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Abstract: - Neuromorphic neural networks are of interest both from a biological point of view and in terms of 
robust signaling in noisy environments. The basic question however, is what type of architecture can be used 
to efficiently build such neural networks in hardware devices, in order to use them in real time process control 
problems. In this paper a novel, hardware implementation friendly, “pulse reactive” model of spiking neurons 
is described. This is used then to implement a fully connected network, yielding a high degree of parallelism. 
The modular neuron structure, acquired signals and a process control application are given. 
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1   Introduction 
Artificial neurons have been modeled in the last 
years from a different approach, by trying to mimic 
the most important features of real neurons and to 
achieve further aspects of computation like 
parallelism and learning. This way, building 
biologically inspired neuron models, then using 
these to construct so-called neuromorphic artificial 
neural networks, has become an important path to 
follow up, due to their big potential in developing 
timing features of neural computation [2].  
An artificial neural network (ANN), though, is a 
massively parallel, distributed processor made up of 
simple processing units. It resembles the human 
brain in two respects: knowledge is acquired through 
a learning process, synaptic weights are used to store 
the knowledge [3]. Among other features, ANNs 
provide nonlinearity, are universal approximators, 
adaptable (by weights and/or topology), and intend 
to be neurobiologically plausible.  
On the other hand, the impressive number of 
neurons in the mammal cortex and the vast 
connectivity between them (up to 104 connections 
per neuron) are very difficult to mimic either in 
software or hardware. Software simulation of a 
network of thousands of neurons might take hours to 
complete on a fast Pentium based computer. In a 
previous work [1] a novel simulation environment 
has been presented, which dealt with the spiking 
behavior of neurons, using a special neural model. 
Using this environment any 3D spiking neural 
network can be built either giving the architecture 
neuron-by-neuron or layer-by-layer. Feedbacks are 

also supported allowing recurrent networks to be 
built. 
In Section 2 of this paper a special spiking neural 
model will be presented, suitable for FPGA 
implementation. The details of the implementation 
are given in Section 3 followed by the future 
challenges and prospects. The final section 
concludes  by presenting measurements and 
experimental results. 
 
 

2   Neural Model 
Many neuron models, such as perceptron or radial 
basis functions, use real values as inputs and 
outputs, processed using gaussian or other 
continuous functions. In contrast, biological neurons 
process spikes: as a neuron receives input spikes by 
its dendrites, its membrane potential increases 
following a post-synaptic response. When the 
membrane potential reaches a certain threshold 
value, the neuron fires, and generates an output 
pulse through the axon. One of the best-known 
biological models is the Hodgkin and Huxley model 
(HHM) [4], which is based on ion current activities 
through the neuron membrane. 
The most biologically plausible models are often not 
the best suited for computational implementations. 
This is the reason why other simplified approaches 
are needed.  The leaky integrate and fire model 
(LIFM) [5] is based on a current integrator, modeled 
as a resistance and a capacitor in parallel. 
Differential equations describe the voltage given by 
the capacitor charge, and when a certain voltage is 
reached the neuron fires. The spike response model 
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(SRM) [5] offers a response that resembles that of 
the LIFM model, with the difference that the 
membrane potential is expressed in terms of kernel 
functions [5] instead of differential equations. 
Spiking neuron models process discrete values 
representing the presence or absence of spikes. This 
fact allows a simple connectionism structure at the 
network level and a striking simplicity at the neuron 
level. However, implementing models like SRM and 
LIFM on digital hardware is largely inefficient, 
wasting many hardware resources and exhibiting a 
large latency due to the implementation of kernels 
and numeric integrations. This is why a functional 
hardware-oriented model is necessary to achieve fast 
architectures at a reasonable chip area cost. 
 
