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Abstract: - Conventional identification needs system input and output recorded by sensors. In some situations, 
installation of a conventional sensor may be difficult or not possible due to hazardous environment and/or 
confined area. This paper proposes a new approach to system identification via image processing techniques. 
This approach permits non-intrusive and remote identification. One or more cameras can be an alternative to 
conventional sensors. Dynamical information of the system can be extracted from the recorded images. Details 
of information extraction from images are presented in this paper. For linear models, conventional identification 
techniques based on regression analysis are applied. For nonlinear models, the adaptive tabu search (ATS), one 
of the AI search techniques, is employed. The proposed approaches have been tested against the cart-plus-
pendulum (CPP) system, and the vibrating tube system (VTS), respectively. Practical results have been 
achieved with high satisfaction.  
 
Key-Words: -  system identification, image processing, adaptive tabu search, cart-plus-pendulum system, 
  vibrating tube system 
 
1  Introduction 
Model identification generally requires the 
knowledge of input and output of the system of 
interest. Input is often known and recorded because 
it is generated by a source. Recording output is not 
always possible in some situations because of 
harzard, unreachable location, too small of the area 
for sensor’s installation, for example. This is 
because most of traditional sensors are intrusive, at 
least to the extent that they must be physically 
attached to the object’s surface and require 
extensive wiring for data acquisition. Providing the 
system’s dynamic behavior can be observed by 
human eyes, model identification will be possible by 
using a camera to record a sequence of the system’s 
images. The data representing the system dynamic 
can be extracted from the recorded images using 
available image processing techniques. Then, the 
model identification can be accomplished based on 
the extracted data and the recorded input. 
 Research on dynamic motion of objects extracted 
from the sequence of images emerged in the 70s. 
During the 80s, the identification of an object’s 
position and orientation in space started to appear 

[1-3]. The work [4] utilized images from a satellite 
to predict the glacier flow. The attempts in [5,6] 
came close to model identification but they were 
intended for machine vision that required the 
knowledge of object’s orientation. In 2003, we 
proposed our approaches to identify dynamic model 
parameters by using the images recorded by a digital 
VDO camera [7]. Later, similar approaches to 
identify nonlinear mechanical systems were 
reported in 2004 [8].     
 This paper is proposed to fulfill our approaches 
to identify model parameters via image processing 
techniques. It is divided into five sections. Problem 
formulation appears in section 2. Section 3 provides 
the mathematical models of the tested systems, i.e. 
the cart-plus-pendulum (CPP) system, and the 
vibrating tube system (VTS). Identification through 
image processing for linear and nonlinear 
parametric models of the CPP system, and partial 
differential equation (PDE) models of the VTS is 
explained in section 4. Section 5 of the paper gives 
the conclusion, while the adaptive tabu search is 
briefly described in the Appendix.   
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2  Problem Formulation 
Identification of model parameters conventionally 
utilizes the input and output information of the 
system. The input can be deterministic, such as step, 
sinusoid, etc., or random. A traditional sensor is 
normally used to monitor the system output. The 
input and output data are fed to identification 
algorithm that in turn provides model parameters. 
This practice is represented by the diagram in  
Figure 1. 
 

 
 

Fig. 1 Conventional identification approach. 

 
 

Fig. 2 Identification via image processing. 
 

 Under some circumstances where installation of 
traditional sensors is not possible as previously 
described, a camera can be used instead as shown in 
Figure 2. This is practical when the system’s 
behavior can be easily observed by human eyes. The 
camera substitutes the function of the human eyes. 
With very rapid system dynamic so that it cannot be 
observed by human eyes, dynamic identification via 
image techniques is still possible with aids of a high 
performance acquisition system, and a complex 
image processing technique. This paper’s discussion 
is confined to the first case, i.e. the system’s 
behavior can be easily observed by human eyes. A 
digital VDO camera is employed to provide a 
sequence of images that capture the system 
dynamic. These images are passed through a 
suitable image processing algorithm. The image 
processing algorithm provides output ready for 
feeding the identification algorithm to compute the 
model parameters. 
 

 
3 Mathematical Models 
The systems under tests are the CPP system and the 
VTS. Their mathematical models are presented as 
follows.  

