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Abstract: - In this paper we present a methodology and some of the results for 3D simulations that includes 
both field and particle abstractions. Electromagnetic field calculations used here are based on the discrete 
differential form representation of the finite elements method, while the Monte Carlo method makes 
foundation of the particle part of the simulations. The first example is the simulation of the feature profile 
evolution during SiO2 etching in flourocarbon plasma based on the sparse field method for solving level set 
equations. Etching velocities on the profile surface are determined using Monte Carlo method for the particle 
flux calculations. The model takes into account pure chemical and ion-enhanced chemical etching 
mechanisms. Another example is connected with the design of a spiral inflector which is one of the key 
devices of the axial injection system of  the VINCY Cyclotron.            
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1  Introduction 
Fields and particles are two the most important 
modeling paradigms in pure and applied science at 
all.  Particles are primarily used in one of the two 
ways in large scientific applications. The first one is 
to track sample particles to gather statistics that 
describe the conditions of a complex physical 
system. Particles of this kind are often referred to as 
"tracers". The second one is to perform direct 
numerical simulation of systems that contain 
discrete point-like entities such as ions or molecules. 
In both scenarios, the application contains one or 
more sets of particles. Each set has some data 
associated with it that describes its members' 
characteristics, such as charge, mass or momentum. 
The state of the physical system is defined by these 
data. 
     Particles typically exist in a spatial domain, and 
they may interact directly with one another or with 
field quantities defined on that domain. A field, on 
the other hand, defines a set of values on a region of 
space. In order to specify a field one must specify 
the locations at which the field's values are defined, 
and describe what happens at the boundaries of that 
region in space. For this purpose we use meshes 
which are discrete representations of the physical 
domains.  
      Particle abstractions are usually designed to be 
used in conjunction with fields. Some types of 
interpolators are used as the glue that bind these 

together, by specifying how to calculate field values 
at particle (or other) locations that not happen to lie 
exactly on mesh points. Interpolators are used to 
gather values to specific positions in a field's spatial 
domain from nearby field elements, or to scatter 
values from such positions into the field. An 
example of using this kind of interpolation is 
particle-in-cell (PIC) simulations [1], in which 
charged particles move through a mesh. The particle 
interactions are determined by scattering the particle 
charge density into a field, solving for the self-
consistent field, and gathering that field back to the 
particle positions.  
     Here we present two examples of the simulations 
of this type, different in their origin but sharing the 
same software design concept and implementation 
components.  The first is from the area of the 
applications of the plasma technologies in 
microelectronic circuits manufacturing. The second 
is a part of the ongoing work on the design of the 
spiral inflector for the VINCY Cyclotron. 
 
 
2  Software Design Issues 
High-performance scientific applications are 
notoriously difficult and expensive to develop and 
maintain. Very little progress had been made in 
scientific programming productivity over decades. 
On the other hand, in the business programming 
community giant steps have been made in 
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productivity, through software technology including 
component-based programming and frameworks. 
Attempts to transfer this technology to the scientific 
community have largely been unsuccessful until 
recently. However, recent advances in software 
technology signify that the hard to get goal of 
increased high-performance scientific programming 
productivity is possible. 
     Although Object-Oriented Programming itself 
was not the main reason for the improved 
productivity the business community (the rise in 
productivity comes from the use of Object-Oriented 
Design and Component-Based Programming), the 
choice of the programming language is of the utmost 
importance. Development of complex scientific 
applications requires GUI toolkits, numeric libraries, 
graphical facilities, libraries for interfacing with 
code written in other languages, etc. Many scientific 
programmers and researchers still dream of a 
general-purpose language that is so expressive, 
elegant, and efficient that it can cover all needs 
without significant inconveniences. However, no 
current language can satisfy all these requirements 
natively, and there is no a research language that 
could possibly do that in the short-to-medium term. 
     C++ is the most popular high-performance, 
object-oriented programming language in use today. 
C++ directly supports many programming styles. In 
this, C++ deliberately differs from other languages. 
The support of multiple styles (traditional C-style, 
concrete classes, abstract classes, traditional class 
hierarchies, abstract classes and class hierarchies, 
and generic programming) is one of its major 
strengths. This quality makes C++ the most 
appropriate (in the context of scientific  and 
engineering applications) programming language for 
integrating all the necessary components originating 
from very diverse sources. Our simulation  
framework (written in C++) is based on Fltk library 
[2] for building GUI elements, Vtk toolkit [3] for 3D 
visualization needs, and Pthreads library [4] for 
managing multiple execution threads. Additional 
libraries and toolkits are used depending on the 
specific requirements of the particular applications. 

