
Exploiting Cryptographic Architectures over

Hardware Vs. Software Implementations: Advantages and Trade-Offs

N. SKLAVOS

I
, K. TOULIOU

II
, and C. EFSTATHIOU

III

I
 Electrical and Computer Engineering Dept., University of Patras, GREECE

II
 Department COMELEC, Ecole National Supérieure des Télécommunications

46, rue Barrault, 75634 Paris Cedex 13, FRANCE
III

 Computer Dept., Technological Educational Institute, ATEI of Athens, GREECE

Abstract: - Cryptographic modules can be implemented in both hardware and software. Although software

cryptographic implementations are cost-effective and more flexible, they seem to provide a much lower level

of security in relation to their hardware equivalents. The uncontrolled memory access, the vulnerabilities

imposed by the OS and the facility of modifying software implementations are some of the security barriers of

software cryptographic modules. This works deals with the exploitation of security architectures via software

and hardware implementations. Especially it is centers in the advantages and the trade-offs of each one of the

two alternatives integration approaches.

Key-Words: - Software/hardware cryptographic implementations, memory access, reverse-engineering, timing

and power analysis attacks, OS vulnerabilities, random number generators, key storage.

1 Introduction
When dealing with the implementation of

cryptographic modules, one of the questions raised

is whether to deploy software products or hardware

based solutions. Software security implementations

are designed using programming languages such as

C, C++, Java or even Assembly with the intention to

run on general-purpose microprocessors, digital

signal processors or to be embedded in smart cards.

On the other hand, hardware cryptographic modules

are designed with hardware description languages

such as VHDL or Verilog. They are mainly

implemented in Field Programmable Gate Arrays

(FPGAs) and Application Specific Integrated

Circuits (ASICs) [8].

The debate over hardware vs. software

cryptographic designed architectures and also

implementations seems endless [19]. Each one of

the two approaches has its advantages and trade-

offs. The performance specifications of the

application, the desirable cost and the security

demands are the main elements that determine each

time the best and most applicable solution.

However, aspects such as performance, cost

or flexibility are beyond the scope of this article.

Our interest is focused on the comparison between

hardware and software based cryptographic

implementations only in terms of the security they

provide.

This paper is organized as follows: In

Section 1 a detailed introduction to the focussed

topic is given. In Section 2 Software Security

Limitations are given in detail. In the next Section 3,

the combination of both hardware and software

integration platforms are presented. Finally,

conclusions and outlook are given in Section 4.

2 Software Security Limitations
Although software security implementations are

cost-effective, more flexible and easy for

development and possible upgrade, they seem to

provide a much lower level of security in relation to

their hardware equivalents [1], [4], [5]. The software

modules weakness to provide sufficient protection

lies on the following reasons:

• Security bound imposed by the OS

• Arbitrary Memory Access

• Lack of Data Integrity Guarantee

• Insecure Key Storage

• Pseudo-Random Number Generators

• No resistance against reverse-engineering

• Vulnerability to Side Channel Attacks

Each one of these software security barriers is

further analyzed in the following sections.

2.1 Security bound imposed by the OS
Software cryptographic modules, when executed on

general-purpose computers, do not exist in isolation.

They run always on top of another lower layer

application [1], [5], such as an operating system

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp147-151)

(OS), which inevitably imposes an upper bound on

the level of the security efficiency [1]. No matter

how well secure the software module is, if there is a

bug or information leakage on the OS, the whole

implementation is risking a possible attack. In other

words, the protection provided by the software-

based implementation depends on the OS security

level.

 Unfortunately, this dependence on the OS

leaves a lot of doubts about whether or not we can

trust software cryptographic modules. Knowing,

also that today’s OS suffer from information flaws

which make them susceptible to various attacks,

software cryptographic modules do not appear to be

the best candidate in terms of security. Some of the

common OS problems are listed below:

• Vulnerabilities (Viruses, Trojan horses) [1],

[13], [18]

• Memory Management malfunction

 (Buffer overflows) [3], [11]

• Memory contents leakage (Swap Files) [1],

[3], [18]

 On the other hand, hardware cryptographic

modules are implemented below the operating

systems and thus, they are not threatened by attacks

against the latter or by flaws of another higher layer

application [1], [5].

2.2 Arbitrary Memory Access
 One of the major disadvantages of the software

cryptographic implementations is that they do not

employ their own physical memory. Usually, they

use an external memory, controlled by the operating

system they are running on [1]. However, this

memory space is shared between other applications

that might be executed at the same time. Allowing to

other processes an access to the common memory,

there is no assurance that the contents of the

memory space, used by the cryptographic module,

will not be read or even altered by an unauthorized

application [1], [15].

