
Providing Delay Constraint Services with the Palindrome Scheduler Schemes

 John Tsiligaridis Raj Acharya
 Math and Computer Science, Computer Science and Engineering,
 Heritage University, USA Penn. State University, USA
 3240 Fort Road Toppenish, WA, 98948 220 Pond Lab., University Park, PA 16802-6106

Abstract:- Multimedia communications involving digital audio and video has rather strict delay requirements. A
Palindrome Schedule (PS) can guarantee service of real and non real-time packets. The deadline monotonic
priority assignment (or inverse –deadline) is achieved by the component of PS called the scheduler table (STAB).
Additionally we consider strict streams deadlines. For the service of the real time packets two proposed schemes
are introduced. The first is a partitioning scheme, the Upper Bound (UB) scheme and the second is the Group
Sharing (GS) scheme. The idea of a successive increase of the weight enables the server meet the strict deadlines of
consecutively serviced packets streams. The technique of the cooperative flows makes the scheduler able to meet
the deadlines of a pair of consecutive flows (in different queues) and provides a new solution to the problem of
scheduling multiple tight delay constraints streams. To this direction two algorithms are provided: the Increasing
Weight Algorithm (IWA) and the Cooperative Flows Algorithm (CFA). The framework of PS, including the
Compound Round Robin (CRR) for large size non real time packets and the IWA with CFA for real-time packets,
with the two schemata, will overcome the service difficulties of the streams with (m,k)-firm deadlines and will
provide a new dimension for servicing real-time packets under tight deadlines (multimedia applications).
Simulation results are provided.

Key-Words:- scheduling, QoS, real-time scheduling, network management

1. Introduction
High speed networking offers opportunities for new
multimedia applications (such as tele-medicine,
virtual environment, etc) and has stringent
performance requirements in terms of throughput,
delay , delay jitter and loss rate[1].
 In our previous work [2] we presented the
framework of PS (PS with two adaptive credit
algorithms CRR, DIW) that serve non real-time
packets. PS working as timestamp scheduler avoids
the use of virtual times and the sorting priority
operation and finally ensures the priority of the flows
while the second one, which belongs to the round
robin scheduler, provides two feedback mechanisms:
the Composed Round Robin (CRR) and the
Integrating Weight Algorithm (IWA) that guarantees
the service of large size non real-time packets (l-
packets) and service of the real time data
respectively.
For the real time (or time constraints) flows the
deadline regulates the behavior of the server. The
deadline can be considered as the latest time a packet

can be serviced and is determined by the
specification of the maximum allowable time of
servicing consecutive packets (session) of the same
stream. These packets are serviced according to their
arrival priority while for the non real-time packets we
can assume that a number of them can be sent by the
server later. In [3] the feasibility of providing real-
time services is examined in Wide Area Network.
The proposed system can provide a service approach
better than the (m,k)-firm deadlines flows do [4]
since the instantaneous increase of the weight makes
the server able to meet the deadline for all the
consecutive packets of a flow. Additionally, PS, can
avoid the “empty times”, the time that the scheduler
spends around the queues until finding a non empty
one, by using the scheduler table (STAB)
information. The PS offers a different approach than
the Dynamic Window-Constraints Scheduling
(DWCS) [5] DWCS deal with loss tolerance, is more
complicated and without strict deadlines, while our
system overcomes all these difficulties and
guarantees the service of the streams by using the

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp123-130)

