
In-Motes: An Intelligent Agent Based Middleware for Wireless Sensor
Networks

DIMITRIOS GEORGOULAS AND KEITH BLOW

Adaptive Communications Networks Research Group
Aston University

Aston Triangle, Birmingham, B4 7ET
UNITED KINGDOM

 http://www.ee.aston.ac.uk/research/acrg/

Abstract: Wireless sensor networks (WSNs) have been identified as a promising technology that will allow
people and machines to interact with their environment in a revolutionary way. These networks, however, are
facing limitations such as energy constraints of the sensor and difficulties in reprogramming the actual
network. To address these limitations we propose a novel agent middleware. Namely In-Motes can be
considered as an intelligent network which is deployed with no pre-installed application. Mobile agents are
injected into the network, then migrate and clone across it, following specific rules and performing application
specific tasks. By doing so, each mote is given a certain degree of perception, cognition and control, forming
the basis of its intelligence. Linda-like tuplespaces and federated system architecture are proposed as the
means for collaboration and coordination of the agents. In order to make the network more robust, certain
behavioural rules are proposed taking inspiration from a community of bacterial strains. These preserve each
agent’s certain degree of autonomy and identifies a highly coordinated architecture for them.

Key-Words: Wireless Sensor Networks, Middleware, Agents, Federated Systems, Bacterial Strains

1 Introduction
Wireless Sensor Networks (WSNs) have been
identified as one of the most important technologies
for the 21st century [1]. As technology advances and
hardware prices drop, WSNs will find even more
prosperous ground to spread in areas where
traditional networks are inadequate. WSNs consist
of tiny sensors which can be supplied to a specific
environment, running applications such as habitat
monitoring, microclimate research, medical care and
structural monitoring [2]. Each sensor is attached to
battery powered microprocessors combined with a
set of specific instrumentation for environmental
measurements such as sound, light and temperature.

WSN current infrastructure makes applications quite
difficult to develop and install. One of the most wide
spread platforms for WSNs is TinyOS with a
combination of MICA2 motes [3]. TinyOS builds its
architecture in a component based model triggered
by event-driven calls [4]. Applications that are
developed in this platform can not be reprogrammed
dynamically and the only flexibility is located in
changing various parameters prior to the installation.
This means that post-development reprogramming is
not feasible as the huge deployment of nodes in an
environment makes the manual collection,
reprogramming and re-deployment of them

impossible. To that extent, an additional
complication is also located within the area of
energy management of the motes. Similarly, it
would be infeasible to change the batteries for every
single mote in an environment.

Many middlewares that have been developed in
recent years offer a solution to upgrade the
flexibility of the application level of WSNs. Various
solutions are provided by middlewares such as XPN
[5], Deluge [6], Mate [7], SensorWare [8] and Agilla
[9]. Both XPN and Deluge architectures are based in
network reconfiguration. This is succeeded by
flashing the instruction memory of each mote, with
Deluge also allowing multi-hopping reprogramming.
However, both architectures suffer from long delays
produced by the image that must be transferred over
the network, increasing in parallel the energy levels
a network must use. Mate is based in the generation
of a virtual machine that divides each application
into a specific number of capsules that are sent into
the network by applying flooding, an action that
consumes substantial energy resources of the WSN.
The Agilla architecture is primarily based upon
Mate. However, instead of capsules Agilla allows
users to deploy applications by injecting mobile
agents into the network, rather than mobile
executable scripts that SensorWare uses. More

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp225-231)

http://www.ee.aston.ac.uk/research/acrg/

fundamentally, Agilla lacks precise real location
information since the virtual grid is identical with
the real one and it does not clarify if devices are able
to die.

To address the limitations of the previously
mentioned middleware solutions, we are proposing
In-Motes, an intelligent agent based middleware for
WSNs. In-Motes is based on Agilla and Mate by
allowing users to inject agents inside the network
and provides a high level architecture for the given
agent community based on federated systems [10]
and behavioral rules produced by a parallelism of
bacterial strains [11]. Mobile agents encapsulate a
dynamic behavior within the network, adopting
certain degrees of perception, cognition and control
of the given environment and acting as local virtual
machines with dedicated instructions and rules. An
agent can migrate or clone from one node to another
and communicate/coordinate its actions based on
Linda-like tuplespaces [12] and federated system
architecture.

