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Abstract:- Multimedia communications involving digital audio and video has rather strict delay requirements. A 
Palindrome Schedule (PS) can guarantee service of  real and non real-time packets. The deadline monotonic 
priority assignment (or inverse –deadline) is achieved by the component of PS called the scheduler table (STAB). 
Additionally we consider strict streams deadlines.  For the service of the real time packets two proposed schemes 
are introduced. The first is a partitioning scheme, the Upper Bound (UB) scheme and the second is the Group 
Sharing (GS) scheme. The idea of a successive increase of the weight enables the server meet the strict deadlines of 
consecutively serviced packets streams. The technique of the cooperative flows makes  the scheduler able to meet  
the deadlines  of  a pair of consecutive flows (in different queues) and  provides a new solution to the problem of  
scheduling multiple tight delay constraints streams. To this direction two algorithms are provided: the Increasing 
Weight Algorithm (IWA) and the Cooperative Flows Algorithm (CFA). The framework of PS, including the 
Compound Round Robin (CRR) for large size non real time packets and  the IWA with CFA for real-time packets, 
with the two schemata, will overcome the service difficulties of the streams with (m,k)-firm deadlines and will 
provide a new dimension  for  servicing real-time packets under tight deadlines (multimedia applications). 
Simulation results are provided. 
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1. Introduction 
High speed networking offers opportunities for new 
multimedia applications (such as tele-medicine, 
virtual environment, etc) and has stringent 
performance requirements in terms of  throughput, 
delay , delay jitter and loss rate[1]. 
  In our previous work [2] we presented the 
framework of PS (PS with two adaptive credit 
algorithms CRR, DIW) that serve non real-time 
packets. PS working as timestamp scheduler avoids 
the use of virtual times and the sorting priority 
operation and finally ensures the priority of the flows 
while the second one, which belongs to the round 
robin scheduler, provides two feedback mechanisms: 
the Composed Round Robin (CRR) and the 
Integrating Weight Algorithm (IWA) that guarantees 
the service of large size non real-time packets (l-
packets) and service of the real time data 
respectively.  
For the real time (or time constraints) flows the 
deadline regulates the behavior of the server. The  
deadline can be considered as the latest time a packet 

 
can be serviced and is determined by the 
specification of the maximum allowable time  of 
servicing  consecutive packets (session) of the same 
stream. These packets are serviced according to  their 
arrival priority while for the non real-time packets we 
can assume that a number of  them can be sent by the 
server later. In [3] the feasibility of providing real-
time services is examined in Wide Area Network. 
The proposed system can provide a service approach 
better than the (m,k)-firm deadlines flows  do [4] 
since the instantaneous increase of the weight makes 
the server able to meet the deadline for all the 
consecutive packets of a flow. Additionally, PS, can 
avoid the “empty times”, the time that the scheduler 
spends around the queues until finding a non empty 
one, by using the scheduler table (STAB) 
information. The PS offers a different approach than  
the  Dynamic Window-Constraints Scheduling 
(DWCS) [5] DWCS deal with loss tolerance, is more 
complicated and without strict deadlines, while our 
system  overcomes  all these difficulties and  
guarantees the service  of   the streams  by  using the  
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service cooperation of consecutive streams. A similar 
cooperative policy is applied to multihop networks 
upon failure of primary channel its backup is 
activated in order to guarantee the better QoS [9]. 
Analogous schemata with reservation bandwidth 
constraints have been developed for Differentiated 
Services MPLS Traffic Engineering in [10].   
  For the weight sufficiency problem , instead of the  
continuous  of  back and forth transition of credits (as 
it happens with DRR) a new more systematic 
approach, the instantaneous increase of the weight, is 
presented.  Some of the probable reasons  that 
support to this idea for a flow  while the scheduler is 
“on the fly” can be considered : (1) the short size of 
the Maximum Transfer Unit (MTU), to avoid 
fragmentation of segments given the short size of 
MTU [6], (2) the violation of the Service Level 
Agreement (SLA) is usually a result of the internal 
network conditions and not of the particular bad 
source’s behavior, (3) the Latency the service delay 
of some flows can cause further delay to all the other 
flows as well, (4) for new services (or applications), 
like video on demand, an increase of the weight is 
needed in order the server meet the deadline of a 
flow. All the routers along a delivery chain must be 
able to support the desired type of QoS.  
  The assumptions on the system design and fairness 
are presented below so that the operation of the 
proposed algorithm cannot be blocked. For the non 
real-time traffic, a predefined maximum weight 
(p_weight) for each flow (not necessarily all equal) is 
considered but going beyond this limit is not allowed.  
The scheduler can cope with all the flows asking 
simultaneously to use the p_weight of each flow 
simultaneously. The sum of credits  assigned to all of 
the queues by adaptive schemes, should be fixed at a 
sum of T. The necessary condition for  servicing the 
l-packets is  p_weight ≥ MSLP(maximum size large 
packets). For the non real-time flows, instead of  
punishing the flow in the next rounds (penalty 
solutions, as DRR,SRR provide), it is preferable to 
increase the weight provisionally and diminish the 
service delay by speeding up the service. More details 
for  the service of non real-time packets are included 
in [2]. For the real-time flows an increase of the 
weight with IWA when the server tries to meet the 
deadline, is also used. Two schemes: the Upper 
Bound (UB) scheme and the second is the  Group 
Sharing (GS) scheme are presented.    
The rest of the paper is organized as follows. In 
section 2, the environment of the PS for the real-time 

