
Hardware spiking neural networks: parallel implementations using

FPGAs

LÁSZLÓ BAKÓ, SÁNDOR-TIHAMÉR BRASSAI
Electrical Engineering

Sapientia – Hungarian University of Transylvania
540053 Tîrgu Mureş, P-ţa Trandafirilor 61.

ROMANIA
lbako@ms.sapientia.ro, tiha@ms.sapientia.ro

Abstract: - Neuromorphic neural networks are of interest both from a biological point of view and in terms of
robust signaling in noisy environments. The basic question however, is what type of architecture can be used
to efficiently build such neural networks in hardware devices, in order to use them in real time process control
problems. In this paper a novel, hardware implementation friendly, “pulse reactive” model of spiking neurons
is described. This is used then to implement a fully connected network, yielding a high degree of parallelism.
The modular neuron structure, acquired signals and a process control application are given.

Key-Words: Neuromorphic neural networks, Spiking models, Simulation, Parallel FPGA implementation.

1 Introduction
Artificial neurons have been modeled in the last
years from a different approach, by trying to mimic
the most important features of real neurons and to
achieve further aspects of computation like
parallelism and learning. This way, building
biologically inspired neuron models, then using
these to construct so-called neuromorphic artificial
neural networks, has become an important path to
follow up, due to their big potential in developing
timing features of neural computation [2].
An artificial neural network (ANN), though, is a
massively parallel, distributed processor made up of
simple processing units. It resembles the human
brain in two respects: knowledge is acquired through
a learning process, synaptic weights are used to store
the knowledge [3]. Among other features, ANNs
provide nonlinearity, are universal approximators,
adaptable (by weights and/or topology), and intend
to be neurobiologically plausible.
On the other hand, the impressive number of
neurons in the mammal cortex and the vast
connectivity between them (up to 104 connections
per neuron) are very difficult to mimic either in
software or hardware. Software simulation of a
network of thousands of neurons might take hours to
complete on a fast Pentium based computer. In a
previous work [1] a novel simulation environment
has been presented, which dealt with the spiking
behavior of neurons, using a special neural model.
Using this environment any 3D spiking neural
network can be built either giving the architecture
neuron-by-neuron or layer-by-layer. Feedbacks are

also supported allowing recurrent networks to be
built.
In Section 2 of this paper a special spiking neural
model will be presented, suitable for FPGA
implementation. The details of the implementation
are given in Section 3 followed by the future
challenges and prospects. The final section
concludes by presenting measurements and
experimental results.

2 Neural Model
Many neuron models, such as perceptron or radial
basis functions, use real values as inputs and
outputs, processed using gaussian or other
continuous functions. In contrast, biological neurons
process spikes: as a neuron receives input spikes by
its dendrites, its membrane potential increases
following a post-synaptic response. When the
membrane potential reaches a certain threshold
value, the neuron fires, and generates an output
pulse through the axon. One of the best-known
biological models is the Hodgkin and Huxley model
(HHM) [4], which is based on ion current activities
through the neuron membrane.
The most biologically plausible models are often not
the best suited for computational implementations.
This is the reason why other simplified approaches
are needed. The leaky integrate and fire model
(LIFM) [5] is based on a current integrator, modeled
as a resistance and a capacitor in parallel.
Differential equations describe the voltage given by
the capacitor charge, and when a certain voltage is
reached the neuron fires. The spike response model

Proceedings of the 8th WSEAS Int. Conference on Automatic Control, Modeling and Simulation, Prague, Czech Republic, March 12-14, 2006 (pp261-266)

(SRM) [5] offers a response that resembles that of
the LIFM model, with the difference that the
membrane potential is expressed in terms of kernel
functions [5] instead of differential equations.
Spiking neuron models process discrete values
representing the presence or absence of spikes. This
fact allows a simple connectionism structure at the
network level and a striking simplicity at the neuron
level. However, implementing models like SRM and
LIFM on digital hardware is largely inefficient,
wasting many hardware resources and exhibiting a
large latency due to the implementation of kernels
and numeric integrations. This is why a functional
hardware-oriented model is necessary to achieve fast
architectures at a reasonable chip area cost.

