Proceedings of the 5th WSEAS International Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp219-224)

Almost Periodic Solutions of Non-Autonomous
Beverton-Holt Difference Equations

David Cheban', Cristiana Mammana

2

! State University of Moldova
A. Mateevich Street 60, MD-2009 Chisinau, Moldova

2 University of Macerata
str. Crescimbeni 20, I-62100 Macerata, Italy

Abstract: The article is devoted to the study of almost periodic solutions of difference Beverton-Holt equation.
We prove that such equation admits an invariant continuous section (an invariant manifold). Then, we obtain
the conditions for the existence of an almost periodic solution. We study this problem in the framework of
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1 Introduction

In the qualitative theory of differential and differ-
ence equations non-local problems play the important
role. It refers to questions of boundedness, periodic-
ity, almost periodicity, asymptotic behaviour, dissi-
pativity etc. The present work belongs to this di-
rection and is dedicated to the study of almost peri-
odic solutions of non-autonomous Beverton-Holt dif-
ference equations. Almost periodic solutions of dif-
ference equations arise in numerouse theories, from
Dynamical Systems [4, 10], Dynamical Economics [§],
Chaos [1], Physics [14] and their references.

Below we will give a new approach concerning the
study of almost periodic difference equations. We
study the problem of almost periodicity in the frame-
work of non-autonomous dynamical systems (cocyles)
with discrete time. The main tool in the study of al-
most periodic solutions in our work are the continuous
invariant sections (selectors) of cocyle.

This paper is organized as follows.

In Section 2 we give some notions and facts from the
theory of non-autonomous dynamical systems (cocy-
cles). In particularly, we present the important for our
work notion of continuous section of non-autonomous
dynamical systems.

Section 3 is dedicated to notion of almost periodic

motion of dynamical systems. This section contains
a very important construction (see example 3.8) of
non-autonomous dynamical system generated by non-
autonomous difference equation.

In section 4 we present the main result of our paper
(Theorem 4.7) whiche give the sufficient conditions
of existence at least one almost periodic solution of
non-autonomous Beverton-Holt difference equation.

2 Continuous Invariant Sec-
tions of Non-Autonomous
Dynamical Systems

Let S be a group of real (R) or integer (Z) numbers,
T (Sy CT) be a semigroup of the additive group S.

Definition 2.1 Let (X,h,Y) be a bundle fiber [3, 9].
The mapping v : Y — X is called a section (selector)
of the bundle fiber (X,h,Y), if h(y(y)) = y for all
yev.

Remark 2.2 Let X :=WxY. Theny:Y = X isa
section of the bundle fiber (X, h,Y) (h:=pry : X —
Y), if and only if v = (¢, Idy) where ) : W — W.

Definition 2.3 Let (X,Ty,n) and (Y,Tz,0) (St
C Ty C Ty C8) be two dynamical systems. The



mapping h : X — Y s called a homomorphism
(respectively isomorphism) of the dynamical system
(X,Th,m) on (Y,Iz,0), if the mapping h is contin-
wous (respectively homeomorphic) and h(w(x,t)) =
o(h(z),t) (te€ Ty, € X).

Definition 2.4 A triplet ((X,Ti,n),(Y,T>,0), h),
where h is a homomorphism of (X, T, 7) on (Y, T, 0)
and (X,h,Y) is a bundle fiber [3, 9], is called a non-
autonomous dynamical system.

Let W,Y be two metric spaces and (Y,T>,0) be a
semi-group dynamical system on Y.

Definition 2.5 Recall [13]  that a  triplet
(W, 0, (Y,Ts,0)) (or briefly @) is called a cocycle over
(Y,T>,0) with the fiber W, if ¢ is a mapping from
Ty x W xY toW satisfying the following conditions:

1. p(0,z,y) = for all (xz,y) € W xY;

2. ¢(t + 1,x,y) = @(t,o(r,z,y),0(r,y)) for all
t, 7 €Ty and (x,y) e W xY;

3. the mapping ¢ s continuous.

Let X := WxY, and define the mapping 7 : X xT1 —
X by the equality: 7((u,1),1) = (o(t,u,9),5(1,1))
(ie. m™ = (p,0)). Then it is easy to check that
(X,Th,m) is a dynamical system on X, which is
called a skew-product dynamical system [2], [13]; but
h =prs : X = Y is a homomorphism of (X, T}, )
onto (Y, 75, 0) and hence (X, Ty, ), (Y,T>,0),h) is a
non-autonomous dynamical system.

Thus, if we have a cocycle (W, p,(Y,T2,0)) over
the dynamical system (Y,75,0) with the fiber W,
then there can be constructed a non-autonomous dy-
namical system ((X,Ty,7), (Y,T2,0),h) (X =W x
Y), which we will call a non-autonomous dynam-
ical system generated (associated) by the cocycle
<W;§07 (Y7 T2JU)> over (Y7 T27 U)'

Example 2.6 Consider the equation

Tn+1 = f(a(n,y),a:n) (y € Y): (1)

where (Y, T5,0) (Tx C Z) is a dynamical system on YV
and f:Y x W — W is a continuous mapping.