flows is described. In section 3, some analytical 
results with the function conditions are presented. 
The cooperative flows algorithm (CFA) is developed 
in  section 4. The fairness of the service of 
collaborative flows is examined in section 5.  
Simulation results are presented in Section 6.   
 
 
2. PS servicing real-time flows 
This work is an extension of  our previous work [2]. 
For the non real-time flows we used the DRR 
scheduler (for the normal size packets) and  the CRR 
(for the large size packets when the basic condition is 
not valid – Theorem 2-) [7],[2]. Our new step, is the 
service of  real time packets with or without the 
presence of  the non real-time packets. 
When strict deadlines apply the server ability to meet 
the deadlines is unlikely, and so the streams are 
dropped. The scheduler whenever a new  stream 
arrives,  re-estimate the deadlines of the  two streams 
(old and new) and readjusts the new weights in order 
to meet the deadline  of the second flow.  
This work focused on  the problem of servicing real 
time packets and not real-time  especially  when we 
have frequent real-time flows with strict deadlines.  
Our attempt is to minimize the possibility the streams 
to miss their deadlines as a result of queuing delay 
and  because of the strict deadlines. We propose the 
framework of PS  with CRR for non real-time traffic 
[2] and here, with the Increasing Weight Algorithm 
(IWA) for the delay constraints traffic, we provide a 
solution to the problem of scheduling multiple 
streams of both types traffic. The IWA is used in 
order to calculate the appropriate scale weight needed 
for service of  a flow. One further step is to estimate 
the necessary increase of weights for two consecutive 
(cooperatives) servicing queues, using the 
Cooperative Flows Algorithm (CFA). With the 
technique of the cooperative flows the service ability 
of two real-time consecutive flows (in different 
queues) is examined.   The server can provide 
additional weight for flow i not only at the beginning 
of the service but also at any point of time during the 
service in order to be able to meet the deadline of the 
flow  i+1.  The system of cooperative flows can 
provide solutions in cases where other service 
solutions fail.  
  There are two proposed schemes: the  Upper Bound 
(UB) scheme  and the Group Sharing (GS) scheme. 
The UB scheme offers a bound for each flow  
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p_weight  while for the GS scheme a  common pool 
for bandwidth reservation is held for a group of flows 
(group pool) that probably have some common 
characteristics.  For the UB scheme we assume that 
the available bandwidth is  taken in scale (an integer  
multiple of the packets size). The same is considered 
for the GS using the group pool. For finding the best 
fit  of  the increase of the weight the IWA is 
developed.   
  The IWA first finds the total time that the packets of 
a real-time flow need in order to be serviced and then 
decides  for the feasibility of  the service.  If, with the 
existed weight, the service time of the packets of a 
stream is greater than their deadline a move to the 
next increase scale of the weight (integer multiple), is 
required.  It is considered that the weight is equal to 
the multiple size of the packet of this stream so that 
working like DRR , where a  continuous and endless 
change of credits’ amount in every round occurs, is 
avoided. We also consider that: (1) the packets of the 
same stream all have equal size,(2) in a time unit, the 
scheduler services one or multiple number of packets 
of  a real-time flow  with the existed weight. (3) the 
PS can work like a frame-based server (4) with the 
additional weight (≤p_weight) any stream becomes 
feasible. The IWA works as follows: 