Fig. 1, A Federated System Model representation
(Genesereth and Ketchpel from “Software Agents’’
1994)

Eliminating communication cost and complexity,
each facilitator agent will be responsible for a
number of agents [10] as shown in Figure 1. Agents
will not communicate directly but rather through the
facilitators, which will communicate with each
other. These facilitators will be governed by rules
based on bacterial strains that will allow them to
handle network requests in the same way bacterial
strains metabolize energy sources. This will
establish a high degree of independence and will
remove high level network management problems
[13]. Inner communication will be obtained by
tuplespaces, a shared memory model where a tuple
can be defined as an item of factual information
which is available for retrieval by pattern matching.
This will allow agents to insert or remove a tuple,
containing for example a sensor reading, and thus
interact without having to maintain knowledge of
the current agent population.

Mobile agents can be defined as autonomous
programs that can migrate from server to server and
do not require continuous communication with the
client towards an execution of a job [14]. These
attributes contribute to the fact that mobile agents
have better efficiency and more robustness than
traditional approaches. Lange and Oshima have
identified seven good reasons for using mobile
agents [15]. The mobile agent paradigm has been
used for many years; mainly for internet applications
and the benefits are widely known. Some of the
most famous platforms that were developed include
Java Aglets [16], TACOMA [17], MARS [18] and
Agent Tcl [19]. Their success was identified in areas
such as data mining [20], e-commerce [21] and
network management and coordination [22].

This paper explores whether the use of mobile
agents using a federated communication combined
with tuplespaces and behavioral instructions based
on bacterial strains is technically feasible and
beneficial to the application level of WSNs. The
remainder of this paper is structured as follows.
Section 2 presents In-Motes model and explains how
mobile agents are bound with the
coordination/communication model we are
proposing for WSNs. Section 3 discusses a feasible
In-Motes application and identifies how common
problems in WSNs can be overcome. Section 4
presents the engineering effort, identifying our
implementation tools and the first steps that are
taken towards the completion of our middleware, as
well as the near future aims of our research. The
paper ends with conclusions in Section 5.

2 The In-Motes Model
The In-Motes model is shown in Figure 2. Each
node can support multiple agents and maintains a
tuplespace where specific reactions, that will be
mentioned later, can be stored. This tuplespace will
be accessible by all agents and is static as agents
cannot carry it throughout the network.

Fig. 2, The In-Motes Model Representation between
two nodes. One is hosted by a facilitator agent and
the other with an agent following the federated
notion

Facilitator Agent

Node

Node

Tuplespace

Agent

Tuplespace

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp225-231)

An In-Motes application consists of autonomous
agents of different types that are deployed in a given
network. Because of this, the generation of a
communication model that will allow coordination
and cooperation between them is vital. In-Motes,
unlike other middlewares provide this scheme with
the use of a federated system combined with
tuplespaces. Each node will maintain a tuplespace
that will be shared by all the agents available at a
given time, either remotely by the ones that will be
hosted in other nodes or locally by the residing
agent.

This shared memory model will be enforced in a
federated system where the facilitator agent will
generate specific instructions to the analogous node
that hosts it. This will be allowed since each tuple
will contain a specific set of fields with a type and a
value. Types will consist of various sensor readings.
Following the Agilla model each tuple will be
accessible by any agent whose specific template
matches by type. Such a match will be available if
they have the same number of fields and each field
in the tuple satisfies the analogous field in the
template.

The In-Motes model takes inspiration from other
well established middlewares [9, 22, 23, 24] and is
using specific reactions that can be added in the
tuplespaces. Reactions are used in order to ensure
that agents operating inside the network are
autonomous entities by allowing them to advertise
what kind of template they are searching for. When
a new tuple is added in the tuplespace of a specific
node, the agent will be notified and if necessary will
take action upon this notification.

As previously mentioned, In-Motes is based on
deploying a network without any application
needing to be installed. Agents that implement
application behaviour will be injected later, setting
up the communication model at the first stage and
then handling user requests. The first stage is
tailored alone with facilitator agents. The life cycle
of a facilitator agent is shown in Figure 3.

Fig. 3, The representation of a Life Cycle of a
facilitator agent inside a wireless sensor network

The facilitator agent works by continuously
checking whether any of the nodes are available for
capture. The capturing procedure takes places when
a facilitator agent during its migration registers a
capture or a slave reaction to the analogous node. A
counter will be incremented every time a capture
reaction takes place; here we restrict the registration
of two agents under each facilitator purely based on
the motes we had available. When the counter
reaches two, the facilitator agent will migrate again
to the next available node assigning this time around
a new facilitator tuple and slave reaction and the
capturing procedure will repeat. Therefore the
federated system communication model will be
established covering all the available nodes in the
network, as is shown in Figure 4.