 
 
3  Electromagnetic Field Calculations 
After the publication of Maxwell’s treatise, 
electromagnetic laws were commonly written in 
differential formulation. From that moment, 
electromagnetic field equations were identified with 
the “Maxwell equations”, i.e. with partial 
differential equations. Like most equations of 
physics, Maxwell’s equations are extremely rich in 

symmetries and (hence) conservation laws. In the 
continuum, many conservation laws follow directly 
from invariances of the Lagrangian (Noether 
symmetries) such as energy or momentum 
conservation, while others have an inherent 
topological aspect, such as magnetic charge. When 
Maxwell’s equations are discretized on a mesh, a 
number of symmetries of the continuum theory are 
modified or broken. However, some conservation 
laws may be preserved on a discrete setting. This is 
because they often relate a quantity on certain region 
of space to an associated quantity on the boundary 
of the region. Because the boundary is a topological 
invariant, such conservation laws should not depend 
on the metric of the space. A natural mathematical 
language that explore this aspect is the calculus of 
exterior differential forms and associated algebraic 
topological structures [5, 6]. 
     In this approach the scalar electrostatic potential 
is a 0-form, the electric and magnetic fields are 1-
forms, the electric and magnetic fluxes are 2-forms, 
and the scalar charge density is a 3-form. The basic 
operators are the exterior (or wedge) product, the 
exterior derivative, and the Hodge star. Precise rules 
(i.e. a calculus) prescribe how these forms and 
operators can be combined. In this modern 
geometrical approach to electromagnetics the 
fundamental conservation laws are not obscured by 
the details of coordinate system dependent notation. 
By working within the discrete differential forms 
framework, we are gauranteed that resulting spatial 
discretization schemes are fully mimetic.  
     The calculations of the electric fields in this 
paper are performed by integrating a general finite 
element solver GetDP [7, 8] in our simulation 
framework. GetDP is a thorough implementation of 
discrete differential forms calculus, and  uses mixed 
finite elements to discretize de Rham-type 
complexes in one, two and three dimensions. 
Meshing of the computational domain is carried out 
by TetGen tetrahedral mesh generator [9]. TetGen 
generates the boundary constrained high quality 
(Delaunay) meshes, suitable for numerical 
simulation using finite element and finite volume 
methods. As a part of the post-processing procedure 
the electric fields, obtained on the unstructured 
meshes, are recalculated on the Cartesian 
rectangular domains containing the regions of the 
particles movement. In this manner, the electric field 
on the particles could be calculated by simple 
trilinear interpolation. 
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4  Etching Profile Evolution 
Simulation 

Refined control of etched profile in microelectronic 
devices during plasma etching process is one of the 
most important tasks of front-end and back-end 
microelectronic devices manufacturing technolo- 
gies. The profile surface evolution in plasma 
etching, deposition and lithography development is a 
significant challenge for numerical methods for 
interface tracking itself. Level set methods for 
evolving interfaces [10, 11] are specially designed 
for profiles which can develop sharp corners, change 
topology and undergo orders of magnitude changes 
in speed. They are based on a Hamilton-Jacobi type 
equation [12] for a level set function using 
techniques developed for solving hyperbolic partial 
differential equations.  
     A simple model of Ar+/F etching process that 
includes only pure chemical and ion-enhanced 
chemical etching mechanisms is presented in details.  
 
