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Abstract: - An adaptive filter is essentially a digital filter with self-adjusting characteristic. It adapts, 
automatically, to changes in its input signals. The contamination of a signal of interest by other unwanted, often 
lager, signals or noise is a problem often encountered in many applications. Typical applications where 
adaptive filters are appropriate are the following: Digital communication using a spread spectrum, where a 
large jamming signal, possibly intended to disrupt communication, could interfere with the desired signal. The 
interference often occupies a narrow but unknown band within the wideband spectrum, and can only be 
effectively dealt with adaptively. Digital data communication over the telephone channel at the high data rate.  

Adaptive algorithms are used to adjust the coefficients of the digital filter such that error signal is minimized 
according to some criterion, for example in the least squares sense. The Nonlinear Normalized Mean Square 
algorithm is applicable to a wide variety of nonlinear filters. In this paper, algorithms are developed for an 
optimal time-varying step-size for FIR, Volterra, weighted median and weighted myriad filters.  
 
Key-Words: - Adaptive filters, nonlinear filters, weighted median filter, weighted myriad filter, impulse noise. 
 
1    Introduction 
The Least Mean Square (LMS) algorithm [1] is 
widely used for adapting the weights of a linear 
Finite Impulse Response (FIR) filter that minimizes 
the mean square error (MSE) between the filter 
output and a desired signal. Consider an input 
(observation) vector of N samples,  x ≡ [x1, x2, ..xN]T, 
and a weight vector of N weights, w≡ [w1, w2, ..wN]T. 
Denoting the linear filter output by: 

  y = wTx                   (1) 
The filtering error, in estimating a desired signal d, 
is: 
  e= y - d       (2) 
The optimal filter weights minimize the MSE cost 
function:  

 J(w) ≡ E{e2},           (3) 
where E{.} denotes statistical expectation. In an 
environment of unknown or changing signal 
statistics, the LMS algorithm [1] attempts to 
minimize the MSE by continually updating the 
weights as  
 w(n+1) = w(n) - µe(n)x(n),     (4) 
where µ>0 is the so-called step-size of the update.  

The computational simplicity of the LSM 
algorithm has made it an attractive choice for several 
applications in linear signal processing. However, it 
suffers from a slow rate of convergence. Further, its 
implementation requires the choice of an appropriate 
step-size µ which affects the stability, steady-state 
MSE and convergence speed of the algorithm. The 
stability region for mean-square convergence [1, 2] 
of the LMS algorithm is given by: 
 0<µ<(2/trace(R)),           (5) 
where  
 R ≡ E{x(n)xT(n)},           (6) 
is the autocorrelation matrix of the input vector x(n). 
When the signal statistics are unknown or time-
varying, it is difficult to choose a step-size that is 
guaranteed to lie within the stability region. 

The so-called Normalized LMS (NLMS) 
algorithm [1] addresses the problem of the step-size 
design in [1] by choosing a time-varying step-size 
µ(n) that minimizes the next-step MSE, Jn+1 ≡ 
E{e2(n+1)}. After incorporating an auxiliary fixed 
step-size µa>0, the NLMS algorithm is written as 

 ,a 2

(n)(n+1)= (n) - µ e(n)
|| (n)||

xw w
x

       (7) 
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where  

  
N

2 2
i

i=1
|| (n)|| x (n)= ∑ ,x      (8) 

is the squared Euclidean norm of the input vector 
x(n). The theoretical bounds on the stability of 
NLSM algorithm are given by 0<µa < 2 [1]. Unlike 
the LMS step-sizeµ of (4), the auxiliary step-size µa 
is dimensionless and the stability region for µa is 
independent of the signal statistics. This allows for 
an easier step-size design with guaranteed stability of 
the algorithm. Further, the NLMS algorithm is 
known to converge much faster than the LMS 
algorithm [3, 4]. The equation (7) can be also 
interpret as a modified LMS algorithm, where the 
update term in (4) is divided (normalized) by the 
squared-norm ||x(n)||2, to ensure stability under large 
change of the input vector x(n). 
In this paper, the generalized NLMS algorithm of (7) 
is given by deriving a class of nonlinear normalized 
LMS-type algorithms that are applicable to a wide 
variety of nonlinear filter structures. Although linear 
filters are useful in a number of applications, several 
practical situations require nonlinear processing of 
the signals. Consider an arbitrary nonlinear filter 
whose output is denoted by y= y(w,x). The LMS 
algorithm of (4) can be generalized to yield the 
following class of nonlinear LMS-type adaptive 
algorithm: 

