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Abstract: - The high resolution sigma-delta A/D converter with on-chip linear digital filtering intended for the 
measurement of wide dynamic range, low frequency signals such as those in industrial control or process 
control applications and digital smoothing polynomial filters are described. The A/D converter consist of a 
sigma-delta (or charge balancing) part, a calibration microcontroller, a clock oscillator, a digital filter and 
bidirectional serial communications port. The converter also contains two low level programmable-gain 
pseudo-differential analog input channels and one high level single-ended input channel.  

The digital smoothing polynomial filtering, or Savitzky - Golay filtering defined a family of filters, which 
are suitable for smoothing and/or differentiating sampled data. The data are assumed to be taken at equal 
intervals. The smoothing strategy is derived from the least squares fitting of a lower polynomial to a number of 
consecutive points. The digital smoothing polynomial filter (DSPF) in cooperation with finite impulse response 
filter (FIR) enables better signal evaluation (signal separation and noise suppression). These signals are taken 
from different types of sensors. The examples of A/D converter and polynomial filter using for biomedical 
signal applications are also presented. 
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1  Introduction 
Most smoothing operations consist of the 
replacement of each data point by some kind of local 
average of neighboring data points (e.g. simple 
moving average smoothing function). As a side 
effect this type of smoothing will reduce the 
amplitude and broaden, narrow peaks (that is those 
peaks comprising only a few data points). This also 
means that the rising and falling edges of the peak 
tend to be flattened.  

The digital smoothing polynomial filtering 
performs noise reduction while preserving higher 
order moments of the original spectrum [1]. The 
preservation of these moments corresponds to less 
distortion, particularly of spectral features such as 
absorption band heights and widths. What makes 
Savitzky-Golay filtering even more attractive is the 
straightforward and efficient manner in which the 
filtering is accomplished [2]. Only a linear 
convolution with a set of filter coefficients is 
required. The resulting spectrum contains less noise 
than the original, and exhibits less distortion than 
moving average filtering techniques of the same 
order. Other filtering techniques such as the moving 
average may be able to remove more noise, but as 

the filter order increases, more distortion is 
introduced. By utilizing the Savitzky-Golay 
technique, the philosophy assumed is to place more 
priority on the preservation of spectral characteristics 
as opposed to noise removal. Even more important to 
the application of derivative spectroscopy is that 
these filters are not restricted to smoothing.  

There are filters available that also result in the 
computation of derivative spectra in addition to 
smoothing within the same convolution process. 
Although the filtering involves a least-squares fit of 
the noisy spectrum, the filters are generic for a 
specified filter length, interpolating polynomial 
order, and derivative order. That is, for given values 
of these parameters, the filter coefficients are the 
same without regard to the data in question. In fact, 
Savitzky and Golay published several tables of 
coefficients in their original publication that could be 
applied directly to the smoothing and differentiation 
of spectra. The SavitzkyGolay convolution process is 
exactly equivalent to a smoothing operation, least 
squares polynomial fit, and differentiation, but is 
performed in a computationally efficient one step 
procedure. A full mathematical development of 
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Savitzky-Golay filtering is given in [3], with some 
corrections given in [4] and [5].  

Savitzky-Golay filtering (DSPF) has its roots in 
least squares polynomial smoothing. The objective 
of least squares smoothing is to find a smoothed 
value for each point in the spectrum based on a least 
squares polynomial fit of a subset of data within a 
window. The window contains the point to be 
smoothed in the center position of the window as 
well as several of its neighbors to either side in the 
spectrum. All the data within the window is used to 
perform the least squares fit, but only the central 
point is smoothed for each window position. The 
other points are smoothed by moving the window 
across the spectrum point by point, performing a 
least squares approximation to the windowed data at 
each location. A low order polynomial is typically 
used to perform the approximation, so the low 
frequency characteristics of the spectrum are 
approximated best by the polynomial, while the high 
frequency noise is lost in the approximation error. 
Since these low order polynomials are generally 
smooth, the resulting spectrum takes on the smooth 
characteristic. Each of these approximations defines 
a different polynomial that may then be used to 
evaluate the new, smoothed value of each point in 
the spectrum. In addition, to find an approximation 
of the derivative spectra at that same point, the 
power rule may be used to differentiate the 
polynomial prior to evaluation. Any order derivative 
approximation may be made, as long as the order of 
the polynomial used in the approximation is high 
enough.  

If implemented as described here, a least squares 
approximation would have to be performed on each 
sample in the spectrum in succession, with each 
point placed at the center of the window. The values 
of the polynomial coefficients are linear with respect 
to the data within the window, so the actual fitting 
operation can be reduced to linear combinations of a 
“pre-fit” window consisting of all zeros and a single 
one. Savitzky and Golay’s primary contribution was 
the development of a digital filter that automatically 
performs the least squares approximation when 
convolved with the spectrum. It has been shown that 
Savitzky-Golay filters of order 2M preserve all 
moments of the original spectrum up to the 2M+ 1 
order moment while optimally attenuating noise for 
any integer M [6]. This is a very important property 
of Savitzky-Golay filters, as it guarantees that the 
maximal amount of noise will be removed while 
preserving some very important spectral 
characteristics such as the area underneath spectral 
features and the mean location of spectral features 
across the spectrum. 