4.1 Sparse field level set method 
The basic idea behind the level set method is to 
represent the surface in question at a certain time t 
as the zero level set (with respect to the space 
variables) of a certain function ϕ (t, x), the so called 
level set function. The initial surface is given by {x | 
ϕ (0, x) = 0}. The evolution of the surface in time is 
caused by “forces” or fluxes of particles reaching 
the surface in the case of the etching process. The 
velocity of the point  on the surface normal to the 
surface will be denoted by V(t, x), and is called 
velocity function. For the points on the surface this 
function is determined by physical models of the 
ongoing processes; in the case of etching by the 
fluxes of incident particles and subsequent surface 
reactions. The velocity function generally depends 
on the time and space variables and we assume that 
it is defined on the whole simulation domain. At a 
later time t > 0, the surface is as well the zero level 
set of the function ϕ (t, x), namely it can be defined 
as a set of points {x∈ℜn | ϕ (t, x) = 0}. This leads to 
the level set equation 

     0),( =∇+
∂
∂ ϕϕ xtV

t
,                      (1)  

in the unknown function ϕ (t, x), where ϕ (0, x) = 0 
determines the initial surface. Having solved this 
equation the zero level set of the solution is the 
sought surface at all later times. Actually, this 
equation relates the time change to the gradient via 
the velocity function. In the numerical 
implementation the level set function is represented 
by its values on grid nodes, and the current surface 

must be extracted from this grid. In order to apply 
the level set method a suitable initial function ϕ (0, 
x) has to be defined first. The natural choice for the 
initialization is the signed distance function of a 
point from the given surface. This function is the 
common distance function multiplied by -1 or +1 
depending on which side of the surface the point lies 
on. As already stated, the values of the velocity 
function are determined by the physical models. In 
the actual numerical implementation equation (1) is 
represented by the upwind finite difference schemes 
(see ref. [10] for the details) that requires the values 
of this function at the all grid points considered. In 
reality the physical models determine the velocity 
function only at the zero level set, so it must be 
extrapolated suitably at grid points not adjacent to 
the zero level set. Several approaches for solving 
level set equations exist which increase accuracy 
while decreasing computational effort. They are all 
based on using some sort of adaptive schemes. The 
most important are narrow band level set method 
[10, 11], widely used in etching process modeling 
tools, and recently developed sparse-filed method 
[13], implemented in medical image processing ITK 
library [14]. Adaptive methods use the fact that 
actual calculations should not be performed for 
points far away from the zero level set, since these 
points do not have any influence. This is the starting 
assumption in narrow band methods; the width of 
the narrow band is predefined and should be as 
small as possible. In actual implementations it is 
necessary to choose a new narrow band whenever 
the front hits the boundary of the current narrow 
band. Another problem is to find the balance 
between  the width of the narrow band and the 
frequency of reinitializations. This technique 
provides a substantial speed up; in three dimensions 
the computational effort is reduced from O(n3) to 
O(n2) compared to fixed grids on fixed simulation 
domains. The sparse-field method use an 
approximation to the distance function that makes it 
feasible to recompute the neighborhood of the zero 
level set at each time step. In that way, it takes the 
narrow band strategy to the extreme. It computes 
updates on a band of grid points that is only one 
point wide. The width of the neighborhood is such 
that derivatives for the next time step can be 
calculated. This approach has several advantages.  
The algorithm does precisely the number of 
calculation needed to compute the next position of 
the zero level set surface. The number of points 
being computed is so small that it is feasible to use a 
linked-list to keep a track of them, so at each 
iteration only those points are visited whose values 
control the position of the zero level set surface. As 
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a result, the number of computations increases with 
the size of the surface, rather than with the 
resolution of the grid. In fact, the algorithm is 
analogous to a locomotive engine that lays down 
tracks before it and picks up them up behind. 