service cooperation of consecutive streams. A similar
cooperative policy is applied to multihop networks
upon failure of primary channel its backup is
activated in order to guarantee the better QoS [9].
Analogous schemata with reservation bandwidth
constraints have been developed for Differentiated
Services MPLS Traffic Engineering in [10].
 For the weight sufficiency problem , instead of the
continuous of back and forth transition of credits (as
it happens with DRR) a new more systematic
approach, the instantaneous increase of the weight, is
presented. Some of the probable reasons that
support to this idea for a flow while the scheduler is
“on the fly” can be considered : (1) the short size of
the Maximum Transfer Unit (MTU), to avoid
fragmentation of segments given the short size of
MTU [6], (2) the violation of the Service Level
Agreement (SLA) is usually a result of the internal
network conditions and not of the particular bad
source’s behavior, (3) the Latency the service delay
of some flows can cause further delay to all the other
flows as well, (4) for new services (or applications),
like video on demand, an increase of the weight is
needed in order the server meet the deadline of a
flow. All the routers along a delivery chain must be
able to support the desired type of QoS.
 The assumptions on the system design and fairness
are presented below so that the operation of the
proposed algorithm cannot be blocked. For the non
real-time traffic, a predefined maximum weight
(p_weight) for each flow (not necessarily all equal) is
considered but going beyond this limit is not allowed.
The scheduler can cope with all the flows asking
simultaneously to use the p_weight of each flow
simultaneously. The sum of credits assigned to all of
the queues by adaptive schemes, should be fixed at a
sum of T. The necessary condition for servicing the
l-packets is p_weight ≥ MSLP(maximum size large
packets). For the non real-time flows, instead of
punishing the flow in the next rounds (penalty
solutions, as DRR,SRR provide), it is preferable to
increase the weight provisionally and diminish the
service delay by speeding up the service. More details
for the service of non real-time packets are included
in [2]. For the real-time flows an increase of the
weight with IWA when the server tries to meet the
deadline, is also used. Two schemes: the Upper
Bound (UB) scheme and the second is the Group
Sharing (GS) scheme are presented.
The rest of the paper is organized as follows. In
section 2, the environment of the PS for the real-time

flows is described. In section 3, some analytical
results with the function conditions are presented.
The cooperative flows algorithm (CFA) is developed
in section 4. The fairness of the service of
collaborative flows is examined in section 5.
Simulation results are presented in Section 6.

2. PS servicing real-time flows
This work is an extension of our previous work [2].
For the non real-time flows we used the DRR
scheduler (for the normal size packets) and the CRR
(for the large size packets when the basic condition is
not valid – Theorem 2-) [7],[2]. Our new step, is the
service of real time packets with or without the
presence of the non real-time packets.
When strict deadlines apply the server ability to meet
the deadlines is unlikely, and so the streams are
dropped. The scheduler whenever a new stream
arrives, re-estimate the deadlines of the two streams
(old and new) and readjusts the new weights in order
to meet the deadline of the second flow.
This work focused on the problem of servicing real
time packets and not real-time especially when we
have frequent real-time flows with strict deadlines.
Our attempt is to minimize the possibility the streams
to miss their deadlines as a result of queuing delay
and because of the strict deadlines. We propose the
framework of PS with CRR for non real-time traffic
[2] and here, with the Increasing Weight Algorithm
(IWA) for the delay constraints traffic, we provide a
solution to the problem of scheduling multiple
streams of both types traffic. The IWA is used in
order to calculate the appropriate scale weight needed
for service of a flow. One further step is to estimate
the necessary increase of weights for two consecutive
(cooperatives) servicing queues, using the
Cooperative Flows Algorithm (CFA). With the
technique of the cooperative flows the service ability
of two real-time consecutive flows (in different
queues) is examined. The server can provide
additional weight for flow i not only at the beginning
of the service but also at any point of time during the
service in order to be able to meet the deadline of the
flow i+1. The system of cooperative flows can
provide solutions in cases where other service
solutions fail.
 There are two proposed schemes: the Upper Bound
(UB) scheme and the Group Sharing (GS) scheme.
The UB scheme offers a bound for each flow

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp123-130)

p_weight while for the GS scheme a common pool
for bandwidth reservation is held for a group of flows
(group pool) that probably have some common
characteristics. For the UB scheme we assume that
the available bandwidth is taken in scale (an integer
multiple of the packets size). The same is considered
for the GS using the group pool. For finding the best
fit of the increase of the weight the IWA is
developed.
 The IWA first finds the total time that the packets of
a real-time flow need in order to be serviced and then
decides for the feasibility of the service. If, with the
existed weight, the service time of the packets of a
stream is greater than their deadline a move to the
next increase scale of the weight (integer multiple), is
required. It is considered that the weight is equal to
the multiple size of the packet of this stream so that
working like DRR , where a continuous and endless
change of credits’ amount in every round occurs, is
avoided. We also consider that: (1) the packets of the
same stream all have equal size,(2) in a time unit, the
scheduler services one or multiple number of packets
of a real-time flow with the existed weight. (3) the
PS can work like a frame-based server (4) with the
additional weight (≤p_weight) any stream becomes
feasible. The IWA works as follows:

The if command with the star (*) for the GS scheme
can be replaced by:
 if (weight ≤ available weight of the
group pool) //for GS
From all the above we summarize that when non real-
time streams arrive the PS works as Deficit Round
Robin (DRR) (l-packets included). The real-time
stream is selected from STAB according to EDF and
an exhaustive service (service of all the packets of
the session) follows. When the service of a real-
time stream is not feasible with the existence weight,
PS using the IWA borrows the additional bandwidth
needed (≤ p_weight) until the end of the service.
After the completion of service of the real-time
flows the server will continue the service of the
previously suspended non real time flows.

3. Some Analytical Results
A scheduler is considered as efficient, only if the
whole work complexity for enque ueing and
dequeing is O(1) for each packet. The work
complexity of a packet is O(1) only if it is certain that
at least one packet for each flow is served within a
round. There are two main operations of our
scheduler: the enqueue and the dequeue [7].
Theorem 1. The proposed increasing weight
algorithms (CRR, IWA) are O(1) complexity.
Proof. We have to confirm that the enqueuing and
dequeuing operations are held within a constant
period of time for each flow. For the enqueuing
process it takes O(1). First, the new packet is inserted
in the appropriate flow and if the flow id is not in the
ActiveList, the flow is added to it. The addition of a
packet to the end of a linked list takes O(1) operation.
For the dequeuing process the scheduler determines
which flow is going to be serviced next. The
additional weight is offered in definite number of
steps with CRR or IWA up to the maximum
permitted value (p_weight). The dequeing process
(when only non real-time packets are in lines) update
the ActiveList etc [4] held at a constant period of
time (O(1) complexity), because all of them represent
a constant number of operations. ■
Theorem 2: The service conditions for a non real-
time data flow i is:
p_weight ≤ weight i + rem i ≥ packet sizei

 (1)
and for the real-time data is: (total bits of the
packets stream) i / p_weight i ≤ deadline (2)

 The IWA psedocode (for the real time traffic):
 // num_packets : is the # of packets in the stream
 // service_time_stream : is the service time of a
stream
 // packet_size : is the size of a packet of the stream
 // deadline: is the latest allowed service time of the
 // packets of a real-time stream
 // weight : is the existed weight ; weight=0;
 for each arrived real-time stream
 { // with the existed weight
 service_time_stream = num_packets
 * serv. time /packet
 if (service_time_stream > deadline)
 { //increase the weight by a k (minimum integer)
 // multiple packet size
 k=1; //initial value
 do
 { weight = weight + k * packet_size
 * if (weight ≤ p_weight) //for UB
 k=k+1; }
 while (the stream is not feasible) }
 }

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp123-130)

Proof: For (1), the rem i (the remainder of bits of the
previous round i-1 that can be used in the next round
i) with the weight for service of the packets must not
less than the packet size (DRR fashion). For (2)
means that the flow i is feasible since it can be
serviced in time or ahead of its deadline. ■
For the case of real time streams with strict deadlines
a new approach is developed. The key idea is that
the service time of a flow often provides delay to the
next servicing flow. We define as cooperative flows
those flows whose service time affects the service
time of the others.
Definition 1: Two flows (f1,f2) can be considered
cooperative when the arrival of the f2 occurs while
the f1 is being serviced.
Definition 2: N flows (f1,f2,..fn) can be considered
cooperatives when the arrival of all flows except f1
occurs while f1 is being serviced.
Definition 3: The service condition for two
cooperative flows f1,f2 (SCC) is: r_st1 + st2 ≤ d2 ,
where: r_st1: is the service time of the remaining
packets until the end of service of f1, st2: is the
service time of f2 .
Lemma 1: For the two cooperative flows (f1,f2) with
deadlines (d1,d2) and weight (w1,w2) the scheduler
decides (on the fly) for a possible increase of the w1
(w11) if: r_st1 + st2 > d2
Proof: We know that wt2 = r_st1, where wt2 is the
waiting time of f2 until the start of
service. In order to minimize the wt2 of the f2 the
scheduler increases the w1 (probably by the next
scale value) so that the new estimated service time
(r_st1) of the rest of the packets of f1 plus the st2
becomes less than d2. This can be expressed as: r_st1
+ st2 < d2. It is apparent that: w1 < w11 . The same
happens when we have more than one cooperative
flows where we can take: w1 < w11 < w12.
Another solution of course could be to have an
increase of the w2 at the beginning of the service of
the f2, and/or a combination of the service of the two
flows (Lemmata 2-4).
Lemma 2: The service ability that a fi can offer to the
cooperative next f i+1 must be at least one time
service unit (one round).The maximum service
ability occurs when the rest of fi can be serviced in a
time unit (best case)
Proof: It is evident that if f i has packets that need
to be serviced (r_sti), while the cooperative f i+1 has to
start being serviced, the server has to minimize the
service of f i so that the service of f i+1 be in effect
as soon as possible. This may occur after the next