2.1 The proposed neuron model
An artificial neural network (ANN) is a parallel and
distributed network of simple nonlinear processing
units interconnected in a layered arrangement.
Parallelism, modularity and dynamic adaptation are
three computational characteristics typically
associated with ANNs. FPGA-based reconfigurable
computing architectures are well suited to
implement ANNs as one can exploit concurrency
and rapidly reconfigure to adapt the weights and
topologies of an ANN.
FPGA realization of ANNs with a large number of
neurons is still a challenging task because ANN
algorithms are usually “multiplication-rich” and it is
relatively expensive to implement multipliers on
fine-grained FPGAs. By utilizing FPGA
reconfigurability, there are strategies to implement
ANNs on FPGAs cheaply and efficiently.
One of these strategies, is to build them without
using any multiplicator circuits. Most multiplier-like
tasks are fulfilled by sequential counter logic
circuits. This makes our approach more cost-
efficient than the hardware built, perceptron based
ANNs. Due to the high level of parallelism achieved
in this manner speed enhancement is also obvious.
Our simplified model presented in a previous paper
[1], uses the following concepts: 1 - membrane
potential; 2 - resting potential; 3 - threshold
potential; 4 - postsynaptic spike; and 5 - presynaptic
spike (see Fig. 1). A spike is represented by a pulse.
The model is implemented as a Moore finite state
machine. Two states, operational and refractory, are
allowed. The spiking pulses can be of positive
potential (Stimulating Spiking Pulse – SSP) or of
negative one (Inhibitory Spiking Pulse – ISP) [10].
Assume that two presynaptic neurons (j=1,2) send
SSP towards a postsynaptic neuron: j=1 neuron is
firing in the moments t1(1), t1(2),…, t1(n) and j=2 in
the moments t2(1), t2(2),… t2(n) (generally tj(f)).

Hence, during the operational state, the membrane
potential is increased (or decreased) by εi1,εi2,…εij
each time a pulse is received by an excitatory (or
inhibitory) synapse, and then it decreases (or
increases) with a constant slope until the arrival to
the resting value (Fig. 1.). If a pulse arrives when a
previous postsynaptic potential is still active, its
action is added to the previous one. This pulse
reactive model (PRM) is, maybe, the most
appropriate method to model spiking neural
networks (SNN), the task being to evaluate the firing
moments of firing neuron (FN) i (ti(1), ti(2),…ti(n))
as a function of the firing moments of j presynaptic
FNs (tj(1), tj(2),… tj(n)).
The membrane potential of a cell body (soma) of the
neuron number i is:

∑ −=
ji

f

jijiji ttwtu
,

)()(.)(ε (1)

which expresses the contribution of j presynaptic
FNs, generated before the moment t.
The PRM handles also with a damping factor

)ˆ(itt −η , which is a function of it̂ -the moment of

the generation of the last spiking pulse of FN i,

before the time t. If 0ˆ <− itt or 0ˆ >− itt and

high enough, the damping factor is zero. If

0ˆ >− itt , but of small value (that means the i FN

just has generated a spiking pulse), the damping
factor has strong negative value and inhibits the FN i
to generate a new spiking pulse. Comparing to the
Hodgkin-Huxley model [2, 5], the pulse reactive
model (PRM) is more suitable to computer analysis,
as there are no differential equations handled in the
model. Choosing appropriate values for εϑη ,,
functions, the PRM could model quite well the
dynamics of the natural, biological neurons. Our

input spikes
 post synaptic

response

Threshold
potential

firing

after-spike
response
 refractory operational

 operational

operational

refractory

Fig. 1. Dynamics of the implemented neural model

resting
potential

Proceedings of the 8th WSEAS Int. Conference on Automatic Control, Modeling and Simulation, Prague, Czech Republic, March 12-14, 2006 (pp261-266)

model uses a coding algorithm, where each spiking
pulse has a separate importance, similar to the bits in
the computers. As the time is continuous, a single
spiking pulse could include more information than a
single bit, as the arriving time t could encode the
analog value (t-T), when T is a reference time value.
In this respect a FN acts as a coincidence detector,
i.e. will generate a spiking pulse only if a number
great enough of SSPs will arrive to the neuron cell
(soma), almost simultaneously. If all the
transmission delays ∆ij between the FN i and the
presynaptic j FNs are identical, then the FN i, which
has a high threshold value iϑ , will fire only if all

presynaptic j FNs will have the firing moments tj(f)
very close to each other (practically are
simultaneous). If the ∆ij are different for several j
presynaptic neurons, the FN i will fire only if the
presynaptic neurons will comply with a certain
scheduling in firing times: i will fire if for any j,
tj≈T-∆ij [6].