 
Fig. 1: Isotropic etching – feature profiles at t =0,  
t = 5 s, t = 10 s, t = 15 s and t = 20 s. 

 
     Here we will present some calculations 
illustrating our approach for etching profile 
evolution simulation. All the calculations are 
performed on 128×128×384 rectangular grid. The 
initial profile surface is a rectangle deep with 
dimensions 0.1×0.1×0.1 μm. Above the profile 
surface is the trench region. From its top the 
particles involved in etching process come from, 
while bellow is the non-etched material. The actual 
shape of the initial surface can be described using 
simple geometrical abstractions. In the beginning of 
the calculations this description is transformed to the 
initial level set function using fast marching method 
[10]. The evolution of the etching profile surface 
with time is shown in the following figures. In Fig. 1 
the results obtained for a test calculation performed 
with constant velocity function V = V0 = 5 nm/s 
(purely isotropic etching case) are shown. It is 
supposed that only the bottom surface could be 
etched; i.e. that the top and the vertical surfaces 
belong to photo-resist layer. Behavior of the etching 
profile is as expected. 
     The equation (1) can be rewritten in Hamilton–
Jacobi form 

,0)),(( =∇+
∂
∂ xtH

t
ϕϕ

                    (1) 

where Hamiltonian is given by H = V (t, x)|∇φ(t, x)| 
(in this context the term “Hamiltonian” denotes a 
Hamiltonian function, not an operator). A detailed 
exposition about the Hamilton–Jacobi equation, the 
existence and uniqueness of its solution (especially 
about its viscosity solutions), can be found in [12]. 

We say that such a Hamiltonian is convex (in ) if 
the following condition is fulfilled 

nℜ

,0
2

≥
∂∂

∂

ji xx

H
ϕϕ

                             (2) 

where 
ixϕ  is a partial derivative of φ(t,x) with 

respect of xi . If the surface velocity V (t,x) does not 
depend on the level set function φ(t,x) itself, this 
condition is usually satisfied. In that case, we can 
say that the problem is of free boundary type.  
     The non-convex Hamiltonians are characteristic 
for plasma etching and deposition simulations. 
During these processes the etching (deposition) rate, 
that defines the surface velocity function V(t,x), 
depends on the geometric characteristics of the 
profile surface itself, or more precisely, on the angle 
of the incidence of the incoming particles. In the 
cases under study here we shall consider an etching 
beam coming down in the vertical direction. These 
conditions are characteristic for ion milling 
technology, but angular dependence of the etching 
rates appears, more or less, in all etching processes. 
    The upwind difference scheme cannot be used in 
the case of non-convex Hamiltonians. The simplest  
scheme that can be applied in these cases is the Lax–
Friedrichs, one which relies on the central difference 
approximation to the numerical flux function, and 
preserves monotonicity through a second-order 
linear smoothing term [11]. In [15] we have shown 
show that it is possible to use the Lax–Friedrichs 
scheme in conjunction with the sparse field method, 
and to preserve sharp interfaces and corners by 
optimizing the amount of smoothing in it. This is of 
special importance in the simulations of the etching 
processes in which spatially localized effects appear, 
like notching and microtrenching. 
   

 
Fig. 2: Optimized Lax–Friedrichs scheme - The 
etching profiles for V = V0 cos θ at t = 0,  t = 20 s,  
t = 40 s and t = 60 s. 
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     In the case of the ion enhanced chemical etching 
the dependence of the surface velocity on the 
incident angle is simple [16]: V = V0 cos θ. The pure 
chemical etching velocity, or more precisely the 
etching yield, does not depend on the incident 
angles. This case can be safely treated by the 
upwind scheme and using the Lax–Friedrichs 
scheme would lead to unnecessary rounding of the 
profile surface. The high aspect ratio (depth/width) 
etching is a common situation in semiconductor 
technologies. In the Fig. 2 the evolution of the 
etching profile, when etching rate is proportional to 
cos(θ), is presented. This is the simplest form of 
angular dependence, but it describes the ion 
enhanced chemical etching process correctly [16]. In 
this case we expect that the horizontal surfaces 
move downward, while the vertical ones stay still. 
This figure shows that it with optimal amount of 
smoothing gives minimal rounding of sharp corners, 
while preserving the numerical stability of the 
calculations. Actually, this is one of the most 
delicate problems in the etching profile simulations.  
 