   ( 1) ( ) ( ) ( ),   1,2...,i i
i

yw n w n e n n i N
w

µ ∂
+ = − =

∂
    (9) 

Note that (9) can be applied to any nonlinear filter 
for which derivatives (10) exist.  

  ( )
i

y n
w
∂
∂

               (10)   

The above algorithm inherits the main problem of 
LMS algorithm, namely, the difficulty in choosing 
the step-size µ >0. Unlike the linear case where step-
size bounds are available, the complexity inherent in 
most nonlinear filters has precluded a theoretical 
analysis of (9) to derive the stability range for µ. Just 
as the linear NLMS algorithm of (7) is developed 
from the classical LMS algorithm, we obtain a 
general nonlinear NLMS-type algorithm for the 
LMS-type algorithm of (9) by choosing a time-
varying step-size µ(n), which minimizes the next-
step MSE at each iteration. As in the linear case, we 
introduce a dimensionless auxiliary step-size whose 
stability range has the advantage of being 
independent of the signal statistics. The stability 
region could therefore be determined empirically for 
any given nonlinear filter. 
 
 

2    Nonlinear  LMS-type   Filters 
      Adaptive Algorithms 
In this section, we briefly review the derivation of 
nonlinear LMS-type adaptive algorithms that have 
been used in the literature for the optimization of 
several types of nonlinear filters. Consider a general 
nonlinear filter with the filter output given by y = 
y(w, x), where x and w are the N-long input and 
weight vectors, respectively. The optimal filter 
weights minimize the mean square error (MSE) cost 
function: 
 J(w) = E{e2} = E{(y(w, x) - d)2},            (11) 
where d is the desired signal and e = y - d is the 
filtering error. The necessary conditions for filter 
optimality are obtained by setting the gradient of the 
cost function equal to zero: 

            ( ) 2 0,  1, 2, ..,
i i

J yE e i N
w w

 ∂ ∂
= = = ∂ ∂ 

w     (12) 

Due to the nonlinear nature of y(w, x), and con-
sequently of the equation in (12), it is extremely 
difficult to solve for the optimal weights in closed-
form. The method of steepest descent is a popular 
technique which attempts to minimize the MSE by 
continually updating the filter weights using the 
following equation: 

  
1( 1) ( ) ( ),  1, 2.., ,
2i i

i

Jw n w n n i N
w

µ ∂
+ = − =

∂
 (13) 

where wi(n) is the ith weight at iteration n, µ > 0 is 
the step-size of the update, and the ith component of 
the gradient at the nth iteration is given from (12) by 

 ( ) 2 ( ) ( )
i i

J yn E e n n
w w

 ∂ ∂
=  ∂ ∂ 

                (14) 

In a situation where the signal statistics are either 
unknown or rapidly changing (as in nonstationary 
environment), we use instantaneous estimates for the 
gradient.  
To this end, removing the expectation operator in 
(14) and substituting into (13), we obtain the 
following class of nonlinear LMS-type adaptive 
algorithms: 

( 1) ( ) ( ) ( )i i
i

yw n w n e n n
w

µ ∂
+ = −

∂
          (15) 

Note that for a linear filter (y = wT x), we have:  

  ,i
i

y x
w
∂

=
∂

               (16) 

and (15) reduces to the LMS algorithm of [1]. The 
development of automatic step-size that guarantees 
the stability of (15) is derived in following section. 
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3  Normalized LMS-Type (NLMS) 
    Adaptive Algorithms  
We derive the class of nonlinear NLMS-type 
algorithms by choosing a time-varying step-size 
µ(n)>0 in the LMS-type algorithm of (15). 
Rewriting of (13), using (12) is: 