3 Spiking Neural Network Built Into

a FPGA-based System
Based on the mathematical model and the results of
the simulated network several hardware
implementations of spiking neural networks were
developed.
Two main parts of the neuron model, the synapse
and the soma, were designed and developed
separately. The neural model’s specific properties
allow the inputs and outputs to be easily given as
binary values (pulses). This was one of the reasons,
which led to the digital hardware implementation.
The device used was a XESS XSA3S1000
prototyping board with a XILINX XC3S1000
Spartan III FPGA (1000k logic gates). Beside the
FPGA chip there is a CPLD IC for the PC parallel
port connection interface, a 32Mb SDRAM, a 2Mb
Flash RAM memory module present on the
prototyping board, the FPGA being driven by a
programmable oscillator with the maximum
frequency of 100 MHz.

3.1 Strategies in developing optimal

FPGA implementations of adaptive artificial

neural networks
The model used is based on the spiking behavior of
natural neurons, but does not deal with the ion
channel dynamics of biological cells, only with the
signal flow between the units of a neural network,
explicitly the row of action potentials in our case.

In contrast with activity rate encoded networks, the
SNN’s developed by us are encoding the precise
timings of the spike arrivals, not the density rate of
these. Thus, information is being transmitted among
neurons solely by action potentials. The neural
model presented in [1] and briefed in the previous
section, has been developed into a digital model,
which defines q feeding dendrites. The input on
these dendrites reach the cell body (soma) through
synapses, multiplied by some values, modifying the
membrane potential of the soma. Eventually this
will result in the activation of the neuron, generating
an axonal action potential (output spike). According
to the solution suggested in [1] the feeding dendrites
can be side-connected in order to enhance the
synchronization of neurons from a certain layer.
Other dendrites could be inhibitory inputs, thus
lowering the membrane potential of the soma. The
inhibitory effect can be implemented alternatively
by building a single inhibitory module, with effect
over the entire network. This module was developed
to receive the axonal spikes of all or majority of the
neurons in the network. After processing this
module sends an equally distributed inhibitory
signal to the connecting neurons. All connections to
and from the inhibitory module have the same
weight, hence it can be built at a low
implementation cost with hardware elements, given,
that only a few parameters need to be handled.

3.2 Experimental inhibitory module in the

hardware built neural network
The output of any activated neuron of the network
will increment a counter in the IHM. At the end of a
time-step (the operation of the hardware SNN is
divided into time-steps [1]) the value of the counter
is multiplied with an inhibitory weight. This value is
stored in a register, then the counter is reset. Hence,
at the end of the time-step, this value will reflect the
intensity of the network’s neural activation during
the time-step. In the next step one can use this value
as an inhibitory input of the network. In this respect
the calculated value will be added to a global
inhibitory dendrite potential , which will
decrease with a slope of Iγ in each time-step.
Considering a simple case, when the distribution of
the inhibition is even on the entire network, then all
the neurons contributing to the inhibition are part of
a NInhib set. The active neurons of this set contribute
to the inhibition process at a rate given by a

I

Globω weight. Under these circumstances an

inhibitory dendrite potential does not need
to be computed for each neuron, only the global
value given by the following expression:

I

globDP

IDP

Proceedings of the 8th WSEAS Int. Conference on Automatic Control, Modeling and Simulation, Prague, Czech Republic, March 12-14, 2006 (pp261-266)

[] [] []11
1

−⋅+−⋅= ∑
∈

=

nDPnynDP I

glob

NIj

j

I

I

j

I

Glob

I

glob

nhib

γω (2)

where I

jy is the static threshold potential of the

neurons. The inhibitory module is not fully
developed and tested yet, so it was not implemented
in the hardware built SNN presented in this paper.