2.1 The proposed neuron model 
An artificial neural network (ANN) is a parallel and 
distributed network of simple nonlinear processing 
units interconnected in a layered arrangement. 
Parallelism, modularity and dynamic adaptation are 
three computational characteristics typically 
associated with ANNs. FPGA-based reconfigurable 
computing architectures are well suited to 
implement ANNs as one can exploit concurrency 
and rapidly reconfigure to adapt the weights and 
topologies of an ANN.  
FPGA realization of ANNs with a large number of 
neurons is still a challenging task because ANN 
algorithms are usually “multiplication-rich” and it is 
relatively expensive to implement multipliers on 
fine-grained FPGAs. By utilizing FPGA 
reconfigurability, there are strategies to implement 
ANNs on FPGAs cheaply and efficiently. 
One of these strategies, is to build them without 
using any multiplicator circuits. Most multiplier-like 
tasks are fulfilled by sequential counter logic 
circuits. This makes our approach more cost-
efficient than the hardware built, perceptron based 
ANNs. Due to the high level of parallelism achieved 
in this manner speed enhancement is also obvious. 
Our simplified model presented in a previous paper 
[1], uses the following concepts: 1 - membrane 
potential; 2 - resting potential; 3 - threshold 
potential; 4 - postsynaptic spike; and 5 - presynaptic 
spike (see Fig. 1). A spike is represented by a pulse. 
The model is implemented as a Moore finite state 
machine. Two states, operational and refractory, are 
allowed. The spiking pulses can be of positive 
potential (Stimulating Spiking Pulse – SSP) or of 
negative one (Inhibitory Spiking Pulse – ISP) [10]. 
Assume that two presynaptic neurons (j=1,2) send 
SSP towards a postsynaptic neuron: j=1 neuron is 
firing in the moments t1(1), t1(2),…, t1(n) and j=2 in 
the moments t2(1), t2(2),… t2(n) (generally tj(f)). 

Hence, during the operational state, the membrane 
potential is increased (or decreased)  by εi1,εi2,…εij 
each time a pulse is received by an excitatory (or 
inhibitory) synapse, and then it decreases (or 
increases) with a constant slope until the arrival to 
the resting value (Fig. 1.). If a pulse arrives when a 
previous postsynaptic potential is still active, its 
action is added to the previous one.  This pulse 
reactive model (PRM) is, maybe, the most 
appropriate method to model spiking neural 
networks (SNN), the task being to evaluate the firing 
moments of firing neuron (FN) i (ti(1), ti(2),…ti(n)) 
as a function of the firing moments of j presynaptic 
FNs (tj(1), tj(2),… tj(n)). 
The membrane potential of a cell body (soma) of the  
neuron number i is: 

∑ −=
ji

f

jijiji ttwtu
,

)( )(.)( ε   (1) 

which expresses the contribution of j presynaptic 
FNs, generated before the moment t. 
The PRM handles also with a damping factor 

)ˆ( itt −η , which is a function of it̂ -the moment of 

the generation of the last spiking pulse of FN i, 

before the time t. If  0ˆ <− itt  or 0ˆ >− itt  and 

high enough, the damping factor is zero. If 

0ˆ >− itt , but of small value (that means the i FN 

just has generated a spiking pulse), the damping 
factor has strong negative value and inhibits the FN i 
to generate a new spiking pulse. Comparing to the 
Hodgkin-Huxley model [2, 5], the pulse reactive 
model (PRM) is more suitable to computer analysis, 
as there are no differential equations  handled in the 
model. Choosing appropriate values for εϑη ,,  
functions, the PRM could model quite well the 
dynamics of the natural, biological neurons. Our 
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model uses a coding algorithm, where each spiking 
pulse has a separate importance, similar to the bits in 
the computers. As the time is continuous, a single 
spiking pulse could include more information than a 
single bit, as the arriving time t could encode the 
analog value (t-T), when T is a reference time value. 
In this respect a FN acts as a coincidence detector, 
i.e. will generate a spiking pulse only if a number 
great enough of SSPs will arrive to the neuron cell 
(soma), almost simultaneously. If all the 
transmission delays ∆ij between the FN i and the 
presynaptic j FNs are identical, then the FN i, which 
has a high threshold value iϑ , will fire only if all 

presynaptic j FNs will have the firing moments tj(f) 
very close to each other (practically are 
simultaneous). If the ∆ij are different for several j 
presynaptic neurons, the FN i will fire only if the 
presynaptic neurons will comply with a certain 
scheduling in firing times: i will fire if for any j, 
tj≈T-∆ij [6]. 
 