 4.2 Etching rates calculations 
A comprehensive simulation of etching requires 
knowledge of the etching rates at all the points of 
the profile surface during the etching process. These 
rates are directly related to fluxes of the etching 
species on the profile surface, which are themselves 
determined by the plasma parameters in the etching 
device. Electrons do not  contribute directly to the 
material removal, but they  are the source, together 
with positive ions, of the  profile charging that has 
many negative  consequences on the final outcome 
of the process especially in the case of insulating  
material etching, SiO2 for example. The energy and 
angular distribution functions for Ar+ ions (IEDF, 
IADF) and electrons (EEDF, EADF) are shown in 
Fig. 3. They are obtained by particle-in-cell (PIC) 
calculations using XPDC1 code [17, 18, 19]. These 
data are used as the boundary conditions for the 
calculations of ion fluxes incident on the profile 
surface. 
     Our simulation  concept [20] is similar in spirit to 
the 2D simulations  presented in [21], [22] and 
especially [23], where  charging effects in 3D 
rectangular trench were  analyzed. Monte Carlo 
technique is the only  feasible method for 
calculating particle fluxes in 3D  geometries. Trench 
wall charging strongly influences the charged 
particles motion and, consequently, particle fluxes 
which themselves determine the local etching  rates.  
Since the trench boundaries have no regular  
(rectangular) shape in our simulation,  finite element 

calculations was used for the calculation of the 
electric field. As the etching profile is not known in 
advance (it is a result of the calculations itself), the 
problem of meshing is extremely difficult.  
 

 
 
Fig. 3: Electrons (EEDF, EADF) and ions (IEDF, 
IADF) energy and angular distribution functions. 

 
     In Fig. 4 the electrostatic potential map is shown 
for a test case calculation, for illustrating purposes 
only. Electric field obtained in that way is used in 
standard leap-frog particle moving scheme. 
 

 
 

Fig. 4: An example of the electrostatic potential map 
of the charged feature profile  

 
     Although a complete self-consistent cycle that 
includes profile charging and its influence on the 
charged particles motion is already implemented, we 
do not have  representative results yet. The reason is 
the lack of appropriate computational resources, 
since the Monte Carlo step requires enormous 
number of particles in every level set step, in order 
to get satisfying statistics. So, in the next section we 
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present some results that do not include profile 
charging. 
     The etching process in medium/high density 
fluorocarbon plasmas is believed to consist of 
concurrent etching (of the SiO2 substrate in our case) 
and deposition (of a fluorocarbon polymer layer) 
phenomena [16, 24]. Here the deposition process is 
neglected for the sake of simplicity. So, we consider 
only a simple case of chemical etching of SiO2 under 
Ar+ ions bombardment. It is also assumed that the 
electrons are absorbed at the hitting points, while the 
neutrals can be absorbed or diffusively reflected, 
once or many times depending on its sticking 
coefficient. The positive ions can be absorbed, or 
specularly reflected, depending on their energy and 
incident angle. It is assumed that charged particles 
pass on their charge when they hit the surface, and 
that this charge does not move after that, what is 
reasonable for insulating materials. At the 
boundaries above the profile surface, periodic 
conditions are assumed. 
     The surface neutrals coverage (i.e. the fraction of 
surface covered by free radicals) θn  statisfy the 
following balance equation: 

nevevn
eff

niionninnn
n JkYJkSJ

dt
d θθθθ

−−−= )1( ,   (3) 

where Jn and Jion are neutral and ion fluxes, Sn is 
neutral sticking coeficient, kni and kev are etchant 
stoichiometry factors, and is effective etching 
yield for ion-enhanced chemical etching. Here by 
the term ‘effective’ we denote a quantity related to 
the integral flux, not to an individual particle. J

eff
niY

ev is 
evaporation flux that corresponds to pure chemical 
etching. It is related to the neutrals flux by 
Arrhenius law: 

n
Tk

E

SiOev JeKJ b

SiO2

2

−

= ,                     (4) 
 
