
Dedicated Hardware for Scheduling Problems using Genetic Algorithm

MASAYA YOSHIKAWA, HIDEKAZU TERAI
Department of VLSI System Design,

Ritsumeikan University
1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577

JAPAN

Abstract: - NSP (Nurse Scheduling Problem) as a scheduling task consists of assignment of shifts and holidays to
nurses for each day on the time horizon, taking into consideration a variety of conflicting interests or objectives
between the hospitals and individual nurses. Many works have done for this problem using Genetic Algorithm
(GA). The GA is one of the most powerful optimization methods based on the mechanics of natural evolution.
However, the problem of the processing time stemming from a population-based search exists in GA. In this paper,
we propose a new architecture for high-speed nurse scheduling using GA. The proposed architecture is flexible for
many genetic operations on GA. Moreover, the proposed architecture realized not only the pipeline on evaluation
phase, but also the pipeline on evolutionary phase on GA. Simulation results evaluating the proposed architecture
are shown to the effectiveness comparison with software processing.

Key-Words: - Genetic Algorithm, Dedicated Hardware, Nurse Scheduling Problem, Evolutionary pipeline,
Genetic Operation

1 Introduction
Scheduling problems are generally NP-hard
combinational problems. NSP (Nurse Scheduling
Problem)[1] is one of these scheduling problems. NSP
as a scheduling task consists of assignment of shifts
and holidays to nurses for each day on the time
horizon, taking into consideration a variety of
conflicting interests or objectives between the
hospitals and individual nurses. Given a number of
nurses with specifics skills and working agreements, a
contract may consist of general constraints as there are
restrictions on the number of nurses for each shift; the
maximum number of shifts in a week, a mouth, etc.
Moreover, a number of personal wishes or desires
representing nurse's preferences are allowed. For
example, a demand for the desired day off, demand for
doing certain shift on a certain day with a certain nurse,
etc[1].

Many works have done for this problem using
Genetic Algorithm (GA)[2],[3]. The GA is one of the
most powerful optimization methods based on the
mechanics of natural evolution. GA has the three
operators of selection, crossover, and mutation.
However, the problem of the processing time
stemming from a population-based search exists in
GA.

In this paper, we propose a new architecture for
high speed nurse scheduling using GA. Examples of
GA hardware design for the purpose of implementing

GA in hardware for reduction of computational time
are found in Scott[4], Graham and Nelson[5], and
Yoshida[6].

Most of these previous works deal with
small-scaled problems and limit to some fixed genetic
operations. Therefore, it is not suitable for actual
industrial problems such as NSP. No previous studies
have, to our knowledge, applied GA hardware to NSP,
as this study does using the proposed architecture. The
proposed architecture is flexible for many genetic
operations on GA. Moreover, the proposed
architecture realized not only the pipeline on
evaluation phase, but also the pipeline on evolutionary
phase on GA.

2 Hardware of GA
2.1 Coding
NSP represents a problem to decide a matrix, so that
each Xij element of the matrix expresses that nurse i
works on day j. Xij consists of day shift, night shift,
late-night shift and holiday. Coding of an individual
set day shift to “00”, night shift to “01”, late-night shift
to “10” and holiday to “11”. Coding in the proposed
architecture (hereafter, called HGA: Hardware of GA)
is shown in Fig.1. In HGA, the number of nurses is
variable, the nurse's minimum number is 16 persons,
and the nurse's maximum number is 48 persons.

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp208-212)

Fig.1: Example of coding

And then, the days, which can be deal with, are 31

days and stored ID of each individual in the column on
the 32nd as shown in Fig.1.

2.2 Population
Since GA is the multi-point search algorithm, the
memory holding an individual group called population
is needed. Furthermore, two memorys are required in
order to evolve by GA. One is for the present
generation memory holding the present population and
the other is for the next-generation memory holding a
next-generation population. Memory utilization is the
maximum, when there are 48 nurses and the number of
individuals is 1024. In this case, the memory of
393216Byte per generation is required. Furthermore,
since the present generation and the next generation
are totaled, the memory of 786432Byte is required.
Therefore, SRAM of 4 bitx512Kword is used as a
memory for population in HGA. Fig.2 shows the
composition of a memory. A memory address is 19
bits (11bit+8bit), and uses 1 bit of MSB for distinction
of the present generation memory and a
next-generation memory.

2.3 Evaluation and Selection
2.3.1 Hard constraints
Existing constraints are generally divided into two
categories; hard constraints and soft constraints.
Table.1 shows the constraints adopted in HGA. Since
the solution (schedule) which does not satisfy
constraints from (1) to (5) is a lethal gene
(meaningless as a schedule), these five constraints are
defined as hard constraint. In coding of Fig.1, the hard
constraint is constraint of a column to the schedule for
one month.

2.3.2 Soft constraints
The constraints from (6) to (15) are defined as soft
constraint. The soft constraints are satisfied as much as

possible. Therefore, they are introduced to the
evaluation function as a penalty. In coding of Fig.1,
the soft constraint is constraint of a line to the schedule
for one month.

Fig.2: Composition of the memory

Table.1: Example of constraints

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp208-212)

2.3.3 Selection operation
For GA, it's important to set suitable evaluation
parameters for controlling the selection of individuals.
The selection operations are implemented as roulette
wheel selection, ranking selection and elitism.

The roulette wheel selection method uses the
percentage represented by the evaluation value for
each individual with respect to the sum total of
evaluation values for all individuals are the selection
probability for each individual. As a result, if the
evaluation value for the i-th individual is f(i), then a
roulette wheel showing this percentage as a wedge can
be used, as shown in Fig.3(1).