3.1 Cart-plus-Pendulum (CPP) System 
The CPP system is represented by the diagram in 
Figure 3. The system has a non-uniform force, f, 
exciting the cart. This force is generated by a motor 
and transmitted through a flexible belt. The belt 
motion consists of at least three modes, i.e. 
longitudinal (left-right), up-down swing, and sway 
depending upon the motor input, u. Refering to 
Figure 3, y = cart position, φ = angles of pendulum 
oscillation, M = cart mass (not known), f = force 
exerted by belt (not known), m = pendulum mass = 
0.251 kg., l = length of pendulum rod = 0.4 m, and g 
= gravity = 9.81 m/s2. The pendulum rod is assumed 
to be weightless.   

 

Fig. 3 The cart-plus-pendulum system. 
 

 Derivation of the models is based on Lagrange’s 
equation of motion [9]. Lagrange’s function, ( )L ⋅ , 
represents the difference between the kinetic energy, 

( )K ⋅ , and the potential energy, ( )V ⋅ , as shown  
in (1). 
 
 ( , , , ) ( , , , ) ( )L y y K y y Vφ φ φ φ φ= −   (1) 

 2 2
cart pend

1 1( ) ( ) ( )
2 2

K M v m v⋅ = +   (2) 

 
 The kinetic energy composes of the energy of the 
cart and the pendulum as expressed by (2), in which 

cartv y= , and pend ( cos , sin )v y l lφφ φφ= + . Hence, 
the equation (2) can be rewritten as (3). 
  

 
2 cos1( ) [ , ]

2 cos
ml ml

K y
ml M m y

φ φ
φ

φ
⎡ ⎤⎡ ⎤
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 For the potential energy when the pendulum is at 
down-right position as shown in Figure 3, 

( ) cosV mglφ φ= − . Thus, Lagrange’s function for 
the CPP system can be expressed by (4), where 

2 , ,ml mlα β= =  ( )M mγ = + , and D mgl= , 
respectively. 
 Consequently, we can obtain the angular 
momentum, pφ , and the momentum in the 
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longitudinal direction, yp , as (5) and (6), 
respectively. 
 

 
2 21( , , , ) ( ) 2 cos ( )

2
 cos

L y y y y

D

φ φ α φ β φ φ γ

φ

⎡ ⎤= + +⎣ ⎦

+
  (4) 

 cosLp yφ αφ β φ
φ
∂

= = +
∂

 (5) 

 cosy
Lp y
y

γ β φφ∂
= = +
∂

 (6) 

 
 When there is only the force, f , applied to the 
cart, i.e. no external force applied directly to the 
pendulum, the motion of the CPP system can be 
described by Lagrange’s equations of motion as 
shown in (7) and (8).  
 

 0d L L
dt φφ

∂ ∂
− =
∂∂

    (7) 

 d L f
dt y
∂

=
∂

   (8) 

 
 From (7) and (8), we can obtain (9) and (10), 
respectively.   
 
 cos sin 0y D+ + =αφ β φ φ  (9) 
 2cos ( ) siny f+ − =γ β φφ β φ φ  (10) 
 
 By substituting , ,α β γ , and D  into the 
equations (9) and (10), the equations of motion (11) 
and (12) are obtained. 
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 Unknown system parameters, M and the 
expression of the non-uniform force, f, as a function 
of the motor input, u, need to be identified. 
 
3.2 Vibrating Tube System (VTS) 
The diagram of the VTS is represented by Figure 4. 
With motor’s random input, the tube motion 
consists of at least three modes, i.e. clockwise-
counterclockwise rotation, up-down swing, and 
sway. The dynamic behavior of this system in 3D- 
space can be represented by the PDE models. To 
obtain such the PDE models, the VTS could be  

considered in two separate planes, i.e. x-y plane, and 
y-z plane as shown in Figure 5, where z(x,y,t) = tube 
position in the z axis, u = motor input, KM = motor 
gain (not known), KD = driver gain (not known), and 
gravity gy = 9.81 m/s2. The tube position, z(x,y,t), is 
varied to the position in the x axis, the y axis, and 
time (t). 