3.3 FPGA implementation of the synapse

with modified learning algorithm
Considering the behavior of a cerebral synapse, the
main function of the circuit developed by us as the
artificial synapse is a pulse multiplier, although it
doesn’t contain any real multiplicators. As the
architectural schematic in Fig. 2 presents, the
synapse is also made up by two – structurally and
functionally – separate units. The structure of this
module has been redesigned since [1], yielding a
much more compact form. During this optimization,
all subunits were constructed using only native
(primitive) basic elements of the Xilinx FPGA (one
synapse consumes only 17 slices of a XC3S1000
after Place and Route (PAR) phase).
The implemented learning algorithms were also

changed and diversified. There are four types of
weight-adaptation rules, which were selected
according to their neuro-phisiological plausibility
and fitness for hardware implementation. In other
words, these rules secure the neuromorphic nature of
these artificial models, at functional level, too, by
following suit with the local adaptation mechanisms
most often found in the neurons of mammals brain
[6]. Some restrictions limit the capability of these
rules in tuning the weight values:
• the weights may only increase up to a

maximum level,
• the weights may not change sign,
• the weights were initialized with fixed or

random values,
• the weight may be altered in each time-step,

according to the following relation:

ij

t

ij

t

ij ωηωω ∆+= − 1 (3)

where η is the learning rate and ijω∆ is defined by

one of the learning rules presented next.
The simple Hebb rule: the efficacy of the synapse
can only increase is a certain correlation is detected
between the activity of the xj presynaptic and the yi
postsynaptic neurons (both are active during a time
frame) [6]. The following expression determines
how the weight change in this case:

() ijijij yxωω −=∆ 1 (4)

Postsynaptic rule: in addition to the simple Hebb
rule, the synaptic strength will decrease if
postsynaptic element is active but the presynaptic is:
 () () ijijijij yxyx ωω −++−=∆ 11 (5)

Presynaptic rule: complementary to the postsynaptic
rule, it states, that a synapse is weakened also, when
the presynaptic neuron is active but the postsynaptic
one is not:

() () ijijijijij yxyx ωωω −++−=∆ 11 (6)

Covariance rule: the synapse efficiency grows if the
difference between the activation of the two neurons
is less then half of the maximum activation value,
otherwise diminishes. This means, that the synapse
between two neurons will get stronger, if the
neurons have similar activity levels. [10]:

() () ()
()

 >−

=∆
otherwiseyxF

yxFifyxF

ijij

ijijij

ij ,

0,,1

ω
ω

ω (7)

where, () ()()214tanh, −−−= ijij yxyxF is the

scale of the difference between the pre- and
postsynaptic activities. If the difference is greater or
equal then 0.5 (half of the maximal activity), then
() 0, >ij yxF and () 0, <ij yxF if the difference is

less then 0.5.

3.4 Optimization of the soma module
The soma module can be considered as the Central
Processing Unit of the neuron model.
The architecture of the soma is built on four
modules (Fig. 3). The main task of the soma is to
calculate the membrane potential using the input
spikes from the synapses, compare it to the threshold
potential (THP) and if the latter is the smaller one it
has to emit an axonal spike. On the falling edge of
the clock signal, the Synaptic Inputs (SYNIN) unit
of the soma reads the output values of the synapses
and sums these into an input value. The Membrane
Potential Computing Unit (MPCU) unit adds this
input to the previous value of the membrane
potential. If there were no input spikes, then the MP
decreases with a constant slope, down to the resting
potential (4~5% of the maximal MP). The MPCU
module also contains a time-frame creation counter

Register and control
logic Prim.

Counter I Prim.

Strobe logic Prim.

Counter II
Prim.