     ( 1) ( ) ( ) ( )i i
i

Jw n w n E e n n
w

µ
 ∂

+ = −  ∂ 
        (17)  

Now, the next-step MSE at the nth iteration is 
defined by: 

 Jn+1 ≡ J(w(n+1)) = E{e2(n+1)},               (18) 

where the next-step filtering error e(n+1) is: 
               e(n+1) = y(n+1) - d(n+1)=  

 = y(w(n+1), x(n+1)) - d(n+1)              (19) 

Note, that Jn+1 depends on the updated weight vector 
w(n+1), which in turn is a function of  µ > 0. We 
obtain the NLMS-type algorithm from (17) by 
determining the optimal step-size, denoted by µo(n), 
that minimizes Jn+1 ≡ Jn+1(µ): 
 

       o 1n > 0
n a rg  m in J ( )

µ
µ µ+≡( )               (20) 

To determine µo(n), we need an expression for the 
derivative function (∂/∂ µ) Jn+1(µ). Using (18) and 
(19): 

    1
1

1

( )(.)( )
( )

N
jn

n
j j

w n 1JJ
w n 1

µ
µ µ

+
+

=

∂ +∂∂
=

∂ ∂ + ∂∑       (21) 

Detailed evaluation for optimal step size µo(n) is 
derived in [5].  Simplified expression for the optimal 
step-size is: 

 2

1

( )

( )
o

N

j j

1n
y n

w

µ

=

≈
 ∂
  ∂ 

∑
   (22) 

 After incorporating an auxiliary step-size µa > 0, 
just in the conventional (linear) NLMS algorithm of 
(7), we can then write the time-varying step-size, to 
be used in the steepest-descent algorithm of (17), as: 

 2

1

( ) . ( )

( )

a
a o

N

j j

n n
y n

w

µµ µ µ

=

= ≈
 ∂
  ∂ 

∑
     (23) 

Finally, on using instantaneous estimates by 
removing the expectation operator in the steepest-
descent algorithm of (17), we obtain the following 
Nonlinear Normalized LMS-type Adaptive Filtering 
Algorithm: 

 
2

1

( ) ( )

( )

                             , ...,

a
i i

N i

j j

yw (n + 1) w (n) - e n n
wy n

w

i 1,2 N

µ

=

∂
=

∂ ∂
  ∂ 
=

∑   (24)          

This algorithm has following important advantages: 
 It is applicable to wide variety of nonlinear 

filters; in fact, to any nonlinear filter for which 
the filter output y is an analytic function of each 
of the filter weights wi (so that derivatives of all 
orders exist). 

 The auxiliary step-size µa is dimensionless and 
the stability region for µa  is independent of the 
signal statistics. As a result, the stability region 
could be determined empirically for any 
particular nonlinear filter. 

 This algorithm has a potentially faster 
convergence than its LMS-type counterpart of 
equation (15). 

 It can also be interpreted as a modification of the 
LMS-type algorithm of (15) in which the update 
term is divided (normalized) by the Euclidean 
squared-norm of the set of values:   

      ( ),   .., ,
i

y n i 1,2, N
w
∂

=
∂

                      (25) 

in order to ensure algorithm stability when these 
values  become large in magnitude. 

 
Figure. 1. Unknown system identification 

by using adaptive filter 

 
Figure 2. Adaptive FIR filter. MSE as 

a function of algorithm iterations (µa =1). 
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Figure 3. Adaptive FIR filter. MSE as a function 

of auxiliary step-size (µa.=1 is optimal). 
 