Balance condition 0/ =dtd nθ gives the equilibrium 
surface coverage: 

evev
eff

niionninnn

nn
n JkYJkSJ

SJ
++

=
θ

θ .        (5) 

 
So, now we can write equation defining the etching 
rate ER in the form 

])1([1

2

nevn
eff

spionn
eff

niion
SiO

JYJYJER θθθ
ρ

+−+= , (6) 

where 
2SiOρ is SiO2 density and is the effective 

physical spattering etching yield. The etching rate 
ER defines the velocity function V(t,x) at the profile 
surface. In actual calculation the feature profile 

surface is represented by a set of connected 
triangles, and the above formula should be applied 
to the every single particular triangle. So, instead of 
effective etching yields we should define etching 
yields for every particular ion: 

eff
spY

 

i
th
ininiiini EEAEY αα cos)(),( −= ,         (7) 

and 
)sin1(cos)(),( 2

ispi
th
spispiisp BEEAEY ααα +−= , (8) 

where Ei is the ion energy and αi is the angle 
between the surface normal and the ion incident 
direction at the point of incidence. Numerical values 
of the constants appearing in relations (3), (4), (6), 
(7) and (8) are taken from the reference [13]. The 
triangular representation of the profile surface 
requires that instead of integral particle fluxes Jn and 
Jion, corresponding summations over every particle 
incident on the particular triangle 

n
etch

n
n N

tA
RJ
Δ

= ,                         (9) 

 

∑Δ
=

i
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ioneff
niion EY

tA
RYJ ),( α ,      (10) 

and 

∑Δ
=

i
iisp

etch

ioneff
spion EY

tA
RYJ ),( α ,     (11) 

should be used. Here Nn denotes the number of 
neutrals absorbed on the particular triangle, Rn (Rion) 
is the ratio of actual number of neutrals (ions) 
passing the upper computational domain boundary 
during the etching time interval and number of 
neutrals (ions) used in Monte Carlo calculations, A 
is the particular triangle area, and  is etching 
time interval. The ions can be absorbed, or 
specularly reflected, depending on their energy and 
incident angle. The probability of specular reflection 
P

etchtΔ

d is given by [25]:  

)
2

(1 1 iid ECP απ
−−= .               (12) 

In Fig. 5 the results of the simulation of a highly 
anisotropic case, that includes both pure and ion-
enhanced chemical etching mechanisms, are shown. 
Neutrals (F radicals) density is supposed to be 1019 
m3. The simulation time is 100s, and it is divided in 
100 equal etching intervals (Monte Carlo steps). 

 
 

5   Inflector Design 
Construction of the VINCY Cyclotron, the main part 
of the TESLA Accelerator Installation, in the 
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Laboratory of Physics of the Vinča Institute of 
Nuclear Sciences, has been going on since 1992. It 
comprises a compact isochronous cyclotron – the 
VINCY Cyclotron, a volume positive or negative  
 

 
Fig. 5: Anisotropic etching - feature profiles  at t = 0, 
t = 40 s, t = 80 s and t = 100 s.  

 
light ion source – the pVINIS Ion Source, two 
similar electron cyclotron resonance heavy ion 
sources – the nVINIS Ion Source and the mVINIS 
Ion Source, and a number of low energy and high 
energy experimental channels [26, 27]. Part of this 
work is related to the activities concerning the 
design of the spiral inflectors for this facility, which 
is the second example of coupled field and particle 
simulations treated in this paper.  