 
            
 

The if command with the star (*) for the GS scheme 
can be replaced by: 
                   if  (weight ≤  available  weight  of the 
group pool)   //for GS   
From all the above we summarize that when non real-
time streams arrive the PS works as Deficit Round 
Robin (DRR) (l-packets included).  The real-time 
stream is selected from STAB according to EDF and 
an exhaustive  service (service of all the packets of 
the session) follows.  When  the service of  a real-
time stream  is not feasible with the existence weight, 
PS using the IWA borrows the additional bandwidth 
needed (≤ p_weight) until the end of the service. 
After the completion of  service of the real-time 
flows the server will continue the service of the 
previously suspended non real time flows.  
  
           
3. Some Analytical Results 
A scheduler is considered as efficient, only if the 
whole work complexity for enque ueing and 
dequeing is O(1) for each packet. The work 
complexity of a packet is O(1) only if it is certain that 
at least one packet for each flow is served within a 
round. There are two  main operations of our 
scheduler: the enqueue and the dequeue [7].   
Theorem 1.  The proposed increasing weight 
algorithms (CRR, IWA) are O(1) complexity. 
Proof. We have to confirm  that the enqueuing  and 
dequeuing operations are held  within a constant 
period of time for each flow. For the enqueuing 
process it takes O(1). First, the new packet is inserted  
in the appropriate flow and if  the flow id is not in the 
ActiveList, the flow is added to it. The addition of  a 
packet to the end of a linked list takes O(1) operation. 
For the dequeuing process the scheduler determines 
which flow is going to be serviced  next. The 
additional weight is offered in  definite number of 
steps  with CRR or  IWA up to the maximum 
permitted value (p_weight). The dequeing process 
(when only non real-time packets are in lines) update 
the ActiveList  etc [4] held at a constant period of 
time (O(1) complexity), because all of them represent 
a constant number of operations.                            ■                  
Theorem 2:  The service conditions for a non real-
time data flow i is:  
p_weight ≤ weight i + rem i ≥ packet sizei

              (1)  
and for the real-time data is:  (total bits of  the 
packets stream) i / p_weight i   ≤ deadline               (2)  

   The IWA psedocode (for the real time traffic):  
    // num_packets : is the # of packets in the stream 
    // service_time_stream : is the service time of a 
stream 
    // packet_size : is the size of a packet  of the stream 
    // deadline:  is the latest allowed  service time of  the 
   //     packets of a  real-time  stream 
    // weight : is the existed weight ; weight=0;        
    for each   arrived  real-time stream 
      {           // with the existed weight 
       service_time_stream = num_packets 
                                                * serv. time /packet  
       if   (service_time_stream > deadline) 
         { //increase the weight by a k (minimum integer )  
             //       multiple packet size 
           k=1;   //initial value 
               do 
                   { weight = weight + k * packet_size   
       *              if  (weight ≤ p_weight )   //for UB   
                           k=k+1; } 
               while (the stream is not feasible) } 
          }  

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp123-130)