 

 
 
Fig. 4 The vibrating tube system. 

 

Fig. 5 Section of the tube considered in two planes, 
  (a) x-y plane (b) y-z plane.  
 
 On the basis of vibrating string and membrane 
models [10], the mathematical models of the VTS 
can be developed. Regarding to the Newton’s law of 
motion, the summation of force, S, acting on the 
tube along the x and y axes in Figure 5(a) can be 
obtained as expressed in (13) and (14), respectively.   
 
 2 1cos cosx x xS S S= −∑ θ θ  (13) 

 2 1sin siny x xS S S mgθ θ= − −∑  (14) 
  
 When 1xθ  and 2xθ  are very small, we can 
approximate 1 2cos cosx xθ θ≅ . Thus, equation (13) is 
equal zero. This means that there is no force acting 
on the tube along the x axis. In this case, 

1 1sin tanx xθ θ≅ , and 2 2sin tanx xθ θ≅ . Thus, 
equation (14) can be written as (15). 
 
 2 1tan tany x xS S S mgθ θ= − −∑  
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 The slope at point B of the tube in Figure 5(a) is 
approximated by two terms of the Taylor series as 
shown in (16).  
  

 
2

2
B A A

z z z dxdy
x x x

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞≅ + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (16) 

 
 By substituting (16) into (15), the summation of 
force, S, acting on the tube along the y axis is 
obtained as shown in (17). 
 

 
2

2y
zS S dxdy mg

x

⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂⎝ ⎠

∑  (17) 

 
2

2z
zS S dxdy mg

y

⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂⎝ ⎠

∑  (18) 

 
 In similar fashion, when the tube as shown in 
Figure 5(b) is considered in the y-z plane, the 
summation of force, S, acting on the tube along the z 
axis is obtained as shown in (18), since there is no 
force acting on the tube along the y axis. 
  σ  is defined as the tube mass per unit length in 
both x and y axes. If ds dx dy≅ ≅ , then m dxdyσ= . 
By applying the Newton’s law, summation of force, 
S, can be provided by (19). The overall force acting 
on the tube is expressed in (20).     
   

  
2

2
zS dxdy

t
σ ∂

=
∂

∑   (19) 

 y zS S S= +∑ ∑ ∑   (20) 

 
 By substituting (17), (18), and (19) into (20), the 
generalized models of the VTS based on the wave 
equation can be obtained as shown in (21), while the 
applied force, S, as the function of the motor input, 
u, is expressed in (22). Three system parameters, σ , 
KM, and KD, need to be identified. 
 

 
2 2 2

2 2 2 y
z S z z g

t x yσ
⎛ ⎞∂ ∂ ∂

= + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
  (21) 

 D MS K K u=  (22) 
 
 
4  Identification via image processing  
This section describes our approaches to system 
identification via image processing techniques for 
the CPP system and the VTS. 
 

4.1 Identification of the CPP System 
The effectiveness of our approach is firstly 
demonstrated on the CPP system represented by 
Figure 6. A VDO camera was installed in 
perpendicular to the belt. Thus, the plane captured 
by the camera contains the traverse motion of the 
cart, and the swinging motion of the pendulum. The 
camera is Panasonic DVC-PRO25 (AJ-D400) 
having its lens of 6.5-123 mm. The pendulum swang 
within 2 ranges: ±0.2 and ±0.6 rad. The camera 
captured the motion images simultaneously to the 
sensor reading angles of oscillation, φ. The sampling 
interval for the sensor was 0.15 sec. The image files 
(VDO tapes) were converted to “.avi” files, and then 
to “.bmp” files. The time interval between two 
consecutive images is equivalent to a sampling 
interval of 0.0735 sec. which is finer than that 
provided by the sensor. The system’s sequence of 
images is captured, and further processed to extract 
the most necessary information for the system 
identification, i.e. cart positions, and pendulum 
angles of oscillation. For each frame of image, the 
position of each interested object must be separately 
and simultaneously located. 

 
 

Fig. 6 The CPP system set-up. 
 
