There are two cases to consider:

1. Both xa(t) and xb(t) are finite. In this case,
we know from [9] that the markingM{P}(t) of
a place P between two transitions xa and xb is

given in Zmin by

M{P}(t) = M{P}(0) ⊗
xa(t)

xb(t)
.

Since the operator ⊲ preserves marking [10], we
have for finite values of xa(t) and xb(t):

M{P}(0)⊗
x⊲

a
(t)

x⊲

b
(t)

= M{P}(0)⊗
xa(t)

xb(t)
;

2. xa(t) and/or xb(t) is infinite. In this case, we
have to check thatM{P}(t) equals either

• M{P}(0) if xa(t) = xb(t) = ε,

• M{P}(0) + (xa(t) + 1) if xa(t) � e and

xb(t) = ε,

• M{P}(0) − (xb(t) + 1) if xa(t) = ε and

xb(t) � e.

Indeed, if we compute x⊲

a (t) and x⊲

b (t) for the
above values of xa(t) and xb(t), the conclusion
follows from (4).

�

The instant marking of the places ui → vi gives

exactly the current number of vehicles that are waiting

to engage in crossroad on lane i, respectively.

Parameter Value

τc 60

τpi 30 sec

λi 0.20 vehicle/sec

Table 2: Parameter values for the simulation.

4.2 Fundamental diagram

In order to build the fundamental diagram, we simu-

late the model of the street several times with different

constant input flow rates:

• The mean density ρ is given by the following

equation:

ρ =

∑

i

ρi × (ti+1 − ti)

T

where ρi is the instantaneous density in the time

interval ti+1−ti and T is the simulation duration.
ρi is obtained as follows:

ρi =
mi

l
at t = ti

wheremi is the current marking and l is the addi-

tion of the two shared surface lengths of studied

lane.

• The mean flow rate q is given by the count of the

output firings Cyi
(T ) divided by the simulation

duration:

q =
Cxi

(T )

T
.

4.3 Simulation

The main objective of the following simulation is to

confirm that the model takes into account the conflict

situation and corresponds to the behaviour of an in-

tersection. Hence, we assume that the vehicle arrivals

are stochastic and the cycle time, τc, is constant, as

well as, both phase, (p1 and p2) durations (τp1
, τp2
,

respectively). p1 and p2 corresponds to both stages

where vehicles of lane 1 and 2 are authorized to enter
the intersection, respectively. The vehicle arrivals are

exponentially distributed and λi is the arrival rates at

the lane i.

Figure 5 shows the variation of cumulative number

of vehicles to enter intersection by time. The number

of vehicles of each lane is presented separately, solid

line for the lane 1 and dashed line for the other one.
One can immediately observe vehicles of both lanes

cannot enter intersection at the same time. Indeed,

when the cumulative number of vehicles of lane 1 in-
creases the one of the lane 2 is still constant and vice-
versa. Such a respect of the resource sharing is pro-

vided by the introduced constraint.
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Figure 5: Variation of cumulative number of vehicles

in intersection.

5 Conclusion

This paper proposes an approach to model elemen-

tary crossroads using PN under constraints and dioid

theories. Thus, it enlarges the scope of this power-

ful algebra for the analysis of urban traffic. Further-

more, the proposed model is extensible and allows to

consider several streets meeting at a single crossroad.

Combined with a compatible model of an elementary

street [7], we may be able to model several successive

crossroads in a further paper. We think that there are

several other issues that deserve further investigation.

One is the extension of the model to include the traffic

light control.
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