Clock

Weights

Control
signals

O
ut
 p

ut

S
pi
 k

e

Input spikes

Fig.2. The synapse
Supervising Unit (SU) Control Unit (CU)

Proceedings of the 8th WSEAS Int. Conference on Automatic Control, Modeling and Simulation, Prague, Czech Republic, March 12-14, 2006 (pp261-266)

Output layer

Hidden layer

0 31 Inputs

S S S
N0 N1 N23

S

N24
S

N31

Network Outputs

Fig. 4. – Topology of the FPGA
implemented spiking neural network

Input
unit

Neuron
address
unit

Spiking

Neural

Network

(SNN)

RD_WR

SPE
Addr

DATA

CLK

RD_WR

Addr

MP
output

Weigth
output

Netw.
output

Fig. 5. – Modular strucutre of the hardware SNN

used to limit the time while a certain number of
input spikes have to arrive in order to cause an

axonal spike. (Only excitatory synapses were
implemented). The updated MP is then compared to
the adjustable threshold-potential. If the required
criteria is met (MP>THP), an axonal spike is
emitted and the neuron is placed into
hyperpolarizational phase, when the MP is set below
the resting potential (zero). The latest soma module
is capable of receiving input spikes through up to 32
synapses. The representations of the MP and THP
were carefully chosen to be on eight bits. Without
using RAMs to store parameters this assures the
prospect of building larger SNN with the limited
resources of the FPGA system. The weight values
are stored on four bits. The structural optimization
of the soma, lead to a mixed setup. The MCPU has
been incorporated into the BlockRAM modules, the
SYNIN and the comparison modules stayed as
VHDL code, while the storage units are instantiated
primitives. Consequently, the number of slices used
by the soma after PAR dropped to 15 from ~400 [1].

3.5 Challenges and prospects of the

hardware implementation
The compromise between giving up the fully
parallel hardware implementation and the resource
appetite of this approach has been raised at each step
of the design process. The question, that one can ask
is whether it is worth implementing these SNNs in
fully parallel fashion, or serializing the system –
even only certain parts of it – is the better choice, in
order to be able to build larger networks.
Most of the recent hardware implementations of
SNNs [7, 8, 9] build only one neuron using ASIC or
reconfigurable circuits or use auxiliary devices. All
in all, some compromise is unavoidable, since it is
impossible, now, to build a similar digital model
with such detail and precision using FPGA than with
an ASIC containing a single spiking neuron. Despite
the low cost implementation and the relatively high
FPGA resource utilization, the presented system has

shown its reliability and high performance even in
its former setup [1].

4 Description of the Implemented

SNN. Experimental Setup and Results
The experimental setup consists of two parts: a
software simulation for a spiking neural network
using the environment developed and presented in
[1], and its respective validation on a FPGA.
Following a successful benchmark implementation
presented in [1], a character recognition system, the
newly proposed application, based on the improved
neural model, is a simple process control system,
implementing a gas-yield neural-controller for a
nonlinear system (very low yield input of Ar, N,
C2H2 gases into a vacuum chamber).

4.1 Description of the network and the

experimental environment

The novel, FPGA implemented SNN consists of 32
cell bodies with thirty-two synapses each. The
neural network has 32 inputs, 24 neuron in a hidden
layer and 4
neurons in the
output layer (Fig.
4.) with several
control signal
inputs. The
constructed
experimental
system, consisting
of: the XESS
XSA3S1000
FPGA development board, an OMEGA CIO-DAS08
data acquisition board (3x8 bit digital I/O ports) on a

PIII800Mhz PC, a PIV3.2GHz PC for the VHDL
design and a Tektronix-TDA 34 channel Logic
Analyzer used to perform live measurements on the
running network. Still, the I/O signals of the SNN
had to be multiplexed using auxiliary modules inside
the FPGA (Fig. 5. addressing, data). A VisualC++
application, running on the PIII, delivers inputs and
control signals, reads outputs and network

Membr. pot.
calc.

MCPURAM

Synapse inputs
reader

SYNINVHDL

Threshold potential
register
THR Prim.

P
o
s
ts
y
n
a
p
ti
c

s
p
ik
e
s

C
lo
ck

A
xo

n

Fig. 3. The hardware-implemented soma

Axon value
register Prim.

Com-
paring
VHDL

Proceedings of the 8th WSEAS Int. Conference on Automatic Control, Modeling and Simulation, Prague, Czech Republic, March 12-14, 2006 (pp261-266)

parameters, supervises the learning process The
input values (or patterns) are divided into four
groups. If the pattern contains more input spikes 1’s
in the upper half, then it is considered, that the gas-
yield is too high, otherwise it is too low. The
network has to activate the proper outputs in order to
control the process. The experiments performed with
the FPGA built SNN were divided into the following
phases: 1-delivering the input spikes, 2 - Learning
and simulation, 3 - Reading weights, 4 - Reading
membrane potentials.