 

3   Spiking Neural Network Built Into 

a  FPGA-based System 
Based on the mathematical model and the results of 
the simulated network several hardware 
implementations of spiking neural networks were 
developed.  
Two main parts of the neuron model, the synapse 
and the soma, were designed and developed 
separately. The neural model’s specific properties 
allow the inputs and outputs to be easily given as 
binary values (pulses). This was one of the reasons, 
which led to the digital hardware implementation. 
The device used was a XESS XSA3S1000 
prototyping board with a XILINX XC3S1000 
Spartan III FPGA (1000k logic gates). Beside the 
FPGA chip there is a CPLD IC for the PC parallel 
port connection interface, a 32Mb SDRAM, a 2Mb 
Flash RAM memory module present on the 
prototyping board, the FPGA being driven by a 
programmable oscillator with the maximum 
frequency of 100 MHz. 
 
3.1 Strategies in developing optimal 

FPGA implementations of adaptive artificial 

neural networks  
The model used is based on the spiking behavior of 
natural neurons, but does not deal with the ion 
channel dynamics of biological cells, only with the 
signal flow between the units of a neural network, 
explicitly the row of action potentials in our case.  

In contrast with activity rate encoded networks, the 
SNN’s developed by us are encoding the precise 
timings of the spike arrivals, not the density rate of 
these. Thus, information is being transmitted among 
neurons solely by action potentials. The neural 
model presented in [1] and briefed in the previous 
section, has been developed into a digital model, 
which defines q feeding dendrites. The input on 
these dendrites reach the cell body (soma) through 
synapses, multiplied by some values, modifying the 
membrane potential of the soma. Eventually this 
will result in the activation of the neuron, generating 
an axonal action potential (output spike). According 
to the solution suggested in [1] the feeding dendrites 
can be side-connected in order to enhance the 
synchronization of neurons from a certain layer. 
Other dendrites could be inhibitory inputs, thus 
lowering the membrane potential of the soma. The 
inhibitory effect can be implemented alternatively 
by building a single inhibitory module, with effect 
over the entire network. This module was developed 
to receive the axonal spikes of all or majority of the 
neurons in the network. After processing this 
module sends an equally distributed inhibitory 
signal to the connecting neurons. All connections to 
and from the inhibitory module have the same 
weight, hence it can be built at a low 
implementation cost with hardware elements, given, 
that only a few parameters need to be handled. 
 
3.2 Experimental inhibitory module in the 

hardware built neural network 
The output of any activated neuron of the network 
will increment a counter in the IHM. At the end of a 
time-step (the operation of the hardware SNN is 
divided into time-steps [1]) the value of the counter 
is multiplied with an inhibitory weight. This value is 
stored in a register, then the counter is reset. Hence, 
at the end of the time-step, this value will reflect the 
intensity of the network’s neural activation during 
the time-step. In the next step one can use this value 
as an inhibitory input of the network. In this respect 
the calculated value will be added to a global 
inhibitory dendrite potential , which will 
decrease with a slope of  Iγ  in each time-step. 
Considering a simple case, when the distribution of 
the inhibition is even on the entire network, then all 
the neurons contributing to the inhibition are part of 
a NInhib set. The active neurons of this set contribute 
to the inhibition process at a rate given by a 

I

Globω weight. Under these circumstances an 

inhibitory dendrite potential  does not need 
to be computed for each neuron, only the global 
value given by the following expression: 

I

globDP

IDP
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where I

jy is the static threshold potential of the 

neurons. The inhibitory module is not fully 
developed and tested yet, so it was not implemented 
in the hardware built SNN presented in this paper. 
 
3.3 FPGA implementation of the synapse 

with modified learning algorithm 
Considering the behavior of a cerebral synapse, the 
main function of the circuit developed by us as the 
artificial synapse is a pulse multiplier, although it 
doesn’t contain any real multiplicators. As the 
architectural schematic in Fig. 2 presents, the 
synapse is also made up by two –  structurally and 
functionally – separate units. The structure of this 
module has been redesigned since [1], yielding a 
much more compact form. During this optimization, 
all subunits were constructed using only native 
(primitive) basic elements of the Xilinx FPGA (one 
synapse consumes only 17 slices of a XC3S1000 
after Place and Route (PAR) phase).  
The implemented learning algorithms were also 