Fig. 4, Establishing the Federated System Model
with the use of a facilitator agent, black colour, that
is being injected in the network

The second stage of the In-Motes communication
model deals with user requests and the execution of
application specific jobs. As soon as the federated
system is established, the user will be able to
forward specific queries to the network. This will be
allowed through the injection in the network of a job
agent that will contain a specific query. The job
agent will visit the facilitator agents of the network
and, if allowed, will insert a job reaction. Each
facilitator agent is governed by rules, as described in
the work of Roadknight and Marshall [13] which
make each node in a network responsible for its own

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp225-231)

behavior. As a result, their network was modelled as
a community of cellular automata and each node
envisaged as a bacterium and each request for
service as food.

Inspired from the above ideas, the facilitators of the
network will be governed by the following rules that
will be stored in an acquaintance list:

• Each facilitator evaluates the items that
arrives in its input queue on a FIFO
principle

• Only four requests can be processed in a
measurement period (epoch)

• The more time a facilitator spends
processing a request, the busier it will
appear to be. This busyness is calculated by
calculating the pre and post busyness for the
current epoch in a 0.8 to 0.6 ratio.

• If a facilitator’s busyness is higher than 50%
then the job is forwarded to the next
available facilitator whose busyness is less
than or equal to 50%

Optimization of the rules for a particular application
scenario is the subject of ongoing work.

In-Motes middleware has to overcome specific
limitations that are produced by the nature of WSNs.
The MICA2 motes that we are using have only a
128kB of memory available for instructions and 4kB
of data memory while the microprocessor is an
8MHz Atmel 128. Another limitation derives from
the fact that TinyOS does not provide any dynamic
memory management and as a result all the data
memory must be allocated statically. Also, the small
size batteries result in a low bandwidth wireless link
of 38.4kbaud which can be considered quite
unreliable due to his high error rate. To address
these challenges, In-Motes adapts Agilla’s memory
management for its agent instructions and
tuplespaces [8]. Also, each agent is divided into tiny
packets that are migrated and can be retransmitted,
minimizing the impact of message loss which is
quite common in mobile agents.

3 An In-Motes Application Example
In-Motes middleware can be proved quite beneficial
in areas such as energy and resource consumption as
well as in information gathering and processing.
Due to its hierarchical and structured
communication model combined with the mobility
and the benefits deriving from the agent
infrastructure, In-Motes stands as a promising way

of developing and writing applications for WSNs.
In this section we are going to describe a simple
novel application that deals with information
gathering and processing. The application is shown
in Figure 5.

Fig. 5, A representation of an In-Motes application
for information gathering and processing,

We assume that our nodes, originally with no
preinstalled application, have been structured in a
federated notion as described in Section 2. The user
wants to gather sensor information regarding photo
readings from the nodes. In-Motes will allow the
injection of one or more job agents inside the
network containing the request(s). At first, the job
agent will try to find the federated agents by
identifying which tuplespaces contain a facilitator
tuple. Control will then be passed to the facilitator
upon the arrival of the job agent to check if its
behavioral rules allow it to forward the request to
the assigned agents. If they do, then the job agent
will be able to insert a job reaction containing the
user’s query. Hence an epoch will be created
allowing only three more requests to be processed
by the same facilitator for the current epoch
providing an efficient energy framework for all the
facilitator agents of our network, by eliminating
excessive use of specific nodes. Once the results are
gathered, the job reaction will be terminated and the
job agent will report back to the user. If a facilitator
busyness is higher than 50% it will direct the job
agent to the next available facilitator of the network.

It is expected that during the lifetime of a WSN
some nodes will eventually die and information will
be lost. In-Motes can adapt and dynamically take
actions upon unexpected scenarios like the once
mentioned above. Going back to our previous
example if a facilitator node goes down the network
will dynamically adapt since the lifecycle of the

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp225-231)

facilitator agent that we described in Section 2 never
terminates and a new capturing procedure will take
place.

4 Engineering Effort and Future

Work
This section presents the engineering effort and the
near future work behind the In-Motes middleware.
Currently we are working with a MICA2/DOT
Professional Kit (MOTE-KIT 5x4) [25] as shown in
Figure 6.

Fig 6, Our experimental motes kit with six MICA2
motes and two MIB510 Programming and Serial
Interface Boards

The radio has an available range of 38 kbps over a
range of 100m; however, the exact values are
dependent upon the environment [26]. The
microprocessor gives us 128kB of instructions and
4kB of data memory. MICA2 motes are widely
used in many research projects around the globe. As
we have described before, building applications for
them is quite challenging mainly due to the limited
amount of data memory, the unreliable low-
bandwidth radio and the lack of substantial
documentation that explores their features. Our test
platform uses a desktop which monitors the WSN by
obtaining feedback from the MIB510 Programming
and Serial Interface Board.