4   Simulation Results 
In this part, the normalized adaptive algorithms used 
in different examples are described. The linear and 
nonlinear system identification, Figure 1, was tested 
The linear FIR filter, N=11, was tested. Zero-mean 
white Gaussian signal was used. MSE learning curve 
is shown in Figure 2. Figure 3 shows a MSE as a 
function of auxiliary step-size µa..  
As a second example, the normalized adaptive 
Volterra filter was tested [4, 5, 6, 7].  
The Volterra filter belongs to a particularly simple 
class of nonlinear filters having the property, that the 
filter output is linear in the filter parameters 
(weights). Given N x 1 input (observation) vector x, 
the filter output in this class is given by: 
 y = hT z = hT f(x),                (26) 
where h is a M x 1 vector of filter parameters, and f 
is a (generally nonlinear) mapping that transforms 
the N x 1 input vector x into an M x 1 modified 
observation vector w. Consider now the special case 
of the Volterra filter, which has found wide-spread 
use in nonlinear signal processing [6, 9]. The output 
of this filter is given by: 

        
1 2

1 1 1

1 1 2 2

( ) ( , ) ..

..

N N N

i i j
i i j

T T T

y w i x w i j x x
= = =

= + +

= + + =

∑ ∑∑
h z h z h z

    (27) 

In order to obtain the NLMS-type adaptive filtering 
algorithm for this filter, from (26) and (27) can be 
derived: 

       

2 2 2

2 2 2

1 1 1

|| ( ) || | ( ) || | ( ) || ...

( ) ( ) ( ) ...
i j

1 2
N N N

i
i i j

n n n

x n x n x n
= = =

= + +

= + +∑ ∑∑

z z z
      (28) 

The NLMS-type algorithm can be written as:    

2( 1) ( ) ( ) ( )
|| ( ) ||

an n e n n
n
µ

+ = −h h z
z

              (29) 

The algorithm is similar to the linear NLMS 
algorithm of (7), since the filter output is linear in 

filter parameters. Therefore, the stability region for µ 
is the same as in linear case. The nonlinear truncated 
Volterra filter, N=5, was tested. The Volterra filter 
has a 20 parameters (linear and quadratic): 

 

1 2 3 4 5,

2
1 1 2 1 3 1 4 1 5

2
2 2 3 2 4 2 5
2 2 2
3 3 4 3 5 4 4 5 5

, , , ,

, , , , ,

, , , ,

, , ,   , ,

x x x x x

x x x x x x x x x

x x x x x x x

x x x x x x x x x

               (30) 

Zero-mean white Gaussian signal was used. MSE 
learning curve is shown in Figure 4. 
 

 
Figure 4. Adaptive Volterra filter. MSE as 
a function of algorithm iterations (µa =1). 

 

 
 

Figure 5. Adaptive weighted median filter  
block diagram 

 
As third example, the adaptive weighted median 
filter (WM), N=5, was tested, Figure 5. For the 
discrete-time continuous-valued input vector x = [x1, 
x2,..., xR], the output y of the WM filter of span N 
associated with the integer weights: 
 w = [w1, w2,..., wR]    (31) 
is given by 
 y = MED[w1◊ x1, w2◊ x2 ,..., wR◊ xR]      (32) 
where MED[.] denotes the median operation and ◊ 
denotes duplication, i.e.: 

 , . . .
p t i m e s

p x x x x
−

◊ =   (32) 
 (x is used p - times)    
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Example: Consider a length 5 WM filter with integer 
weights [1, 2, 3, 2, 1]. Now apply the filter to the 
following sequence so that the window is centered at 
the sample value 9: 
  x = [-2, 4, 9, 12, -3] 
After sorting and duplication, the samples inside 
filter window are [12, 12, 9, 9, 9, 4, 4, -2, -3]. The 
WM filter output is y=9 (middle). 
The adaptive WM filter was used for filtering of 
signal corrupted by impulsive noise (Figure 6). Final 
filtering algorithm for adaptive WM filter is given 
by: 

  

1

[ ( ) ( )] { [ ( ) ( )] ( )},  
1 { [ ( )] ( )}

i i

a i
N

i
j

w(n+1) w(n)-
d n y n sign sign w n x n y n-

abs sign w n x n

µ

=

=
− −

+∑
  (34) 

where i=1,2,....N, and weights of adaptive WM filter 
during learning are shown in Figure 7. 
 