 To locate each object of the CPP system in image 
sequences, color segmentation technique is 
employed. There are five objects in the scene that 
need separate detections. These objects are 
background,  reference point,  pendulum,  cart,  and 
track. Different colors are assigned to each object. 
The simple color segmentation technique is then 
applied to segment out each object from the scene. 
By choosing different color ranges for each object, 
we are be able to separately locate all five objects 
and label each of them in every single image frame. 
 The image sequence is recorded in RGB format. 
Ranges of R, G and B values are firstly calculated 
for each object’s color. The color threshold 
technique is applied to segment each object using 
these RGB parameters. Figure 7 shows the results of 
the color segmentation. From the segmented image, 
the position of the object (in pixel unit) is computed  
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cart

track

reference point

pendulum

background

cart position

pendulum position

with reference to its center of gravity.  Finally, this 
position information is converted into the CPP 
system parameters which are cart positions, and 
pendulum angles of oscillation, φ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

Fig. 7 Color segmentation of the CPP system, 
 (a) recorded image (b) segmented image. 
 
 Due to imperfect lens, the recorded images are 
always distorted. To correct the distortion errors, the 
least square error (LSE) method is applied. After 
correction, the image data, pendulum angles of 
oscillation, agree with sensory data. To compare the 
sensory data with the uncorrected and the corrected 
image data, some results are plotted as shown in 
Figure 8.    
 To identify the CPP system parameters, the 
system was considered linear and nonlinear, 
respectively, according to the amplitude of the 
oscillation angles, φ. The results of the models 
obtained from the corrected image data are 
compared with those obtained from the sensory 
data. 
 
 
 

 

  
 

Fig. 8 Plots of image data against sensory data. 

  
 

Fig. 9 Plots of linear models of the CPP system. 

 
 
  
  (23) 
 
 
 

 
  
 

  (24)   
 
 

 
4.1.1 Linear CPP  
The CPP system can be assumed linear when the 
angles of oscillation are small, i.e. within ±0.2 rad. A 
black-box model of 10th order has been assumed to 
represent the linear CPP system. The Identification 
Toolbox of MATLABTM has been used to 
accomplish the model identification. Models 
obtained from sensory data and corrected image data 
are expressed in (23) and (24) respectively. Figure 9 
shows the sensory data plotted against the model 
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obtained from sensory data and corrected image data. 
Curves indicate the agreement of the oscillation 
mode and amplitude.  
 
4.1.2 Nonlinear CPP 
The CPP system is considered nonlinear when the 
angles of oscillation are large. The systems can be 
described by (11) and (12) in which all the 
parameters except M are known. However, the force 
that directly applies to the cart is not known. This is 
because the cart is driven by the belt that swings up-
and-down all the time. This belt receives random 
excitation from the motor. The problem now 
becomes an identification of the forcing function, f. 
The force, f, is assumed the 7th-order polynomial of 
the motor input, u, as expressed in (25). In this case, 
it is not possible to apply any existing conventional 
methods of identification. We thus apply the search 
method namely the adaptive tabu search (ATS) [11] 
to identify the following parameters: M, a7, a6,…, 
and a0 of the forcing function, f. Readers can find a 
brief description of the ATS in the Appendix.  
 The ATS is applied to search for the CPP 
nonlinear model parameters. The stop criteria are 
the cost J (sum-squared error, SSE, between the 
observed data and the models) ≤ 1.32 or the 
maximum search rounds of 10,000. We conducted 
1,000 trials with random initial solutions to obtain 
average search results. Using the sensory data, the 
ATS provided the solutions with an average J = 
1.31, average search rounds of 693.40, and 
consumed 76.18 seconds of average search time. 
Using the corrected image data, the ATS provided 
the solutions with an average J = 1.31, average 
search rounds of 726.50, and consumed 78.03 
seconds  of  average search time. Models parameters 
obtained from the ATS are shown in Table 1. Figure 
10 shows the sensory data plotted against the 
models obtained from the sensory data, and the 
corrected image data. The curves illustrate 
satisfactory results, although the amplitude errors 
are still great. The amplitude errors can be 
decreased by attempting to model the force, f, more 
accurately. This point is still left open.        
   
 7 6

7 6 1 0f a u a u a u a= + + +  (25) 
 
 
 
 
 
 
 
 

  

 
 
 
 

Fig. 10 Plots of nonlinear models of CPP system. 
 