 
 
Figure 1. Filter example (From top to bottom):  
 a) Input signal, b) Noisy signal, c) Savitzki-Golay 
filter output; polynomial order = 4; number of 
window point = 15, d) Lowpass digital Butterworth 
filter output; 5-th order;  relative cutoff frequency = 
0.3 
 
2  Smoothing strategy 
The DSPF smoothing strategy is derived from the 
least squares fitting of a lower order polynomial to a 
number of consecutive points. For example, a cubic 
curve which is fit to 5 or more points in a least 
squares sense can be viewed as a smoothing 
function. The method consist of finding coefficients 
for the jth order smoothing polynomial in terms of 
the values of some number, k > j+1, of adjacent 
points and computing the value of the polynomial at 
the point to be smoothed. At first glance, it appears 
that the computation of the appropriate coefficients 
for the cubic needs to be repeated for each point. 
However, by solving the appropriate equations in 
terms of a general point set it is possible to write an 
expression which is a weighted sum of neighboring 
points with weights constant for a given polynomial 
order and number of points. We must solve the 
matrix equations: 

 

       Ax = y                (1) 
where 

      

0 1

0

0 1

..
.. ..

.. ..
..

n
a a a

b

n n
q q q

i i i
i

i i i−

 
 
 =  
 
  

A                  (2) 

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp69-74)



 

and the ik are the relative distances from the point we 
are smoothing to the yk. An example matrix 
formulation with vector x representing the 
coefficient vector is: 
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where the cubic, a0 + a1i1 + a2 i2 + a3 i3 , is to be fit 
to 5 consecutive points, y-2 , y-1 , y0 , y1,  y2, so that 
the central point at  y0 occurs where i = 0.  
 

 
 
Figure 2. Frequency response of a (sinx/x)3 AD7707 
digital filter for output update rate of 250 Hz. 
 

 
 
Figure 3. Detail of frequency response of a (sinx/x)3 
digital filter.  

As it stands, Ax = y is an overdeterminated 
system and a least squares solution to the system is a 
desired result. Note that the solution values for the 
coefficients of the cubic will be given symbolically 
in terms of the yi, since no numerical values for them 
have been specified yet.  

Least squares problems of this sort are easily 
solved by forming the ‘normal’ equations for the 
system. That is, we solve the overdetermined system 
(1) where the matrix A has fewer columns than rows, 
y has the same number of rows as A and x has the 
same number of columns as A.   

The solution is given by (4): 
   

 x = (AT A)-1 AT y                         (4) 
 

The solution to the normal equations provides 
more information than was expected. Specifically, 
we found that the expression for the coefficient of a0 
is a weighted function of y which satisfies our 
requirement for a smoothing function. However, we 
may differentiate the cubic and evaluate the 
derivative at zero to obtain a point on the derivative 
of the smoothed curve as well. This derivative is 
simply the expression for the coefficient a1 already 
obtained in solving the normal equations. Similarly, 
higher derivatives of the smoothed curve are 
available as the coefficients a2, a3, . , . ,.. Note, 
however, that these coefficient expressions must be 
multiplied by 0!, 1!, 2!, , as appropriate. That is, for 
the polynomial, p  
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n
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To return to the example problem (3), we solve: 
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which gives 
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To form the derivatives, the third and fourth of 
these equations, (9) and (10), must be multiplied by 
2! and 3!, respectively, according (5).  

Sample Savitzki-Golay coefficients for order = 2 
and window length = 5 are: 

-0.086    0.343    0.486    0.343   -0.086 

Example of Savitzki-Golay signal filtering is 
shown in Figure 1. It is important to note, that 
filtered signal is not phase shifted (but others digital 
and analog filters output is phase shifted). 

In presented biomedical applications the Savitzki-
Golay filter output is subtract from raw signal which 
form a highpass filter for signal baseline recovery. 
After, the highpass, signal is filtered by lowpass 
filter.  

 

 
 
Figure 3.  The example of ECG signal filtering. 
Top: Raw sampled ECG stress test signal with noise 
and baseline distortion.  
Middle: Signal after low-pass filtration by DSPF 
filter order of 5, window size is 17. 
Bottom: Signal after low-pass and high-pass 
filtration for baseline restoration. Booth filters are 
Savitzki-Golay filters. 
 
3 Analog/digital converter 
The analog front end, based on AD7707 is tree-
channel device which can accept either 2 low level 
input signals (+10 mV to + 1.225 V or ± 10 mV to 
±1.225 V, depends on PGA setting) directly from 
transducer or one high level signal (+10 V or ± 10 V) 
and produce serial digital output [7, 8]. It employs a 
sigma-delta conversion technique to realize up to 16 

bits of no missing codes performance [9].  
 