time period. The transition from service fi to fi+1
occurs at least after one service time unit. The server
finds the new weight wi,i+k (where k is the most
appropriate weight’s scale) (≤ p_weight) that can
serve the rest of the packets of fi in at least 1tu. If
this service time is only 1tu, then we have the best
case solution for both the f1 and f2.
Lemma 3: For two cooperative flows (f1 and f2) if the
service of f2 seems unlikely, (because the bound of
servicing f2 is too strict), even after the f1 weight
increase, the f2 weight increase is necessary . The
combination of the increase of the two weights
enable the scheduler to make feasible the deadline of
f2.
Proof: For the two cooperative flows f1,f2 the
server makes feasible the deadline d2 if r_st1 + st2 ≤
d2 (SCC). But in case that r_st1 + st2 > d2 then
two consecutive actions can take place: (1) an
increase of the weight of the f1 (w1k , k =1,.., n1), (2)
or/and a gradually increase of f2 (w2k , k =1,.., n2)
when needed. If after (1) and /or (2) the SCC
becomes valid, then the server with the new weight
w2k will serve f2 in time.
Lemma 4: For n cooperative flows the condition for
servicing the next flow is based on the r_stn-1 + stn
≤ dn for different values of: w1 (w11,..w1n),
w2(w21,…,w2n) …wn(wn1,wn2,…,wnn)
Proof: We apply the SCC repeatedly for each pair
of the flow in a consecutive manner (f1, f2 ,…, fn)
and we can take the general formula.
An illustrative example is presented bellow.

Example 1:
 time 0 weight

total serv. time of f1 : [2][1]
packets number: (6) (5) (4) (3) (2) (1)
 w1=20
d1=3 w11=40

w12=80
packets number: (8) (7) (6) (5) (4) (3) (2) (1)
d2=5 w2=40

w21=80
total serv. time of f2 and f1:
 [6][5][4][3]

 Fig. 1 The service of the two real-time cooperative flows (f1 , f2)

40 40 40 40 40 40 40 40

 20 20 20 20 20 20

We consider a real time flow (f1) with 6 packets of
20b each with deadline ,d1=3 at time t=0. The weight
(w1) of the flow is 20b. So the time to be serviced is 6
tu. An increase of the weight is needed. So the new
weight w11 will be 2*20b = 40b and the service will
be completed at 3 tu. In the meantime a new arrival
of a real time flow (f2) with 8 packets of 40 b and
deadline d2=5 appears at time t=1. If the scheduler

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp123-130)

keeps the same size of weight until the end of the f1 it
will finish the service at t=3 and f2 will finish the
service with the weight (80b), (w2 = 40b, w21 = 80b)
at time t=6 . Thus the f2 can not be feasible if the w11
remains the same. A new increase of the weight (w11)
is needed. The w12 must be 80 so that the service of f1
ends at the end of t=2. The service of f2 starts at time
t=3 and with weight w2 = 80 will finish after 4tu.
The f2 will be feasible only after the increase of the
weight of f1 from 40b (w1) to 80b(w11). The total
service time of f1, and f2 will be 6 tu (2tu for f1 and
4tu for f2). In Fig.1 the total service time of f1, f2
appears in two separated lines.