Proof: For (1), the rem i ( the remainder of  bits of the 
previous round i-1 that can be used in the next round 
i)  with the weight for service of the packets must not 
less than the packet size (DRR fashion).  For (2) 
means that the flow i is feasible since it can be 
serviced in time or ahead of its deadline.                  ■                                                                                                                       
For the case of real time streams with strict deadlines 
a new approach  is developed. The key idea is that 
the service time of  a flow often provides delay to the 
next servicing  flow. We define as cooperative flows  
those flows whose service time affects the service 
time of  the others. 
Definition 1: Two flows (f1,f2)  can be considered 
cooperative when the arrival of the f2 occurs while 
the  f1 is being serviced. 
Definition 2: N flows (f1,f2,..fn)  can be considered 
cooperatives when the arrival of all flows except f1  
occurs  while  f1 is being serviced. 
Definition 3: The service condition for two  
cooperative  flows f1,f2 (SCC) is: r_st1  + st2  ≤ d2  , 
where: r_st1: is the service  time of the remaining 
packets until  the end of  service of  f1, st2: is the 
service time of f2 . 
Lemma 1:  For the two cooperative flows (f1,f2) with 
deadlines (d1,d2) and weight (w1,w2)  the scheduler 
decides (on the fly) for a possible increase of the w1 
(w11)  if:  r_st1  + st2  > d2   
Proof: We know that  wt2 =  r_st1, where wt2  is the 
waiting time of f2 until the start  of 
service. In order to minimize the  wt2  of the f2 the 
scheduler  increases the w1  (probably by the next 
scale value)  so that the new estimated service time 
(r_st1) of the rest of the packets of  f1  plus the  st2 
becomes less than d2. This can be expressed as: r_st1 
+ st2 < d2. It is apparent that:  w1 < w11 . The same 
happens when we have more than one cooperative 
flows where we can take: w1 < w11 < w12. 
Another solution of course could be  to have an 
increase of the w2 at the beginning of the service of 
the f2, and/or a combination of  the service of the two 
flows (Lemmata 2-4). 
Lemma 2: The service ability that a fi can offer to the 
cooperative next  f i+1  must be at least one  time 
service unit  (one round).The maximum service 
ability occurs when the rest of  fi can be serviced in a 
time unit (best case) 
Proof:   It is evident that if  f i  has packets that need 
to be serviced (r_sti), while the cooperative f i+1 has to 
start  being serviced, the server has to minimize the 
service of  f i  so that the service of  f i+1  be in effect 
as soon as possible. This may occur after the next 

time period. The transition from service fi to fi+1 
occurs at least after one service time unit. The server 
finds the new weight wi,i+k (where k is the most 
appropriate weight’s scale)   (≤ p_weight)  that can 
serve the rest of the packets of  fi  in at least 1tu. If 
this service time is only 1tu, then we have the best 
case solution for both the f1 and f2.  
Lemma 3:  For two cooperative flows (f1 and f2) if the 
service of f2 seems unlikely, (because the bound of 
servicing f2  is too strict), even after the f1 weight 
increase, the f2 weight increase is necessary . The 
combination of  the increase of the two weights  
enable the scheduler to  make feasible the deadline of  
f2. 
Proof:  For the two cooperative flows  f1,f2   the 
server makes feasible  the deadline d2  if r_st1  + st2  ≤ 
d2  (SCC ). But in case that   r_st1  + st2  > d2  then 
two consecutive actions can  take place: (1) an 
increase of the weight of the f1 (w1k , k =1,.., n1),  (2) 
or/and  a gradually increase of f2  (w2k , k =1,.., n2) 
when  needed. If  after (1) and /or (2) the  SCC  
becomes valid, then the server with the new weight 
w2k will serve  f2  in time.  
Lemma 4: For n cooperative flows  the condition for 
servicing the next flow is  based on the   r_stn-1  + stn  
≤ dn   for different  values of: w1 (w11,..w1n), 
w2(w21,…,w2n) …wn(wn1,wn2,…,wnn) 
Proof:  We apply the SCC  repeatedly  for each  pair 
of  the flow in a  consecutive manner (f1, f2 ,…, fn) 
and  we can take the general formula.  
An illustrative example is presented bellow. 
 