 For example, Windows NT provide a

function called ReadProcessMemory(), which

allows a process to read the memory of almost any

other process in the system [16]. The arbitrary

memory access is not only a Windows’ drawback

since in many Unix systems the use of ptrace

imposes similar risks to those arising from the

ReadProcessMemory() function [16]. Although all

operation systems provide some sort of memory

access protection, its efficiency depends on the

robustness of the system and its vulnerability to

information flaws.

 In order to realize how important is the

threat arising from the uncontrolled memory access,

we should consider that during the execution of a

cryptographic algorithm, internal values of the key

need to be stored temporarily in the memory.

Moreover, since the efficiency of the cryptographic

module is determined by how well protected the

values of the cipher key are, and if no guarantee can

be made concerning their security then the

corresponding implementation is untrustworthy.

 The superiority of the hardware

cryptographic modules compared to the software

ones is based on the formers’ privilege to facilitate

their own physical memory [1], [10], [15]. Having

the memory space completely in their disposal,

hardware cryptographic modules can prevent any

attempt of illegal memory access.

2.3 Lack of Data Integrity Guarantee
Software implementations are lines of code written

in some programming language. Since there is no

mechanism to resist against the arbitrary access to

the common memory space, no one can guarantee

the integrity of the internal code [1], [7], [10]. Who

can assure for example that an unauthorized user

will not gain access to the set of instructions of the

corresponding program? And if he does manage,

what can eventually prevent him from altering the

code, leading to a malfunction or an information

leakage?

 Hence, software cryptographic implementations

can not guarantee the integrity of the sensitive data

they are supposed to protect. Unfortunately, the

possibility of tampering the software module is not

the only concern. What increases the problem is the

difficulty of designing tamper-evident software-

based modules [5].

 Indeed, software tamper detection is a difficult

task for two major reasons:

I. The software can be copied from the original

host machine and modified offline, leaving no

evidence of being tampered.

II. Assuming that the tamper is performed on the

original host machine, nothing prevents the

attacker from covering his tracks by simply

overwriting the tampered module with the

original one.

 On the other hand, hardware implementations

provide a higher level of security, since the code

used is being burnt on the chip [1], [10]. The

hardware protection is created during the

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp147-151)

manufacturing process and includes physical

barriers which prevent optical or electrical reading

and any kind of alteration of the chip’s contents [7].

 In addition, by including extra design features

during the implementation of the hardware modules,

an even greater resistance to attacks can be

accomplished. As an example we can mention some

existing techniques that reduce the usefulness of the

information enclosed in the module, by scattering

the cryptographic keys and other sensitive data

throughout the chip [7]. Thus, even if a successful

attack is accomplished, the tamper of a single chip is

not enough for the values of the key to be extracted.

The cracker needs to attack multiple chips and

finally to be able to piece together the information

leaked by the various modules.

 Preventing the illegal access to the code is not

the only privilege of the hardware implementations.

Tamper resistant methods, which include sensors

able of detecting unusual levels of heat or light, can

render the chip inoperable under an attempted

attack. Moreover, these features provide the

evidence that tampering has been attempted making

hardware implementations tamper-evident [7].

2.4 Pseudo-Random Number Generators
At the heart of every cryptographic module there is a

random number generator, whose role is to produce

unpredictable numbers with the intention to form the

secret key.

 True random number generators cannot be

implemented in software [14]. Software engineers

often try to develop them by measuring physical

events available in the software [13], [17]. However,

this approach is quite risky because if these events

are computer controlled, nothing can prevent a

malicious programmer from controlling these

external events and finally predicting the

cryptographic key. Actually, the random number

generators found in most computers are software

routines implementing algorithms and are properly

called pseudo-random number generators [17]. The

latter cannot produce truly unpredictable numbers

and constitutes a wound for most software

cryptographic implementations [2], [4].

 In contrast, truly random numbers can be

generated in hardware with the use of some physical

processes, like the thermal noise, the photoelectric

or other quantum phenomena [17]. These processes,

based on microscopic phenomena, are in theory

completely unpredictable and thus, they are able to

accumulate the necessary amount of random entropy

to generate strong cryptographic keys.

2.5 Insecure Key Storage
Producing unpredictable keys is not enough to

ensure their protection in case of an attack. It is

essential to ensure that the key values are stored in

an extremely secure place inside the memory. The

arbitrary memory access of the software-based

implementations sets already the key values in a

great risk. However, the secure storage of the keys

becomes even more crucial when it involves long-

term or Master keys [1].

 Long term keys in contrast to session keys,

have a longer lifetime and therefore, need to be

stored in a secondary memory which gives birth to

additional attacks. In order to ensure their security,

usually the long term keys are encrypted via other

key called keys-encryption keys. Nevertheless, since

the latter also need to be stored secretly, the method

of the encryption key does not seem to offer any

solution to the problem of the secure key storage.