 4. The Cooperative Flows Algorithm
(CFA)
The CFA investigates two flows f1, f2 in respect of
their need for additional weight and service
feasibility. It works as follows:

5. Fairness
For the fairness measure (FM), we follow the idea of
Golestani [8].The worst case difference for the
normalized service received by two different
backlogged flows at any time interval, is examined.
The fairness of the i and j flows, in an interval (t1, t2)
is defined as the difference between the number of
sent packets: senti(t1, t2) / fi – sentj(t1, t2) / fj , where fi ,
fj are the share of the i and j flow respectively. For
the service discipline of the ideal fluid-flow model,
offering small increments of service, the FM
becomes zero. We found that a flow servicing with
UD policy have the same relative fairness with DRR.
Examining the fairness, we can distinguish the case
of two cooperative flows where the first flow is
backlogged with UD and the same happens with the
second one. We consider that the fairness for the
DRR is M. Comparisons with DRR are provided.
Lemma 5. Let us consider an interval (t1, t2) during
which flows i and j are backlogged consequently. For
the i flow, after k rounds, for the UB policy we have:
 k* (m-1)*p_sizei / fi ≤ senti(t1, t2) ≤
k*(m+1)*p_sizei / fi
Proof: We consider two queues (with one flow each)
with the real-time policy service discipline, UB. The
server in each round services integer number of
consecutive packets.
For k rounds, the flow i during this interval, the
number of bytes that will be served is k* weight. Let
us servk,i is the number of serviced packet during the
defined interval. for flow i until the k round, we can
take:
 serv1,i = weight1,i
 serv2,i = weight2,i
 …..
 servk,i = weightk,i
We have different values of the weight for the i flow
so that the server be able to
see the deadline of the second flow (flow j).
Adding all the equations and considering that

all_servk,i = ∑
=

k

1j

servj,i we can take:

 all_servk,i = ∑
=

k

1j

weightj,i (3)

We consider that ∀ k ∈ S, where S is the set of the
rounds:
 weightk,i = m * p_sizei ≤ p_weighti (4)

 CFA:
 //two cooperative flows (f1 ,f2) are considered
 //flow f1 is being serviced, with w1 (from IWA)
 //while f1 is being serviced a new arrival f2 happens
 // the st2 is computed according to the w2 = p_size2
 //r_st1 : the service time of the rest of the packets of the
 flow being serviced (flow 1)
 if r_st1 + st2 > d2 { no increase to w1 is needed ,
 exit}
 if r_st1 + st2 < d2 {
 //1st action: an increase of w1 is needed
 (from current flow f1)
 the new weight (w1k), (k=1,..n, n : is the max scale
 value)
 is finding (using IWA , take the next scale etc)
 examine the f2 feasibility,
 if f2 is feasible then exit //not examination of w2
 if f2 is not feasible
 //2nd action: an increase of w2 is needed
 (from next flow f2)
 {
 a new increase of the weight of f2 is needed
 w2k (k= 1,..n, n : is the max scale value)
 take any next scale in order f2 become feasible
 } }

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp123-130)

 where: m: is an integer, that defines the scale of the
weight, m ≤ n (the maximum number of scales for a
flow) , so that n * p_size i = p_weighti ,
p_size: is the packet size, p_weighti : is the maximum
permitted value of the weight for i flow.
For the DUB, it is apparent that: m * p_size ≤
p_weighti. We also consider that: minwei = min
(weighti) and fi stands for the share for the i flow.
Consequently, fi = weighti / minwei. ≤ k* p_weighti
Using (3) and (4) : all_servk,i = k* m* p_size ≤
k*(m+1)* p_size (5)
It happens: k*(m+1)* p_size ≤ k* p_weighti
We consider: senti(t1, t2) = all_servk,i
Divided by fi ,we have:
 senti(t1, t2) / fi ≤ k*(m+1)* p_sizei / fi (6)

From (5): all_servk,i = k* m* p_size
 ≥ k* (m-1)* p_size
In the same way we take:
 senti(t1, t2) / fi ≥ k* (m-1)* p_size / fi (7) (7)