Example 1:   
                                                                                                                  time    0     weight 
  
total serv. time of f1 :                                                                                      [              2             ][     1       ] 
packets number:                                                                                                              (6)    (5)     (4)    (3)    (2)    (1)        
                  w1=20
d1=3 w11=40

w12=80
packets number:        (8)             (7)              (6)             (5)              (4)            (3)           (2)               (1) 
d2=5 w2=40

w21=80
total serv. time of f2 and f1:                                                                                                                    
                  [            6            ][           5              ][           4          ][         3           ] 
                          
                     Fig.  1    The service of  the two real-time cooperative flows (f1 , f2)  

40 40 40 40 40               40             40              40 

 20   20     20     20     20   20  

 
 
We consider a real time flow (f1) with 6 packets of  
20b each with deadline ,d1=3 at time t=0. The weight 
(w1) of the flow is 20b. So the time to be serviced is 6 
tu. An increase of the weight is needed. So the new 
weight w11 will be 2*20b = 40b and the service will 
be completed at 3 tu. In the meantime a new arrival 
of a real time flow (f2) with 8 packets of 40 b and 
deadline d2=5  appears at time t=1. If the scheduler 
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keeps the same size of weight until the end of the f1 it 
will finish the service at  t=3 and f2 will finish the 
service with the weight (80b), (w2 = 40b, w21 = 80b)  
at time t=6 . Thus the f2 can not be feasible if the w11 
remains the same. A new increase of the weight (w11) 
is needed. The w12 must be 80 so that the service of f1 
ends at the end of  t=2. The service of f2 starts at time 
t=3 and with weight w2 = 80 will finish after 4tu.  
The f2 will be feasible only after the increase of the 
weight of f1 from 40b (w1) to 80b(w11).  The total 
service time of f1, and f2 will be 6 tu (2tu for f1 and 
4tu for f2).  In Fig.1  the total service time of f1, f2  
appears in two separated lines. 
 
 
 4. The Cooperative Flows Algorithm 
(CFA)   
The CFA  investigates two flows f1, f2 in respect of 
their need for additional weight and service 
feasibility. It works  as  follows:  
  

                   
 
 

5. Fairness 
For the fairness measure (FM), we follow the idea of 
Golestani [8].The worst case difference for the 
normalized service received by two different 
backlogged flows at any time interval,  is examined. 
The fairness of the i and j flows, in an interval (t1, t2) 
is defined as the difference between the number of 
sent packets: senti(t1, t2) / fi – sentj(t1, t2) / fj , where fi , 
fj are the share of the i and j  flow respectively. For 
the service discipline of the ideal fluid-flow model, 
offering small increments of service, the FM 
becomes zero. We found that a flow servicing with 
UD policy have the same relative fairness with DRR. 
Examining the fairness, we can distinguish the case 
of two cooperative flows where the first flow is 
backlogged with UD and the same happens with the 
second one. We consider that the fairness for the 
DRR is M. Comparisons with DRR are provided.   
Lemma 5. Let us consider an interval (t1, t2) during 
which flows i and j are backlogged consequently. For 
the i flow, after k rounds, for the UB policy we have: 
 k* (m-1)*p_sizei / fi  ≤  senti(t1, t2) ≤  
k*(m+1)*p_sizei / fi   
Proof: We consider two queues (with one flow each) 
with the real-time policy service discipline, UB. The 
server in each round services integer number of 
consecutive packets.  
For k rounds, the flow i during this interval, the 
number of bytes that will be served is k* weight. Let 
us servk,i is the number of serviced packet during the 
defined interval.  for flow i until the k round, we can 
take:  
        serv1,i = weight1,i  
        serv2,i = weight2,i  
        …..   
        servk,i = weightk,i    
We have different values of the weight for the i flow 
so that  the  server be able to    
see the deadline of the second  flow (flow j).     
Adding all the equations  and considering  that  

all_servk,i  =  ∑
=

k

1j

servj,i  we can take: 

                all_servk,i  =   ∑
=

k

1j

weightj,i             (3)                         

We consider that ∀ k ∈ S, where S is the set of the 
rounds:  
      weightk,i = m * p_sizei ≤ p_weighti                    (4) 