 In most software cryptographic modules,

password-based encryption is used for the protection

of the key-encryption keys [1], [2]. This method

suggests the online generation of the key-encryption

keys via a user-typed password. Although the

password-based encryption seems to solve in a way

the storage of the key-encryption keys, it has several

drawbacks. First of all, it requires the human

presence in order for the pass phrase to be typed [1],

[14]. Therefore, this technique cannot be applicable

in situations where systems or servers need to

function unattained. Secondly, passwords that are

user-generated have extremely low entropy which

cannot eliminate the possibility of the password

being guessed or exhaustively searched [1], [2],

[13], [14]. Finally, due to the development of

keyboard-sniffing programs, nothing can ensure the

security of anything typed onto the user's computer

[14].

 An alternative approach for the protection of

the long term keys suggests their encryption via an

internal key, called Master key. Nevertheless, the

problem of the key-storage raises again, concerning

this time the master key, which in turn needs to be

stored in a well “hidden” place in order to be safe

from a malicious user. However, the uncontrolled

memory access prohibits the secure storage of the

master key making the software inappropriate for

cryptographic implementations.

 Hardware-based implementations seem to be

the best candidate in relation to the master keys

storage. The master key can be burnt on the chip

during the manufacturing process rendering its

extraction an extremely difficult task [1], [7], [10],

[12].

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp147-151)

2.6 No resistance to reverse engineering
One of the major fears for current cryptographic

modules is reverse-engineering [1], defined as the

ability to identify the function, components and

dependencies of the target system. Surprisingly,

reverse engineering does not threat only secret

algorithm’s implementation units. It can be

extremely harmful even in the case of a public

knowing algorithm, since it may reveal possible

design flaws, which can be exploited in the future

[1].

 Everybody knows that there is no software

resistant to reverse engineering [12]. While in

software modules there is no robust memory access

control, nobody can guarantee that an attacker will

not figure out the system’s function by reading the

code instructions. Software cryptographic modules

are really vulnerable to reverse engineering, because

the human skills and the machines required are quite

common [5]. As many systems use commercial

operating systems, most crackers already have the

system they want to attack at their disposal [5].

 A successful reverse-engineering of a

hardware cryptographic module, however, does

require specific equipment and expertise [7]. In

contrast to a software attack which is straight-

forward and cost-effective, hardware cracking tools

are much more expensive and harder to come by

[11].

 In addition, attackers need to be more

sophisticated, with specific skills and techniques, in

order to plug into a hardware device and reveal

information concerning its behavior [5]. Thus, a

given system implemented in tamper-resistant

hardware might have a typical lifetime of 10 or 15

years before being reverse-engineered, whereas the

same implementation in software might not last

more than 2 or 3 years.

2.7 Vulnerability to Side Channel Attacks
Software cryptographic implementations appear to

be more vulnerable to power and timing analysis

attacks than their hardware equivalents. When a

software program is executed, the contained

commands are compiled to a set of assembly

instructions. Usually, the power consumption of the

latter follows predefined patterns which can easily

be identified, even by using ordinary power analysis

techniques [1]. The information collected can reveal

the internal function of the cryptographic module

which if properly exploited can threat the security of

the cipher key.

 An attacker can also employ timing analysis

techniques in order to retrieve information

associated to the internal state of the cryptographic

or the secret key [13]. These techniques allow the

attacker to extract secrets maintained in a security

system by exploiting the correlation between the

variations of the processing time and the operations

performed [6], [11]. The only way to eliminate the

threat of timing analysis attacks is to force all the

computations performed to spend the same amount

of time.

 The difficulty of writing time-constant

programs in a high level programming language can

explain why software-based implementations are

susceptible to the particular attack [11]. In addition,

general-purposes computers cannot avoid timing

variations due to various factors, such as compiler

optimizations and RAM cache hits.

 Although hardware-based implementations are

also threatened by the above side channel attacks,

special measures can be applied to mask the leakage

of any information associated to power consumption

and timing variations. Randomized masking

methodologies and power signal filtering [1], are

two of the hardware countermeasures proposed, able

to reduce the effectiveness of timing and power

analysis techniques and consequently, prevent the

attacker from extracting values of the secret key.

3 Combining HW& SW advantages
Since software-based products fail to achieve a

satisfactory level of security, why do they still

remain the first choice when it comes to

cryptographic implementations?

Software-based implementations are

generally preferred because they are cost-effective,

easy to modify or upgrade and their development

requires a small design cycle [8], [9]. While the

traditional (ASIC) hardware implementations offer

sufficient assurance and great performances, their

deterrent cost and their lack of flexibility, restrict

their use to a limited number of applications [9].

 The gap between software-based and ASIC

implementations can be filled by reconfigurable

hardware devices such as FPGAs. FPGAs are

considered a highly attractive option, as they

combine the flexibility of software products with a

strong physical security [8], [9]. With their design

requiring less time and expenses and allowing the

modification and agility of the implemented

algorithm, FPGAs are considered the best suited for

secure cryptographic implementations.