4.2 Identification of the VTS 
In this section, the effectiveness of our approach is 
demonstrated to identify model parameters of the 
VTS system, on which it is not possible to install 
traditional sensors, since the tube is small and soft. 
The VTS has a non-uniform force, S, exerted by the 
motor’s shaft. Regarding to Figure 4, the tube has 
length l = 61 cm, and diameter d = 3.5 mm. The 
tube is coupled to the motor shaft, and a connector 
moving freely. The distance between the shaft and 
the connector is 60 cm.  
 Figure 11 illustrates the VTS set up. Two VDO 
cameras are installed in perpendicular to the x-y, and 
the z-x planes, respectively. The first camera is on 
the z axis, and the second one is on the y axis. The 
cameras are Sony Digital Handycam DCR-
VX1000E having lens of 5.9-59 mm. Two VDO 
captures used in our experiments are One Point Cap-
IT2000 with 25 frames per second (fps). Two 
computers to store the recorded images are Pentium 
II, 400 MHz, 64 Mbyte RAM.  
 To lessen the image distortion and to acquire the 
system dynamic synchronously, both cameras 
require careful calibration, and synchronization. For 
camera calibration, we use the effective method 
proposed by Heikkila and Silven [12]. The method 
utilizes optimization, and the direct linear transform 
model. For synchronization of the cameras, we use a 
single toggle switch to start and stop image capture.  
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Table 1. Model parameters of nonlinear CCP system. 
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Fig. 11 The VTS set up. 
 
 The image files synchronously captured by two 
cameras are converted to “.avi” files, and then to 
“.bmp” files. The time interval between two 
consecutive images is equivalent to a sampling 
interval of 0.04 sec. The system’s sequences of 
images are captured and processed to extract the 
most necessary information for the system 
identification, i.e. tube positions in the 
corresponding planes. The data representing the 
tube dynamic in response to the motor’s random 
excitation can be extracted from the recorded 
images.  
 In order to locate the tube positions, color 
segmentation technique is employed. Now, the 
object of interest is the tube. So, it is assigned a 
color different from other objects. The color 
segmentation technique is also applied to segment 
out the tube from the scene of every single image 
frame. The image sequences are recorded in RGB 
format. Ranges of R, G and B values are firstly 
calculated for each object’s color. The color 
threshold technique is applied to segment each 
object based on the information of these RGB 
parameters. Figure 12 shows a result of the color 
segmentation obtained from the second camera. 
From the segmented image, the tube positions (in 
pixel unit) are firstly computed and then converted 
into VTS parameters (actual tube positions) of the 
corresponding planes. Figure 13 illustrates some 
tube positions in the z-x plane obtained from the 
second camera before and after calibration.  
Satisfactory results are obtained from the camera 
calibration procedure.   
 The generalized models in (21) and (22) are 
modified to represent the tube dynamic in the x-y, 
and the z-x planes, respectively. Identification can 

be conducted for each plane separately. In the x-y 
plane, the generalized models can be modified to 
describe the VTS dynamic as expressed in (26) and 
(27), where the force, S, is substituted by F, σ  is 
substituted by µ which is the tube mass per unit 
length in the x axis, gy is replaced by g = 9.81 m/s2, 
and  z(x,y,t)  can  be rewritten  as  y(x,t).  We  get 
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(a) 
 

 
(b) 

Fig. 12 Color segmentation of the VTS, 
  (a) recorded-undistorted image  
   (b) segmented image.  

  

   

Fig 13. Tube positions in the z-x plane. 
 