 CFA: 
 //two cooperative flows (f1 ,f2 ) are considered   
 //flow f1 is being  serviced, with w1 (from IWA)  
 //while f1 is being serviced a new arrival f2 happens 
 // the st2 is computed according to the w2 = p_size2 
 //r_st1 : the service time of the rest of the packets of the 
              flow being serviced (flow 1) 
 if   r_st1  + st2  > d2  { no increase to  w1 is needed , 
                                    exit}      
 if   r_st1  + st2  < d2  {  
      //1st action: an increase of  w1 is needed  
                                             (from current flow f1) 
      the new weight (w1k), (k=1,..n, n : is the max scale 
                                           value) 
        is finding  (using IWA , take the next scale etc)  
                         examine the f2 feasibility, 
        if  f2 is feasible then exit  //not examination of  w2 
        if  f2 is not feasible  
        //2nd action: an increase of w2 is needed  
                                             (from next flow f2) 
          { 
           a new increase of the weight of f2 is needed 
           w2k (k= 1,..n,  n : is the max scale value) 
           take any next scale in order f2 become feasible   
           } } 

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp123-130)



 where: m: is an integer, that defines the scale of the 
weight, m ≤ n (the maximum number of scales for a 
flow) , so that n * p_size i =  p_weighti ,  
p_size: is the packet size, p_weighti : is the maximum 
permitted  value of the weight for  i  flow. 
For the  DUB, it is apparent that: m * p_size ≤ 
p_weighti. We also consider that: minwei = min 
(weighti) and  fi  stands for the share for the i flow. 
Consequently, fi = weighti / minwei.    ≤ k* p_weighti 
Using  (3) and (4) : all_servk,i  = k* m* p_size       ≤  
k*(m+1)* p_size                                                    (5)              
It happens:    k*(m+1)* p_size  ≤ k* p_weighti                                                                                               
We consider: senti(t1, t2) = all_servk,i   
Divided by fi ,we have:  
          senti(t1, t2) / fi ≤ k*(m+1)* p_sizei  / fi          (6)                                                                                       
                                                                             
From (5): all_servk,i  = k* m* p_size          
                            ≥ k* (m-1)* p_size    
In the same way we take:  
          senti(t1, t2) / fi ≥  k* (m-1)* p_size   / fi        (7)                                                       (7) 
 
From all the above the Lemma  has been proved.   ■ 
                                                       
Theorem 3. The Relative Fairness Measure (RFM) 
for the DUB is:  M 
Proof: From (6) we have: 
           senti(t1, t2) / fi ≤  k* (m+1)* p_sizei  / fi 
For a second flow j according to (7)  we take 
similarly:  
           sentj(t1, t2) / fj ≥  k' *(m-1) *p_sizej / fj   

                 (where k'≥k-1, or k- k'≤1 )  
After multiplying by (-1): -senti(t1, t2) / fj ≤  (- k') * 
(m-1) * p_sizej / fj     
We consider that: 
     (m-1) * p_sizej / fj   ≤  (m+1)* p_sizei  / fi  ≤  M 
      (k=1, ..,n , n=total number of  active flows) 
Adding these two inequalities we take: 
         senti(t1, t2) / fi  - sentj(t1, t2) / fj  =  
                                   k* (m+1)* p_sizei  / fi  +         
                                (- k') *(m-1) *p_sizej / fj     
                                 ≤ k * M + (- k') M  
                                 ≤ M*(k- k') =    
                                 ≤ M (like DRR)                        ■       
 
 
6. Simulation 
In our simulation experiments, we have assumed that  
we have isolated flows and  each flow has  its own 
queue. The space of buffers is non-restricted. A 