changed and diversified. There are four types of 
weight-adaptation rules, which were selected 
according to their neuro-phisiological plausibility 
and fitness for hardware implementation. In other 
words, these rules secure the neuromorphic nature of 
these artificial models, at functional level, too, by 
following suit with the local adaptation mechanisms 
most often  found in the neurons of mammals brain 
[6]. Some restrictions limit the capability of these 
rules in tuning the weight values: 
• the weights may only increase up to a 

maximum level,  
• the weights may not change sign, 
• the weights were initialized with fixed or 

random values, 
• the weight may be altered in each time-step, 

according to the following relation: 

ij

t

ij

t

ij ωηωω ∆+= − 1                (3) 

where η  is the learning rate and ijω∆  is defined by 

one of the learning rules presented next. 
The simple Hebb rule: the efficacy of the synapse 
can only increase is a certain correlation is detected 
between the activity of the xj presynaptic and the yi 
postsynaptic neurons (both are active during a time 
frame) [6]. The following expression determines 
how the weight change in this case:  

( ) ijijij yxωω −=∆ 1             (4) 

Postsynaptic rule: in addition to the simple Hebb 
rule, the synaptic strength will decrease if 
postsynaptic element is active but the presynaptic is: 
            ( ) ( ) ijijijij yxyx ωω −++−=∆ 11            (5) 

Presynaptic rule: complementary to the postsynaptic 
rule, it states, that a synapse is weakened also, when 
the presynaptic neuron is active but the postsynaptic 
one is not: 

( ) ( ) ijijijijij yxyx ωωω −++−=∆ 11            (6) 

Covariance rule: the synapse efficiency grows if the 
difference between the activation of the two neurons 
is less then half of the maximum activation value, 
otherwise diminishes. This means, that the synapse 
between two neurons will get stronger, if the 
neurons have similar activity levels. [10]: 

( ) ( ) ( )
( )



 >−

=∆
otherwiseyxF

yxFifyxF

ijij

ijijij

ij ,

0,,1

ω
ω

ω    (7) 

where, ( ) ( )( )214tanh, −−−= ijij yxyxF  is the 

scale of the difference between the pre- and 
postsynaptic activities. If the difference is greater or 
equal then 0.5 (half of the maximal activity), then 
( ) 0, >ij yxF  and ( ) 0, <ij yxF if the difference is 

less then 0.5. 
 
3.4  Optimization of the soma module 
The soma module can be considered as the Central 
Processing Unit of the neuron model. 
The architecture of the soma is built on four 
modules (Fig. 3). The main task of the soma is to 
calculate the membrane potential using the input 
spikes from the synapses, compare it to the threshold 
potential (THP) and if the latter is the smaller one it 
has to emit an axonal spike. On the falling edge of 
the clock signal, the Synaptic Inputs (SYNIN) unit 
of the soma reads the output values of the synapses 
and sums these into an input value. The Membrane 
Potential Computing Unit (MPCU) unit adds this 
input to the previous value of the membrane 
potential. If there were no input spikes, then the MP  
decreases with a constant slope, down to the resting 
potential (4~5% of the maximal MP). The MPCU 
module also contains a time-frame creation counter 
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used to limit the time while a certain number of 
input spikes have to arrive in order to cause an 

axonal spike. (Only excitatory synapses were 
implemented). The updated MP is then compared to 
the adjustable threshold-potential. If the required 
criteria is met (MP>THP), an axonal spike is 
emitted and the neuron is placed into 
hyperpolarizational phase, when the MP is set below 
the resting potential (zero). The latest soma module 
is capable of receiving input spikes through up to 32 
synapses. The representations of the MP and THP 
were carefully chosen to be on eight bits. Without 
using RAMs to store parameters this assures the 
prospect of building larger SNN with the limited 
resources of the FPGA system. The weight values 
are stored on four bits. The structural optimization 
of the soma, lead to a mixed setup. The MCPU has 
been incorporated into the BlockRAM modules, the 
SYNIN and the comparison modules stayed as  
VHDL code, while the storage units are instantiated 
primitives. Consequently, the number of slices used 
by the soma after PAR dropped to 15 from ~400 [1]. 
 