 By applying the ATS, the stop criteria are the 
cost J (mean-squared error, MSE, between the 
observed positions and the models) ≤ 23.26 or the 
maximum search rounds of 1,000. We conducted 
1,000 trials with random initial solutions to obtain 
average search results. The ATS provided the 
solutions with an average J = 23.25, average search 
rounds of 10.19, and consumed 8.83 seconds of 
average search time. The following model 
parameters are obtained: µ = 0.0064 kg/m, KD = 
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0.022, and KM = 0.024. Figure 14 illustrates some of 
the model plotted against the observed positions in 
the x-y plane. The results obtained are highly 
satisfactory. 
 In the z-x plane, the generalized models can be 
modified to describe the VTS dynamic as expressed 
in (28) and (29), where the force, S, is substituted by 
F, σ  is substituted by µ which is the tube mass per 
unit length in the x axis, and z(x,y,t) can be rewritten 

as z(x,t). We can get 
2 2

2 2
z z

t t
∂ ∂

=
∂ ∂

, 
2 2

2 2
z z

x x
∂ ∂

=
∂ ∂

, and 

2

2 0z
y
∂

=
∂

. In this case, gy is replaced by zero because 

the direction of gravity gy is in perpendicular to the 
z-x plane. Thus, the parameters µ, KM, and KD, need 
to be identified. 
 

 
2 2

2 2
z F z

t xµ
⎛ ⎞∂ ∂

= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
   (28) 

 D MF K K u=  (29) 
 
 By applying the ATS to search such the 
parameters, the stop criteria are the cost J (MSE) ≤ 
32.38 or the maximum search rounds of 1,000. 
Again, 1,000 trials with random initial solutions 
were conducted. The ATS provided the solutions 
with an average J = 32.37, average search rounds of 
7.18, and consumed 5.59 seconds of average search 
time. The following model parameters are obtained: 
µ = 0.0065 kg/m, KD = 0.022, and KM = 0.020. The 
system parameters obtained by the ATS highly 
agree with those obtained from the x-y plane 
identification. Figure 15 illustrates some of the 
model plotted against the observed positions in the 
z-x plane. The simulation results are satisfactory, 
although some amplitude errors occur noticeably 
because the gravity is set as zero. These errors affect 
the setting of the cost J barred by 32 approximately 
as the readers might observe this. The amplitude 
errors can be decreased by using an additional 
camera (or more, if necessary) installed in an 
oblique plane. The generalized models of the VTS 
should correspondingly modified. This point is still 
left open.     
 
 
5  Conclusion 
A new approach to system identification via image 
processing technique has been described. VDO 
cameras play a substantial replacement for 
traditional sensors. Dynamical information of the 
system can be extracted from the recorded images 

using simple color segmentation, and color 
threshold techniques. The paper has demonstrated 
this new approach to obtain linear and nonlinear 
model’s parameters of the cart-plus-pendulum 
(CPP) system as well as those of the PDE models of 
the vibrating tube system (VTS). Based on the 
image data, conventional regression-identification 
techniques are applied to identify linear model’s 
parameters of the cart-plus-pendulum system, while 
the adaptive tabu search (ATS) is applied to identify 
nonlinear model’s parameters of the cart-plus-
pendulum system, and PDE model’s parameters of 
the vibrating tube system. The usefulness and 
practicality of our innovative approach have been 
confirmed by the experimental results. 
 

    
 
 
 
 

    
 
 
 
Fig 14. Model plotted against the observed tube   
 positions in the x-y plane. 
 
 

  
 
 
 
 

   
 
 
  

Fig 15. Model plotted against the observed tube   
 positions in the z-x plane. 
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6  Appendix: The ATS Method 
Based on iterative neighborhood search approach, 
the ATS method is one of the efficient AI search 
techniques. With the tabu list (TL), the ATS can 
record a history of solution movements which may 
lead to a new direction that could escape a local 
minimum entrapment. To enhance its convergence, 
the ATS method has two additional mechanisms, 
namely back-tracking (BT) and adaptive-radius 
(AR). The flow diagram in Figure 16 describes the 
ATS algorithm.  
 When the number of solution cycling is equal to 
the maximum solution-cycling allowance, the BT 
mechanism is active. This mechanism selects one of 
the solutions stored in the TL as an initial solution 
for the next search round to enable a new search 
direction. The AR mechanism is active when a 
current solution is relatively close to a local 
minimum. The search radius is decreased in 
accordance with the best solution found. The less 
the cost function, the smaller the radius. With these 
two mechanisms, a solution obtained by the ATS 
rapidly converges to the global minimum. Readers 
can find the convergence analysis and performance 
evaluation of the ATS method in [11]. 
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