From all the above the Lemma has been proved. ■

Theorem 3. The Relative Fairness Measure (RFM)
for the DUB is: M
Proof: From (6) we have:
 senti(t1, t2) / fi ≤ k* (m+1)* p_sizei / fi
For a second flow j according to (7) we take
similarly:
 sentj(t1, t2) / fj ≥ k' *(m-1) *p_sizej / fj

 (where k'≥k-1, or k- k'≤1)
After multiplying by (-1): -senti(t1, t2) / fj ≤ (- k') *
(m-1) * p_sizej / fj
We consider that:
 (m-1) * p_sizej / fj ≤ (m+1)* p_sizei / fi ≤ M
 (k=1, ..,n , n=total number of active flows)
Adding these two inequalities we take:
 senti(t1, t2) / fi - sentj(t1, t2) / fj =
 k* (m+1)* p_sizei / fi +
 (- k') *(m-1) *p_sizej / fj
 ≤ k * M + (- k') M
 ≤ M*(k- k') =
 ≤ M (like DRR) ■

6. Simulation
In our simulation experiments, we have assumed that
we have isolated flows and each flow has its own
queue. The space of buffers is non-restricted. A

system with three levels is developed; the
Application, the Queue and the List level. In the
Queue level, we use the enqueue and dequeue
functions according to each queue’s service policy.
These two essential functions are finally performed in
the last internal list level with the corresponding
functions of insertAtBack and remove FromFront
of the linked lists. The PS is developed in the
Application level (before the IWA, CRR) in order to
find, according to the STAB, the next flow for service.
We have used Poisson arrivals, random size packets,
queues with the same size packets (normal or large)
for the non real-time data and have developed four
scenaria.
Scenario 1: Three flows, (from which the first is
delay constraint) are serviced. The first flow has the
service priority and the after finishing the service the
other two are serviced. Again CRR has better time
results than DRR.(Fig.2)
Scenario 2: Four flows, (from which the first two are
delay constraint) are serviced. For the first flow an
increase of the weight to the second scale is needed
in order the flow to be serviced in time. The weight
from 200b becomes 400b (according to IWA) so that
the server can meet the deadline of 720 tu for a total
size of 288kb. The last two flows give the same
results as it has been explained above. Since the
deadlines are loose there is no interference between
the two first flows. (Fig.3)
Scenario 3: (UB schema) Three real-time flows are
served according to UB schema. Analytically:
 f1: 5 packets of 50b, w1 = 50b, d1 =5tu, arr time =
0tu,
 f2: 4 packets of 100b, w2=100b, d2 =3tu, arr time=
3tu,
 f3: 6 packets of 300b, w3=300b, d3=2tu, arr time=
4tu,
- the server starts the service of f1 at t=0, and since
s_packet = 50b the w1 = 50b (IWA). At t =3 the f2
arrives. The IWA estimates the service time of f2,
with w2=100b, and estimated the end of the service:
at t=4. Since 4>d2, the re-estimation (CFA) of the
additional weight for the f1 is needed. Thus w11=
3*50=150 b and the r_st1 = 1 (base case). Total
service time f1=3tu
- at t=4 the server starts servicing f2, queuing
delay(q_delay2 = 1tu) . The total service time of f2
(t_st2) ≤d2 is equal to queuing deadline (q_delay2)
and the service time (st2). It is obvious that: t_st2 =
q_delay2 + st2, t_st2 ≤ d2 or st2 ≤ d2 - q_delay2 = 3-1
= 2tu. The IWA starts with w2=100b. CFA computes

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp123-130)

the additional weight (w21 must be 200b) so that the
estimated service time of f2 (400b) become 2tu (st21
= 2).
Finally the total service time f2=3tu, and the queuing
delay (q_delay2) = 1tu.
- at t=5 scheduler sees (scheduler table) that f3 has
arrived and starts servicing. The scheduler ends the
service of f2 in one round (q_delay3=1tu). CFA
decided not to increase the w2 because f2 will be
serviced in the next round (by the w21 = 200b) and
increases the w3 (w3=300b) in order to service the f3
in 2 tu. The new weight is w31=600b and t_s_t3 = 3tu,
q_delay3=1tu (Fig.4). In Table 1 an illustration of the
server’s work is given.

serv.
time(tu)

1 2 3 4 5 6 7 8

f1,#pac.
serv:

1 2 3,4,
5

weight1: 50 50 150
q_delay2
(tu)

 1

f2,#pac.
serv:

 2 2

weight2: 200 200
q_delay3
(tu)

 1

f3,#pac.
serv:

 2 2 2

weight3: 600 600 600

 Table 1. The server plan for service of the f1, f2,f3

7. Conclusion
 The importance of the proposed framework is that
the PS using CRR with IWA and CFA can provide
service priority, and flexibility on service of the real-
time packets with strict deadlines. Additionally, the
UB scheme provides relative fairness while the GS
better performance. The usefulness, the efficient and
easy implementation makes this framework amenable
to multimedia applications for the several parts of the
network (routers).

 Fig. 2 A real-time flow(IWA) servicing with
 CRR and DRR

 Fig. 3 Two real-time flows (IWA1,
 IWA2) servicing with CRR, DRR

 Fig. 4 Three real-time flows
 consecutive are served
 (UB scheme)

0
200
400
600
800

1000
1200

IWA CRR DRR

se
rv

ic
e

tim
e

(t
u)

0

500

1000

1500

2000

IWA1 IWA2 CRR DRR

se
rv

ic
e

tim
e

(t
u)

0
1
2
3
4
5
6
7
8
9

CFA1 CFA2 CFA3

se
rv

ic
e

tim
e

(t
u)

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp123-130)

 Fig. 5 Three real-time flows
 consecutive are served
 (GS scheme)

 Fig. 6 Delay for the three flows for both schemata

References:
[1] D.Ferrari, ”Client requirements for real-time
 communication services”, IEEE Communication
 Magazine , 28(11), November 1990.
[2] John Tsiligaridis , Raj Acharya, “A hybrid
 framework of RR Scheduler to ensure priority,
 low complexity and delay with relative fairness”,
 in Fifth IEEE International Symposium and
 School on Advance Distributed Systems
 ISSADS2005,January 24-28 Guadalajara, Jalisco,
 Mexico, Proceedings in Lecture Notes in Computer
 Science, Springer, Title: Advanced Distributed
 Systems, Vol. 3563/2005, .ISSN: 0302-9743, DOI:
 10.1007/ 11533962_11
[3] D.Ferrari, D. Verma, “A Scheme for Real-Time
 channel establishment in Wide-Area Networks”,
 IEEE JSAC , vol8, no.3, pp.368-379, Apr. 1990.
[4] M. Hamdaoui, P. Ramanathan, A dynamic
 priority Assignment technique for Streams with
 (m,k)-Firm Deadlines, IEEE Trans. on

 Computers, Vol. 44,No. 12, Dec.1995
[5] R. West, K. Schwan, “Dynamic Window-
 Constrained Scheduling for Multimedia
 Applications”, Proceedings, IEEE Int. Conf. on
 Multimedia Computing and Systems, ICMCS 99,
 Vol II, July 1999,
[6] A. Tanenbaum, “Computer Networks”, Prentice-
 Hall, 1996.
[7] M.Shreedhar, G. Vargese,” Efficient Fair
 Queuing using deficit Round Robin”, ACM/IEEE
 Trans. on Networking, Vol. 4, No3, June 1996,
 pp. 375-385
[8] S.Golestani, “A self-clocked fair queueing
 scheme for broadband applications”, IEEE
 Infocom’94, Toronto, CA, June 1994, pp.
 636-646.
 [9] K.Gummadi, M. Pradeep, C. Murthy “An
 efficient primary-segmented backup scheme
 for dependable real-time communication in
 multihop networks”, IEEE /ACM Transac
 tions on Networking, Volume 11, Issue 1 ,
 February 2003 , pp.81-94
[10] J. Ash, “Max Allocation with Reservation
 Band- with Constraints Model for DiffServ-
 aware MPLS Traffic Engineering &
 Performance Comparisons, IETF Internet
 <draft-ietf-tewg-diff-te-mar-04.txt>, January
 2004

0

1

2

3

4

5

CFA1 CFA2 CFA3

se
rv

ic
e

tim
e(

tu
)

0
0,2
0,4
0,6
0,8

1
1,2

f1 f2 f3

de
la

y
(tu

)

UB schema

GS schema

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp123-130)