3.5  Challenges and prospects of the 

hardware implementation 
The compromise between giving up the fully 
parallel hardware implementation and the resource 
appetite of this approach has been raised at each step 
of the design process. The question, that one can ask 
is whether it is worth implementing these SNNs in 
fully parallel fashion, or serializing the system – 
even only certain parts of it – is the better choice, in 
order to be able to build larger networks. 
Most of the recent hardware implementations of 
SNNs [7, 8, 9] build only one neuron using ASIC or 
reconfigurable circuits or use auxiliary devices. All 
in all, some compromise is unavoidable, since it is 
impossible, now, to build a similar digital model 
with such detail and precision using FPGA than with 
an ASIC containing a single spiking neuron. Despite 
the low cost implementation and the relatively high 
FPGA resource utilization, the presented system has 

shown its reliability and high performance even in 
its former setup [1]. 
 

4 Description of the Implemented 

SNN. Experimental Setup and Results 
The experimental setup consists of two parts: a 
software simulation for a spiking neural network 
using the  environment developed and presented in 
[1], and its respective validation on a FPGA. 
Following a successful benchmark implementation 
presented in [1], a character recognition system, the 
newly proposed application, based on the improved 
neural model, is a simple process control system, 
implementing a gas-yield neural-controller for a 
nonlinear system (very low yield input of Ar, N, 
C2H2 gases into a vacuum chamber). 
 
4.1 Description of the network and the 

experimental environment 

The novel, FPGA implemented SNN consists of  32 
cell bodies with thirty-two synapses each. The 
neural network has 32 inputs, 24 neuron in a hidden 
layer and 4 
neurons in the 
output layer (Fig. 
4.) with several 
control signal 
inputs. The 
constructed 
experimental 
system, consisting 
of: the XESS 
XSA3S1000 
FPGA development board, an OMEGA CIO-DAS08 
data acquisition board (3x8 bit digital I/O ports) on a 

PIII800Mhz PC, a PIV3.2GHz PC for the VHDL 
design and a Tektronix-TDA 34 channel Logic 
Analyzer used to perform live measurements on the 
running network. Still, the I/O signals of the SNN 
had to be multiplexed using auxiliary modules inside 
the FPGA (Fig. 5. addressing, data). A VisualC++ 
application, running on the PIII, delivers inputs and 
control signals, reads outputs and network 
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parameters, supervises the learning process The 
input values (or patterns) are divided into four 
groups. If the pattern contains more input spikes 1’s 
in the upper half, then it is considered, that the gas-
yield is too high, otherwise it is too low. The 
network has to activate the proper outputs in order to 
control the process. The experiments performed with 
the FPGA built SNN were divided into the following 
phases: 1-delivering the input spikes, 2 - Learning 
and simulation, 3 - Reading weights, 4 - Reading 
membrane potentials. 

 
4.2 Description of the supervised learning 

process  

The system was  implemented using a composite 
rule, modified into a supervised Hebb learning 
algorithm,  suitable for the process control 
application. During the supervised learning phase, 
the weight values of each synapse of all neurons 
were testes at each step. Figure 6 shows a 
measurement when the pressure was too high (MSB 
bits active in input pattern). By analyzing the data 
form the first group of synapses of neuron 1 (Fig. 
6.A), one can tell, that the weight values are rising, 

due to the fact, that both pre- and postsynaptic 
neurons are active. All other synapses (Fig. 6. BCD) 
are decreasing their weight values, due to the 
inactive inputs. To verify if the SNN is  learning 
properly, the MPs were sporadically tested as well, 
as well (Fig. 7.). The value of the THP was set to 90 
in the experiment when data in Fig. 7. has been 
acquisitioned, the resting potential was set to 10. 
When the MP of one of the neurons exceeded the 
threshold value, that neuron emitted a spike, then the 

MP dropped to the hyperpolarization level of 0.  

4.3 Conclusions 

Concluding, it can be said, that the designed model 
is viable, and its performance ensures real-time 
process control. The network complexity (32 somas 
by 32 synapses each) is approximately equivalent to 
a perceptron model based ANN of ~1024 neurons. 
Future plans are to adapt the topology, too, by the 
means of a genetic algorithm and exploiting the 
partial reconfigurability of the Xilinx FPGAs. 
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