Denote by ¢(n,u,y) the solution of equation (1) with
initial condition ¢(0,u, y) = u. From the general prop-
erties of difference equations it follows that:

(i) ¢(0,u,y) =uforallu € W and y € Y;

(ii) e(n+m,z,y) = ¢(n,p(m,z,y),0(m,y)) for all
n,m €Ty CZand (z,y) €W xY;
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(iii) the mapping ¢ is continuous.

Thus every equation (1) generate a
(W,,(Y,T5,0)) over (Y,T>,0) with fiber W.

cocycle

Definition 2.7 A mapping v : Y — X is called an
invariant section of the non-autonomous dynamical
system (X, Ty,m),(Y,T2,0),h), if it is a section of
the bundle fiber (X,h,Y) and v(Y) is an invariant
subset of the dynamical system (X, T, ) (or, equiva-
lently,

g€ (o) (o'y)} = (o)

Utr"v () -

for allt € Ty nd y €Y, where 7t := w(t,")).

Theorem 2.8 [5, Ch.2,p.83] Let ((X,T1,n), (Y, Ts,
o), h) be a non-autonomous dynamical system and the
following conditions be fulfilled:

(i) the space Y is compact;
(i) To = Z or R;

(iii) the  non-autonomous  dynamical  system
(X, T, m),(Y,Tz,0),h) is contracting in the
extended sense, i.e. there exist positive numbers
N and v such that

p(n(t,z1),m(t, 22)) < Ne™"'p(zr,22)  (2)

for all z1,22 € X (h(zy) = h(x2)) and t € T;

(i) TV, X) ={v | v:Y = X is a continuous
mapping and h(y(y)) =y for ally € Y} # 0.

Then

(i) there exists a unique invariant section 7y €
L(Y, X) of the non-autonomous dynamical sys-
tem <(X7 TI: 7T)7 (Ya TZ: 0)7 h>,

(i) the following inequality holds

p(n(t, ), 7(t,v(h(x)))) < Ne™" p(z,y(h(z)))
(3)
forallz e X andt e T.



3 Almost periodic motions of
dynamical systems

Let (X, Z;,7) be a dynamical system.

Definition 3.1 A number m € Z, is called an
e-almost period of the point x € X, if p(xm(m +
n,x),m(n,x)) <€ foralln € Z,.

Definition 3.2 The point x is called almost periodic,
if for any € > 0 there exists a positive number | € Z
such that on every segment (in Zy) of length | there
may be found an e-almost period of the point x.

Denote M, = {{t,} C Z4| {n(tn,x)} is convergent}.

Theorem 3.3 ([11], [12]) Let (X,Zy,m) and
(Y, Z,,0) be two dynamical systems. Assume that
h: X — Y is a homomorphism of (X,Z,,w) onto

(Y,Zi,0). If a point € X is almost periodic,
then the point y := h(z) is also almost periodic and
M, C M,.

Definition 3.4 A solution ¢(n,u,y) of equation (1)
is said to be almost periodic, if the point = := (u,y) €
X := E XY is an almost periodic point of the skew-
product dynamical system (X,Z,,mw), where m :=
(p,0), i-e. w(n, (u,y)) := (p(n,u,y),0(n,y)) for all
n € Zy and (u,y) € ExY.

Let E be a Banach space with the norm | - |.

Lemma 3.5 Suppose that u € C(Y, E) satisfies the
condition

u(o(n,y)) = ¢(n,u(y),y) (4)
forallne Zy andy €Y. Then the map h:Y — X,

defined by
h(y) == (u(y), y) (5)

for ally € Y, is a homomorphism of (Y, Zy,0) onto
(X, Zy,7), where X := E XY and 7 := (p,0).

Proof. This assertion follows from equalities (4) and

(5)-

Remark 3.6 A function u € C(Y, E) with property
(4) is called a continuous invariant section (or an in-
tegral manifold) of non-autonomous difference equa-
tion (1).

Theorem 3.7 If a function u € C(Y,E) satisfies
condition (4) and a point y € Y is almost periodic,
then the solution o(n,u(y),y) of equation (1) also is
almost periodic.
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Proof. This statement follows from Theorem 3.3 and
Lemma 3.5.

Example 3.8 Consider the equation

Unt1 = f(naun) (6)

where f € C(Zy x E,E); here C(Z; x E,E) is
the space of all continuous functions Z. x E — E)
equipped with metric defined by equality

X1 da(fy,do)

WP = 2 5 T dufr )

where d,,(f1,d2) = max{p(fi(k,u), f2(k,u)) | k €
[0,n], |u| < n}, there is defined a distance on C(Z x
E, E) which generates the topology of pointwise con-
vergence with respect to n € Z; uniformly with re-
spect to u on every bounded subset from E.