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp147-151)

4 Conclusions & Outlook
Software-based solutions are considered the worst

candidate when dealing with the implementation of

cryptographic modules, where a high level of

security is demanded. The weakness of the software

modules to prevent an illegal memory access,

together with the threat of reverse engineering and

the vulnerabilities of the OS, impose doubts on

whether a software cryptographic module is able to

provide the desirable data protection and integrity.

 Hardware-based products are best suited for

cryptographic implementations because they are

able to ensure a satisfactory level of security.

Providing their own physical memory, which is

tightly controlled and defined, and with the use of

tamper-resistant methods, they can assure the secure

storage of any sort of sensitive data and eliminate

the risk of a potential attack.

 Despite their limitations, however, software-

based modules are often developed, due to the

prohibitive cost of the traditional (ASIC) hardware-

based implementations. In order to exploit the

advantages of each one of the two approaches, most

of the current cryptographic modules rely on a

FPGA implementation. FPGAs are hardware

reconfigurable devices, ease to upgrade and modify,

which protect physically their memory space and

manage to achieve high performance in a reasonable

cost.

Acknowledgment
This work is co-funded by 75% from the E.E., and

25% from the Greek Government under the

framework of the Education and Initial Vocational

Training Program- Archimedes.

References:

[1] Hagai Bar-El, Security Implications of

Hardware vs. Software Cryptographic Modules,

Discretix Technologies, September 30, 2002.

[2] Bruce Schneier, Applied Cryptography, John

Wiley & Sons, 1996.

[3] Bruce Schneier, Cryptographic Design

Vulnerabilities, IEEE Computer, Vol.31, 1998,

pp. 29-33.

[4] Daniel Dariel, Choosing the Appropriate

Security Technology, M-Systems, May 2003.

[5] Eugen Bacic, Gary Maxwell, Software

Hardening & FIPS 140, Physical Security

Testing Workshop, December 2005.

[6] Daniel J. Bernstein, Cache-timing attacks on

AES, 2005, URL: http://cr.yp.to/antiforgery/

cachetiming - 20050414.pdf.

[7] CRSS Publications, Security of Electronic

Money, January 1996, URL: http://
www.bis.org/publ/cpss18.pdf.

[8] K.Gaj and P.Chodowiec, Hardware performance

of the AES finalists - survey and analysis of

results, URL: http://ece.gmu.edu/crypto/AES_

survey.pdf.

[9] T. Wollinger and C. Paar, How Secure Are

FPGAs in Cryptographic Applications?,

Proceedings of International Conference on Field

Programmable Logic and Applications (FPL

2003), Lecture Notes in Computer Science Vol.

2778, 2003, pp. 91-100.

[10] Legat and JJ. Quisquater, Hardware Security

for Software Privacy Support, Electronics

Letters, Vol. 35, No. 24, Nov. 1999, pp. 2096-

2098.

[11] P. Kocher, R. Lee, G. McGraw,

ARaghunathan, and S. Ravi, ”Security as a New

Dimension in Embedded System Design”,

ACM/IEEE Design Automation Conference, June

2004.

[12] P.Walker,’ Hardware vs. Software

Cryptography’, June 2003, primefactors,

URL:http://www.primefactors.com/resources/ind

ex.cfm?fuseaction=article&rowid=19.

[13] P. V. Semjanov, ‘On Cryptosystems

Untrustworthiness’, July 1999, URL: http://

www.ssl.stu.neva.ru/psw/publications/crypto_en

g.html.

[14] Jueneman Consulting, LLC, "Security

Solutions for an Insecure World: Hardware vs.

Software Cryptography”,URL:

http://www.jueneman.com/

 hardware_vs_software_cryptography.html.

[15] nCipher, ‘KPMG White Paper - Response

Document’,URL:http://www.ncipher.com/resour

ces/downloads/wddfiles/KPMG_response.pdf.

[16] P.Gutmann, “An Open-source Cryptographic

Coprocessor”, URL:http://www.cypherpunks.to/

~peter/usenix00.pdf

[17] “Report on Review of Cryptographic Protocols

and Security Techniques for Electronic

Voting”,CYBERVOTE:WP2:D6/V1:2000 v1.0,

URL: http://www.eucybervote.org/TUE-WP2-

D6V1v1.0.pdf, January, 2002.

[18] “An Introduction to Cryptography”, URL:

ftp://ftp.pgpi.org/pub/pgp/6.5/docs/english/Intro

ToCrypto.pdf.

[19] N. Sklavos, and O. Koufopavlou, “Mobile

Communications World: Security

Implementations Aspects - A State of the Art”,

CSJM Journal, Institute of Mathematics and

Computer Science, Vol. 11, Number 2 (32), pp.

168-187, 2003.

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp147-151)