system with three levels is developed;  the 
Application, the Queue and the List level.  In the 
Queue level, we use the enqueue and dequeue 
functions according to each  queue’s  service policy. 
These two essential functions are finally performed in 
the last internal list level with the corresponding  
functions of  insertAtBack and  remove FromFront  
of  the linked lists. The PS is developed in the 
Application level (before the IWA, CRR) in order to 
find, according to the STAB, the next flow for service. 
We have used Poisson arrivals, random size packets, 
queues with the same size packets (normal or large) 
for the non real-time data and  have developed  four 
scenaria.  
Scenario 1: Three flows, (from which the first is 
delay constraint) are serviced. The first flow has the 
service priority and the after finishing the service the 
other two are serviced. Again CRR has better time 
results than DRR.(Fig.2) 
Scenario 2:  Four flows, (from which the first two are 
delay constraint) are serviced.  For the first flow an 
increase of the weight to the second scale is needed 
in order the flow to be serviced in time. The weight 
from 200b becomes 400b (according to IWA) so that 
the server can meet the deadline of 720 tu for a total 
size of 288kb. The last two flows give the same 
results as it has been explained above. Since the 
deadlines are loose there is no interference  between 
the two first flows. (Fig.3) 
Scenario 3: (UB schema) Three real-time flows are 
served  according to UB schema. Analytically: 
   f1: 5 packets of 50b, w1 = 50b,  d1 =5tu,  arr time = 
0tu, 
   f2: 4 packets of 100b, w2=100b, d2 =3tu, arr time= 
3tu, 
   f3: 6 packets of  300b, w3=300b, d3=2tu, arr time= 
4tu, 
- the server  starts the service of f1  at t=0, and  since 
s_packet = 50b the w1 = 50b (IWA).  At  t =3 the f2 
arrives. The IWA estimates the service time of f2, 
with w2=100b, and estimated the end of the service: 
at t=4. Since 4>d2, the re-estimation (CFA) of the 
additional weight for the f1 is needed. Thus w11= 
3*50=150 b and the r_st1 = 1 (base case). Total 
service time f1=3tu 
- at t=4 the server starts servicing f2, queuing 
delay(q_delay2 = 1tu) . The  total service time of f2 
(t_st2) ≤d2 is equal to queuing deadline (q_delay2 ) 
and the service time (st2 ). It is obvious that: t_st2 =  
q_delay2 + st2,  t_st2  ≤ d2  or st2 ≤ d2 - q_delay2 = 3-1 
= 2tu. The IWA starts with  w2=100b. CFA computes 
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the additional weight (w21 must be 200b) so that the 
estimated service time of  f2 (400b) become 2tu  (st21 
= 2). 
Finally the total service time f2=3tu, and the queuing 
delay (q_delay2) = 1tu. 
- at  t=5  scheduler sees (scheduler table) that  f3 has 
arrived and starts servicing. The scheduler ends the 
service of f2 in one round (q_delay3=1tu). CFA 
decided not to increase the w2 because f2 will be 
serviced in the next round (by the w21 = 200b) and 
increases the w3 (w3=300b) in order to service the f3 
in 2 tu. The new weight is w31=600b and t_s_t3 = 3tu, 
q_delay3=1tu  (Fig.4). In Table 1 an illustration of the 
server’s work is given. 
 
 

serv.         
time(tu) 

1 2 3 4 5 6 7 8 

f1,#pac. 
serv: 

1 2 3,4, 
5 

     

weight1: 50 50 150      
q_delay2 
(tu) 

  1      

f2,#pac. 
serv: 

   2 2    

weight2:    200 200    
q_delay3 
(tu) 

    1    

f3,#pac. 
serv: 

     2 2 2 

weight3:      600 600 600 
 
   Table 1. The server  plan for  service of the f1, f2,f3   
 
 
7. Conclusion 
  The importance of the proposed framework is that 
the PS using CRR with IWA and CFA  can provide 
service priority, and flexibility on service  of the real-
time packets with strict deadlines. Additionally, the 
UB scheme provides relative fairness while the GS 
better performance. The usefulness, the efficient and 
easy implementation makes this framework amenable 
to multimedia applications for the several parts of the 
network (routers).     
 
 
 
 
 
 

 
  
 
            
 
 
 
 
 
 
 
       Fig. 2  A real-time flow(IWA) servicing with 
                      CRR and DRR 
 
      
 
                  
 
 
 
 
 
 
 
 
       Fig. 3  Two real-time flows (IWA1, 
                 IWA2) servicing with CRR, DRR 
 
     
 
 
 
 
 
 
 
 
 
 
 
       Fig. 4 Three real-time flows 
                    consecutive are served 
                    (UB scheme) 
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               Fig. 5 Three real-time flows 
                           consecutive are served 
                          (GS scheme) 
                                               
 
 
 
        
 
 
 
 
 
 
 
           Fig. 6  Delay for the three flows for both schemata 
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