4.2 Description of the supervised learning

process

The system was implemented using a composite
rule, modified into a supervised Hebb learning
algorithm, suitable for the process control
application. During the supervised learning phase,
the weight values of each synapse of all neurons
were testes at each step. Figure 6 shows a
measurement when the pressure was too high (MSB
bits active in input pattern). By analyzing the data
form the first group of synapses of neuron 1 (Fig.
6.A), one can tell, that the weight values are rising,

due to the fact, that both pre- and postsynaptic
neurons are active. All other synapses (Fig. 6. BCD)
are decreasing their weight values, due to the
inactive inputs. To verify if the SNN is learning
properly, the MPs were sporadically tested as well,
as well (Fig. 7.). The value of the THP was set to 90
in the experiment when data in Fig. 7. has been
acquisitioned, the resting potential was set to 10.
When the MP of one of the neurons exceeded the
threshold value, that neuron emitted a spike, then the

MP dropped to the hyperpolarization level of 0.

4.3 Conclusions

Concluding, it can be said, that the designed model
is viable, and its performance ensures real-time
process control. The network complexity (32 somas
by 32 synapses each) is approximately equivalent to
a perceptron model based ANN of ~1024 neurons.
Future plans are to adapt the topology, too, by the
means of a genetic algorithm and exploiting the
partial reconfigurability of the Xilinx FPGAs.

ACKNOWLEDGMENT

The current research is part of the first author’s PhD
thesis theme and has been partly funded by the
Research Institute of the Sapientia Foundation.

References:
[1] László Bakó, Iuliu Székely, Tihamér Sándor Brassai,
Development of advanced neural models. Software and
hardware implementations, Transactions on Electronics and
Communications, Tom 49(63), Fascicola 1-2, Editura
Politechnică Timişoara, 2004, ISSN 1583-3380, pp. 214-219
[2] Abeles, M., 1991. Corticonics: Neural Circuits of the
Cerebral Cortex. Cambridge University Press.
[3] S. Haykin, Neural Networks, A Comprehensive
Foundation, 2nd ed., Prentice-Hall, New Jersey, 1999.
[4] A Quantitative Description of Membrane Current and
its Application to Conduction and Excitation in Nerve, A.
L. Hodgkin and A. F. Huxley, 1952, Journal of
Physiology, 117, 500-544.
[5] Gerstner, W., 2001. Spiking neurons In: Maass, W., Bishop,
C.M.(Eds), Pulsed Neural Networks. MIT Press, pp.3–53.
[6] Stanton, P. K. and Sejnowski, T. J. Associative long-
term depression in the hippocampus induced by hebbian
covariance. Nature, 339:215–218., 1989
[7] G. Frank and G. Hartmann, “An artificial neural-
network accelerator for pulse-coded model neurons,” in
Proc. Int. Conf. Neural Networks ICNN95, vol. 4, Perth,
Australia, 1995, pp. 2014–2018.
[8] A. Jahnke, T. Schoenauer, U. Roth, K. Mohraz, and H.
Klar, “Simulation of spiking neural networks on different
hardware platforms,” in Proc. ICANN’97. Berlin,
Germany, 1997, pp. 1187–1192.
[9] A. Jahnke, U. Roth, and T. Schoenauer, “Digital
simulation of spiking neural networks,” in Pulsed Neural
Networks, W. Maas and C. M. Bishop, Eds. Cambridge,
MA: MIT Press, 1998.
[10] ThomasP.Trappenberg, Fundamentals of
Computational Neuroscience, Oxford University Press, 2002.

0

20

40

60

80

100

120

1 7 13 19 25 31 37 43 49 55 61 67 73 79

MP_N0

MP_N1

MP_N2

MP_N3

Fig. 7. Measurement results - The read back MP values during the
learning process (X – time step, Y – MP value)

Fig. 6. Mesurement results
The read back weight values show, that one of the neurons has

learned to signal too high gas-yield

Proceedings of the 8th WSEAS Int. Conference on Automatic Control, Modeling and Simulation, Prague, Czech Republic, March 12-14, 2006 (pp261-266)