              The main roles of the inflector are to bend the 
injeced ion beam from its initial direction onto the 
cyclotron’s madian plane and, together with the 
optical elements in the transport line, to match the 
beam emittance to the cyclotron’s acceptance. The 
electrostatic inflector consists of two biased and two 
grounded electrodes. The electric field produced by 
these electrodes exerts a force on the ions, 
simultaneously bending and focusing the beam. The 
design of an electrostatic inflector is complicated by 
the fact that in addition to the electrostatic force 
produced by its electrodes, the ions are also 
subjected to a magnetic force produced by the 
magnetic field near the center of the cyclotron. This 
effect must be taken into account in designing the 
inflector.  
     Different types of inflectors have been devised 

[28-32] for inflecting the axially injected ion beam 
into the cyclotron median plane. In modern, variable 
energy, multi-particle, compact cyclotrons, the 
minimal gap between the magnetic poles tends to be 
very small (few centimeters - to provide high flutter 
and high magnetic circuit efficiency). This fact 
imposes severe restrictions on inflector dimensions, 
as well as specific demands concerning its optical 
properties. Owing to its flexibility and relatively low 

voltage needed for its operation, the electrostatic 
spiral inflector has become widely used in the multi-
particle compact cyclotrons. Due to the complexity 
of the shape of its electrodes, this particular type of 
inflector has been chosen as illustrative (see Fig. 6). 

 
 

       Fig. 6: Mechanical drawing of the spiral 
inflector.  

 
        
 

 
 

Fig. 7: Electrostatic potential map at the exit plane 
of the spiral inflector. 

 
     Analysis of the optical properties of particular 
spiral inflector calls for extensive ion beam transport 
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simulations for wide range of ion species and beam 
emittances. Necessary prerequisite for this is a 
detailed knowledge of the electrostatic potential map 
between the biased electrodes as well as in the 
limited region before/after the inflector entrance/exit 
(fringe field region). Although several analytic 
approximation of the spiral inflector electrostatic 
field exist [30, 31, 32], their precision is limited and 
can be used only in the initial phase of inflector 
design. In the final stage of the design, finite 
elements solution of the 3D Laplace equation is 
compulsory. 
     The ion trajectories are calculated by solving 
Newton-Lorenz equations of motion using Boris 
integrator scheme [1], since magnetic field must 
be taken into account also. In Fig. 7 an 
electrostatic potential map at the exit plane of  
the inflector is shown. The voltages applied to 
the upper and the lower electrodes are taken to 
be -1V and 1V in the potential calculations.  

 

 
Fig. 8: Analytical (red) and numerical central 
trajectories of the ion beam in the spiral inflector. 
 
So proper multiplication factors should be 
included when forces on the ions are calculated. 
In this way, we do not have to recalculate 
potential (electric field) for different voltages on 
the electrodes. 
     In Fig. 8 an analytical approximation of the 
central ion trajectory (in red) [31], with no 
fringe field included, and the trajectory obtained  
by the described numerical procedure are shown 
(in black). This result is preliminary, and more 
detailed calculations that include particle 
bunches and interparticles interaction are in due 
course. 

6   Conclusion  
In this paper we presented some results of two 
different types of combined particle-field 
simulations (based on the unified software 
framework), in which the authors are involved.  The 
first is connected with the applications of the plasma 
etching technologies in microelectronic circuits 
manufacturing. Obtained results show that more 
realistic calculations should include the effects of 
polymer deposition, profile charging, more complex 
surface reactions set, as well as better statistic 
(greater number of particles) in the Monte Carlo step 
of the calculations, which is now limited by the 
available computational resources. Another is a part 
of the ongoing work on the design of the spiral 
inflector for the VINCY Cyclotron. In present phase 
this simulations are preliminary, and more 
comprehensive analysis that includes the detailed 
maps of central region magnetic field, particle 
bunches and interparticle interaction is necessary.  
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