MICA2 motes run under a specific platform named
TinyOS [5] whose applications are divided into
components that follow a specific hierarchy. The
platform does not allow any dynamic memory
management and as a result all application and
system variables must be declared statically. Given
that a program behavior is installed and deployed,
the modification of it is very challenging since the
motes must be retrieved and reprogrammed in the
programming board. A middleware can hide or even
overcome the above limitation. In order this to be
applicable it is necessary for the middleware to

provide high level communication architecture and
allow quick implementation, testing and deployment
of programmer’s applications.

Currently we are using our agent architecture to
modify, program and deploy the TinyOS
applications that the platform offers, such as the
Blink and the Oscilloscope [27], under our
middleware with the use of agents and so far we
have been successful as shown in Figure 7.

Fig. 7, In-Motes results after running the TinyOS
oscilloscope application in our middleware

Also we have created an application, namely
SenseLight, which we are going to deploy it in
TinyOS, Agilla and In-Motes respectively
generating some comparison graphs. In Figure 8 we
present the main features of each
platform/middleware.

Fig. 8, Comparison Table of the three testing
platform/middlewares

SenseLight, is a multi-hop application that that uses
mobile agents to collect light readings and report
back to the end user. There are two types of agents
in our society that will be generated in the WSN
those of a Facilitator Agent (2) and Slave Agent (4).

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp225-231)

Each slave agent will transmit 1 light reading per
message to the analogous facilitator agent. Each
facilitator agent was instructed to transmit back to
the end user 2 light readings per message.

Running the Agilla engine in our motes, we
deployed the same application with the difference
that this time all the agents were reporting back to
the end user 1 light reading per message based on
the engine specification.

As can be seen from the below comparison graph,
Figure 9, In-Motes produced better moving average
of 2 light reading to the end-user over a period of 2
minutes.

Packet Delivery Performance In-Motes Vs Agilla

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 40 50 60 70 80 90 100 110 120

Time (Sec)

Pa
ck

et
s

D
el

iv
er

ed

2 per. Mov. Avg. (In-Motes) 2 per. Mov. Avg. (Agilla)

Fig. 9, Packet Delivery Performance of In-Motes
and Agilla over a period of 2 minutes.

These modifications will allow us to understand
better the TinyOS platform and also to specify and
highlight certain behaviors that the agents of our
middleware must have. We are currently developing
a full version of In-Motes middleware which will be
able to deploy all the TinyOS applications.

Future work will also include the creation of a
powerful front end for the user, based on a
blackboard scheme [28] where all the submitted
queries will be handled automatically by the system
and satisfied without the user having to monitor
continuously the progress of the job agents.

5 Conclusion
In this paper, we have presented and analytically
described In-Motes, an intelligent agent based
middleware for WSNs. Having identified certain
limitations in currently existing middlewares and in
the application platform where motes are widely
used, TinyOS, we are proposing an agent based
middleware that tries to resolve these problems and
create a flexible platform for programming, testing

and deploying applications for wireless sensor
networks. Our proposition brings together promising
technologies, such as mobile agents, tuplespaces and
federated systems under a common framework and
provides a substantial communication and
coordination architecture for the needs of a WSN.
Our MICA2 implementation is already starting to
demonstrate the feasibility of using mobile agents
and tuplespaces under a federated notion where each
agent is working based upon what is best for it and
for the group that it belongs to. We envisage that In-
Motes will serve as a foundation for rapidly building
applications for WSN.

Acknowledgements
The authors would like to thank Dr. D. J. Holding,
of Electronic Engineering Department of Aston
University, for the immense help provided during
the preparation of this paper. D. Georgoulas would
like to acknowledge the support of Assistant Prof.
M. Welsh of Harvard University, for his interest in
In-Motes middleware, Mr C.L Fok of Washington
University in St. Louis, for helping us understand
the Agilla programming core, M. Smith, technical
support engineer of Crossbow Technology, Inc for
the technical advises he provided during the
installation of the platform, and P. Trevis, technician
of Aston University for the installation of the
software packages.