 
 
Figure 4. Example of continuous indirect arterial 
blood pressure monitoring based on Penaz technique:  
a) Raw signal with noise and baseline wander 
b) Highpass filter output 
c) Highpass and Lowpass filter output 
 

The sigma-delta modulator output is processed by 
an on-chip digital filter. The first notch of this digital 
filter can be programmed via an on-chip control 
register allowing adjustment of the filter cutoff (1.06 
Hz to 131 Hz) and output update rate (4.054 Hz to 
500 Hz). The -3 dB frequency f-3dB is determined by 
the programmed first notch frequency according to 
the relationship (11): 

 
f-3dB  = 0.262 *  fFN = 0.262 * fs       [Hz]          (11) 
 
where fFN  is filter first notch frequency and fs is 

output update rate (sampling rate). The AD7707’s 
digital filter is a low-pass filter with a (sinx/x)3 
response (also called sinc3). The transfer function for 
this filter is described in z-domain by: 
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and in the frequency domain by: 
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where N is the ratio of the modulator rate to the 
output rate (modulator rate is 19.2 kHz for 
Xtal=2.4576 MHz). 

The frequency response of the digital filter is 
shown in Figure 2. Phase response is given by (14): 

 
   Phase(f) = -3 π (N -2) f/fs      [Rad]            (14) 
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Figure 5. Breathing signal derived from continuous 
indirect arterial blood pressure monitoring based on 
Penaz technique:  
a) Raw signal with noise and baseline wander 
b) Breathing signal  

 
4  Results 
The example of filtering is demonstrated on ECG 
stress - test signal. The raw sampled ECG signal, 
low-pass and high-pass filtered signals are shown in 
Figure 3. The ECG signal is filtered by Savitzki-
Golay filters. The highpass filtered signal is obtain 
by subtracting of two lowpass signals filtered by 
different order and window length of Savitzki-Golay 
filters. The combination of linear digital filter (e.g. 
finite impulse response filter and infinite impulse 
response filter) is also possible.  

In second example (Figure 4), blood pressure, 
noninvasive continuous signal gained by Penaz [10, 
11] method is filtered by Savitzki-Golay filters. The 
breathing signal is also derived from raw signal 
(Figure 5). It is important to note that sampling 
frequency is 200 Hz and signal amplitude is 
normalized to <0 - 1>. 
 
5  Discussion 

Moving average smoothing is equivalent to fitting 
the data about each point with a straight line. A more 
‘gentle’ method of smoothing is to use a polynomial 
to fit the points. This is commonly called Savitzky–
Golay, DISPO, or least-squares smoothing.  

In Savitzky–Golay smoothing, the weights w are 
chosen in such a way that the smoothed data point y 
is the value of a polynomial fitted by least-squares to 
the raw data points. The chief advantage of the 

method is that peaks defined by even few data points 
can often smoothed with little loss in amplitude, 
broadening or change in slope.  

Use Savitzky–Golay smoothing when you require 
a more gentle algorithm than moving point average 
smoothing provides. Note that if the peaks, and 
leading and falling edges are composed of many data 
points then there will be little advantage in using 
Savitzky–Golay smoothing. 
 
6  Conclusion 
The basic theory and some examples use of the 
Savitzky-Golay method for filtering in biomedical 
signal processing was demonstrated. 

The amount of smoothing performed is directly 
dependent on the order of the interpolating 
polynomial and the filter length used to perform the 
least squares approximation. The polynomial order 
chosen should be the minimum necessary to reflect 
the derivative information accurately and to preserve 
spectral characteristics. Orders higher than the 
minimum necessary should not be used as they 
effectively over fit the data, representing noise and 
possibly introducing some extraneous oscillations.  

The filter length chosen is of utmost importance 
in order to maintain the integrity of the derivative 
spectra. Several tests were made on the data using 
Savitzky-Golay filtering using various different filter 
lengths. It was found, as expected, that when more 
smoothing is performed using a longer filter. A wide 
window will result in more smoothing but at the cost 
of more distortion of higher frequency content. In 
contrast, higher-order filters can track narrower 
features but with loss of smoothing of low frequency 
content.  

Savitzky-Golay filters are typically used for 
smoothing of signals whose frequency span is large. 
In general, they are not as effective at rejecting noise 
as standard averaging filters. However, the Savitzky-
Golay filtering method has the advantage that it is 
easy to determine the second derivative directly. One 
need only find the derivative of each polynomial at 
the centre point. It should be noted that the Savitzky-
Golay method strictly only applies to data points 
which are equally spaced in the independent 
variable. However, assuming that the data points are 
equally spaced simply amounts to shifting of each 
point to equally spaced positions. This is equivalent 
to adding noise to the function which may be 
acceptable if it is much smaller than the noise 
already present. 
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