To put this concretely, let us consider the case of the
evaluation values shown in Fig.3(2). First, the product
of the individual evaluation values is calculated in
alphabetical order, as shown in Fig.3(3). Next, a
random number taking a value in the range of “0” to
“product of the evaluation values for all individuals” is
generated. For Fig.3(3), if the generated random
number is from “0” to “149”, individual A will be
selected. And then, if it is from “150” to “199”,
individual B will be selected. The Roulette wheel
selection runs in this fashion.

The ranking selection method attempts to preserve
descendants using a probability determined for each
initial rank assigned to individuals by using the
evaluation value. To put this in concrete terms, let us
consider a case in which there are four individuals
with the evaluation values shown in Fig.3(2), and with
the selection probabilities shown in Fig.3(4).

Fig.3: Example of selection operation

First, the product of the selection probability is

calculated in descending rank as shown in Fig.3(5) as
a form of preprocessing (performed only once for the
first generation). Next, individuals are sorted in
descending order for the evaluation value. As is
illustrated in Fig.3(6), the sorted individuals
correspond to the products of the selection probability
in Fig.3(5). Then random numbers are generated in the
same fashion as seen in the roulette wheel selection,
and the ranking selection is implemented by selecting
individuals.

In addition, if a circuit which inherits the
individuals with the highest evaluation value
unconditionally in the next generation is added, the
elitism can be implemented.

2.4 Crossover and mutation
Crossover operations are implemented as one-point
crossover, two-points crossover and uniform
crossover. These crossovers can be implemented by
controlling the mask. One-point crossover will be
explained concretely using Fig.4 as an example. In
Fig.4, the crossover position is between the third bit
and the fourth bit. At this point, before the crossover
position, that is, between 1bit and 3bit, the mask is set
to “1”, and for 4bit and later, the mask is set to “0”.
Here, when the mask is “0”, a normal circuit is used,
and when it is “1”, a circuit which performs crossovers
is used. Uniform crossover is implemented by
allocating the 1 and 0 mask randomly. Therefore, the
crossover circuit consists of two multiplexer (MUX)
and a controller as shown in Fig.5. Mutation
operations are implemented as one-point mutation and
swap mutation. The mutation is implemented by
inverting the genes.

Fig.4: Example of one-point crossover using mask

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp208-212)

3 Circuit and Pipeline
Fig.6 shows the block diagram of HGA. The HGA
consists of selection circuit, evaluation circuit,
preprocessing of evaluation circuit, crossover circuit,
mutation circuit, condition of mutation circuit, data
path switch and two SRAMs for population (current
generation and next generation). The transaction flow
of HGA consists of three stages which are read and
crossover(RC), mutation (M), evaluation and write
(EW). Fig.7 shows pipeline of HGA on evolution
phase.

Fig.5: Example of crossover circuit

Fig.7: Pipeline on evolution phase

4 Experimental Results
The HGA has been designed by Verilog-HDL and
synthesized by the Synplicity Synplify. The frequency
of HGA is set up with 33 MHz. Table.2 shows the gate
size. In order to evaluate the performance of HGA, we
compared with software processing. The software
processing was implemented in the C language and
run on a Linux PC(CPU: PentiumIV 2.4GHz, Memory
1GHz). Table.3 shows experimental results.

Fig.6: Block diagram

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp208-212)

Irrespective of the number of nurses, HGA achieved
more than 13.6 times the speed on average as shown in
Table.3. In this research, the HGA used the FPGA,
which limited the clock speed to 33MHz. However, if
the clock frequency can be raised, more high speed
processing is possible.

5 Conclusion
We have proposed dedicated engine architecture for
Nurse Scheduling Problem and based on Genetic
Algorithm. The proposed architecture achieves a high
degree of freedom in evolutionary strategy by
incorporating most representative GA evolutionary
strategies, and architecture features pipelines for
genetic operations such fitness evaluation and
crossover and an evolutionary pipeline that takes the
generation model into account. Experiments
comparison with software processing confirmed its
feasibility. Our next goal is to develop an algorithm
for adaptively selecting the evolutionary algorithm,
and to expand hybrid architecture combined with
Simulated Annealing. This study was financed in part
by a Grant-in-Aid for Young Scientists (B) (Project
no.16700153) under the Grant-in-Aid For Scientific
Research, extended by the Ministry of Education,
Culture, Sports, Science and Technology of Japan.
The authors would like to thank their supports.

References:
[1] A.Jan, M.Yamamoto, A.Ohuchi, Evolutionary

algorithms for nurse scheduling problem, Proc. of
the Congress on Evolutionary Computation, Vol.1,
pp.196-203, 2000

[2] J.Holland, Adaptation in Natural Artificial
Systems, the University of Michigan Press
(Second edition ; MIT Press), (1992)

[3] Goldberg,D.E, Genetic algorithms in search
optimization, and machine learning; Addison
Wesley,(1989)

[4] S.D.Scott, A.Samal and S.Seth, HGA:A
Hardware-Based Genetic Algorithm, Int.
Symposium on Field-Programmable Gate Array,
pp.53-59(1995)

[5] P.Graham and B.Nelson, Genetic Algorithm in
Software and in Hardware A performance
Analysis of Workstation and custom Computing
Machine Implementations, FPGAs for Custom
Computing Machines, pp.216-225(1996)

[6] N.Yoshida, T.Moriki and T.Yasuoka,
GAP:Genetic VLSI Processor for Genetic
Algorithms, Proc.Second Int'l ICSC Symo. On Soft
Computing, pp.341-345(1997-9)

Table.2: Gate size

Table.3: Experimental results

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp208-212)