References:
[1]- [2] D. Culler, D. Estrin, and M. Srivastava.
Overview of sensor networks. IEEE Computer,
37(8):41–49, 2004.
[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D.
Culler, and K. Pister, “System architecture
directions for networked sensors,” in Architectural
Support for Programming Languages and Operating
Systems, 2000, pp. 93–104.
[4] P. Levis and D. Culler, “Mate: A tiny virtual
machine for sensor networks,” in International
Conference on Architectural Support for
Programming Languages and Operating Systems,
San Jose, CA, USA, Oct. 2002.
[5] http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf.
Last visited on 24/08/2005
[6] J. Hui and D. Culler, “The dynamic behavior of a
data dissemination protocol for network
programming at scale,” in Proceedings of the 2nd
international conference on embedded networked
sensor systems. 2004, pp. 81–94, ACM Press.
[7] P. Levis and D. Culler, “Mate: A tiny virtual
machine for sensor networks,” in International
Conference on Architectural Support for

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp225-231)

http://www.cse.wustl.edu/%7Eliang
http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf

Programming Languages and Operating Systems,
San Jose, CA, USA, Oct. 2002.
[8] A. Boulis, C.-C. Han, and M. Srivastava,
“Design and implementation of a framework for
efficient and programmable sensor networks,” in
Proc. of MobiSys, 2003.
[9] C.-L. Fok, G.-C. Roman, and C. Lu, “Rapid
development and flexible deployment of adaptive
wireless sensor network applications,” Tech. Rep.
WUCSE-04-59, Washington University in St. Louis
Department of Computer Science and Engineering,
2004.
[10] Genesereth, M, R and Ketckpel, S, P. “Software
Agents”, In Communications of the ACM 37(7), pp.
48-53, 1994.
[11] C. Roadknight and I. Marshall, “Future
Network Management – A bacterium Inspired
Solution”, In Proceedings of Second International
Symposium Engineering of Intelligent Systems,
June 27-30, 2000
[12] D. Gelernter, “Generative communication in
Linda,” ACM Trans. on Prog. Languages and
Systems, vol. 7, no. 1, pp. 80–112, 1985.
[13] C. Roadknight and I. Marshall, “Management
of Future Data Networks: An approach based on
Bacterial Colony Behaviour”, Artificial Life,
December 2001.
[14] Bradshaw, M, Jeffrey (1997). “An introduction
in software agents”, In (Eds.) Bradshaw, M, Jeffrey
in Software Agents, The MIT Press, 1997.
[15] D. B. Lange and M. Oshima. “Seven good
reasons for mobile agents”, Commun. ACM,
42(3):88–89, 1999.
[16] P.E.Clements, T. Papaioannou, and J. Edwards.
“Aglets: Enabling the virtual enterprise”, In Proc. of
the Int. Conf. on Managing Enterprises -
Stakeholders, Engineering, Logistics and
Achievement, 1997.
[17] D. Johansen, R. van Renesse, and F. B.
Schneider. “An introduction to the TACOMA
distributed system”, version 1.0. Technical Report
95-23, University of Tromso, Tromso, Norway, June
1995.
[18] G. Cabri, L. Leonardi, and F. Zambonelli.
“MARS: A programmable coordination architecture
for mobile agents”, Internet Computing, 4(4):26–35,
2000.
[19] R. Gray.Agent Tcl. Dr. Dobb’s Journal of
Software Tools, 22(3):18–71, 1997.
[20] D. B. Lange and M. Oshima. “Seven good
reasons for mobile agents”, Commun. ACM,
42(3):88–89, 1999.
[21] M. Baldi and G. P. Picco. “Evaluating the
Tradeoffs of Mobile Code Design Paradigms in
Network Management Application”. n R.

Kemmerer, editor, Proceedings of the 20th
International Conference on Software Engineering,
pages 146–155. IEEE Computer Society Press,
1998.
[22] P. Maes, R. H. Guttman, and A. G. Moukas.
“Agents that buy and sell” Communications of the
ACM, 42(3):81–91, 1999.
[23] C. Julien and G.-C. Roman, “Egocentric
Context-Aware Programming in Ad hoc Mobile
Environments”, In Pro. of the 10th Int. Symp. on the
Foundations of Software Engineering, pages 21–30,
Nov. 2002.
[24] A. L. Murphy, G. P. Picco, and G.-C. Roman.
“LIME: A Middleware for Physical and Logical
Mobility”, In Proceedings of the 21st International
Conference on Distributed Computing Systems,
pages 524–533, April 2001.
[25] Last visited on
24/08/2005

http://www.xbow.com/Products/

[26] J. Zhao and R. Govindan. “Understanding
packet delivery performance in dense wireless
sensor networks”, In Proc. Of the ACM SenSys,
2003.
[27] http://www.tinyos.net/. Last visited on
24/08/2005
[28] Englemore R, Morgan T, “Blackboard
systems”. AddisonWesley, Reading, MA, 1988

Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp225-231)

http://www.xbow.com/Products/