 
Figure 6. Example of sinusoidal signal a), corrupted 
by impulsive noise b) and signal filtered by NLMS-

type adaptive weighted median filter c),  N=5. 
 

 
Figure 7. Weights of adaptive median filter 

evaluation during the learning. Weights after 
learning, (9000 iterations) are: 

w= [0.51, 1.16, 1.35, 1.18, 0.81]. 

As the last example, the weighted myriad filter, 
N=11, was tested.  Weighted myriad smoothers [8, 
9, 10, 11] are derived from the sample myriad, which 
is defined as the Maximum-Likelihood estimate of 
location of data following the Cauchy distribution. 
Consider a set of N independent and identically 
distributed random variables {Xi }N

i=1, each following 
a Cauchy distribution with location parameter ψ and 
scaling factor K>0. Thus, Xi ~ Cauchy(ψ, K), with 
the density function: 

  2 2( ; , ) ( )
( )i

i
X i

i

xK 1 1f x K f
K x K K

ψψ
π ψ

−
= =

+ −
  (35) 

Given a set of observations {xi }N
i=1, the sample 

Myriad maximizes the likelihood function: 

 
1

( ; , )
i

N
X ii

f x Kψ
=∏    (36) 

Using some manipulations, we can write: 

  
ˆ 1 2 N

N
2i

i=1

N
2 2

i
i=1

myriad(x , x ,.., x ; K) =
x -= arg min 1+ ( )

K

= arg min log[K + (x - ) ]

ψ

ψ

ψ
ψ

ψ

  =  
∏

∑

             (37) 

It is important to note, that log(.) is strictly 
increasing function. For NLMS-type adaptive 
algorithm (33) is rewritten as: 

   N
2

i i i
i=1

y y( )

arg min log[1+ | h | ( - sig(h )x ) ],
ψ

ψ

≡

∑

h, x
    (38) 

where h = w/K2. The filter can therefore be 
adaptively optimized by updating the parameter 
vector h. The corresponding normalized adaptive 
(NLMS-type) algorithm is given by: 

    2

1

( )( 1) ( ) ( ) ,
( )

            1, 2, ..., ,

i i a N

j
j

nh n h n e n
n

i N

µ
δ

=

∆
+ = +

=

∑  (39) 

where  

 ,   i
i 2 2

i i

u i = 1,2,..,N,
(1+| h |u )

δ =       (40) 

and  

 ,
2N

j j
j 2 2

j=1 j j

1- | h |u
= | h |

(1+| h |u )
∆ ∑   (41) 

with ui = sgn(hi)y - xi, i=1, 2,...,N.  
The example of NLMS-type of adaptive weighted 
myriad filter was used to extract corrupted impulsive 
noise from sinusoidal signal. The observed signal 
was given by: 
 x(n) = s(n) + v(n)                   (42) 
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The additive noise process v(n) was chosen to have a 
zero-mean symmetric α-stable distribution. The 
example in is shown in Figure 8. 
 

 
Figure 8. Example of sinusoidal chirp signal 
corrupted by impulsive noise (top) and signal  

filtered by NLMS-type adaptive weighted  
myriad filter (bottom) N=11. 

 
 
5   Conclusion 
It is well known that, for any algorithm with fixed 
value of tap weight adaptation step size, a trade-off 
between the filter convergence rate and the steady-
state error does exist. If a larger value of the step size 
is used, then a faster convergence is attained as long 
as the filter remains stable. On the other hand, the 
smaller the step size, the more accurate the 
estimation in presence of observation noise.  

In this paper, examples of the NLMS-type 
adaptive filters were described. By providing for an 
automatic choice for the step-size, the NLMS-type 
algorithms eliminate the difficult problem of step-
size design. Experimental results indicate (computer 
simulations examples: linear adaptive FIR filter, 
adaptive Volterra filter and adaptive weighted 
median filter), that the NLMS-type algorithms, in 
general, converge faster than their LMS-type 
counterparts.  Examples presented in [12, 13] show 
that nonlinear filters can be used in industry 
applications and also in biomedical signal 
processing.  
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