Along with equation (6), we will consider the H-class
of equation (6)

Unt1 = g(n,vn) (g € H(f)), (7)
where H(f) = {fm | m € Z;} and the over bar de-
notes the closure in C(Z, x E,E), and f,,(n,u) =
fn+m,u) for all n € Z; and u € E. Denote
by (C(Z;+ x E,E),Z;,0) the dynamical system of
translations. Here o(m, g) := g, for all m € Z, and
ge€C(Zy xE,E).

Let Y be the hull H(f) of a given function f €
C(Z, x E, E) and denote the restriction of (C(Z. x
E E),R,0) onY by (Y,Zy,0). Let F: EXY — E
be a continuous map defined by F(u,g) = g(0,u) for
g €Y andu € E. Then equation (7) can be rewritten
in this form:

Un+1 = F(o(n,y),un)

where y := g and o(n,y) := gn.

Definition 3.9 The function f € C(Zy x E,E) is
said to be almost periodic if f € C(Zy x E,E) is
a almost periodic point of the dynamical system of
translations (C(Zy x E,E), Z,,0).

If the function f € C(Zy x E, E) is almost periodic,
then the set Y := H(f) is the compact minimal set of
the dynamical system (C(Z. x E,E),Zy,0) consist-
ing of almost periodic functions.



4 Almost periodic solutions of
Beverton-Holt equation

The periodic Beverton-Holt equation
K’ﬂ n

__ PBntn (8)

Kp+ (p—1)z,

(Kptr = K,) has been studied by Jim Cushing and

Shandelle Henson [6] and Saber Elaydi and Robert J.
Sacker [7].

Tp41 =

Below we will suppose that the following conditions
hold:

(C1) the squence {K,}nez is almost periodic;

(C2) a < p are two positive constants such that
a< K, <pBforal ne Z

(C3) > (22

Denote by ¢(n,u, f) the solution of equation

Tni1 = f(naxn) (9)

with initial condition (0, u, f) = u.

Lemma 4.1 Let f;: Z. xRy — Ry (i =1,2). Sup-
pose that the following conditions hold:

(i) ui,us € Ry and uy < ug (respectively, uy <
U’2);

(i) filn,2) < faln,@) (respectively, fi(n,z) <
fo(n,z)) for alln € Zy and x € Ry;

(iii) the function fa is monotone non-decreasing (re-
spectively, strictly monotone increasing) with re-
spect to variable x € Ry

Then @(n,ur, f1) < @(n,us, f2) (respectively,
w(n,u1, fr) < p(n,us, f2)) for alln € Z,.

Proof. Let uy; < us (respectively, uy < us), then we
have
o(Lug, f1) = f1(0,u1) < f2(0,u1)

S fg(O,Ug) = 90(177—1127][2)‘

(respectively, p(1,u1, f1) = f1(0,u1) < f2(0,u1) <
f2(07u2) = (10(17’“27]02))‘ Suppose that So(kauhfl) S
So(kau2af2) (respectively, So(kaulafl) < QD(k',Uz,fz))
for all k¥ < n, then we obtain

(,O(ﬂ-f- 17ulaf1) = fl(nﬂ(lo(naulafl))

S f2(n;<p(n7u27f2)) = 90(” + 1;u2af2)
(respectively, o(n + 1,u1, f1) = fi(n,¢(n,u1, f1)) <
f2(n,o(n,ua, f1) < fa (n, p(n, uz, f2)) = @(n +
1,U2,f2)).
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Lemma 4.2 Let f(n,z) := % foralln € Z,

and x € Ry. Then the following statements hold:

(i) f(n,x) >0 for alln € Zy and x € Ry;

(ii) fi(n,z) = % >0 foralln € Z, and

T € Ry
(iii) [ia(n,x) = — 2 D <0 for all n € Z,
and x € R,

Proof. This statement is straightforward.

Lemma 4.3 Let f(n,z) := % foralln € Z

and x € Ry. Then the following statements hold:

(i) f(n,z) —a = LIS for glin € 7. and
T € Ry;
(1) f(n,K,) =K, forallne Z;
alln € Z, andx € Ry.
(i) (a) o(n,u, f)
(b) ¢(n,u, f)

u for all u > f;

(AR VAN

u for all u < a.
Proof. The first three statements are obvious. Let
u > [ (respectively, u < @), then

(b = Du(Ky —u)
Kl + (/J, — I)U

(P(].,U,f)_'u:

(respectively, ¢(1,u,f) —u > 0). Suppose that
olsu, ) < u (respectively, @(k,u,f) > u) for
all ¥ < n, then we obtain ¢(n + l,u,f) =
o(1,¢(n,u, f),o(n, f)) (o(n, f)(k,z) = f(k+ n,z)
for all k¥ € Z and © € R;). By Lemma 4.1 we
have ‘p(la(p(nvuaf)ao'(naf)) S @(l,u,a(n,f)) (re_
spectively, ¢(1,¢(n,u, f),a(n, 1)) > ¢(1,u,0(n, )))
because o(n, f),(m,z) = fi(n +m,z) > 0 for all
n.m € Z and x € R,. for all k € Z and =z € R Since

P
Kop1 + (=’

p(1,u,0(n, f)) =

then

(1 = Du(Kppr —u) _

e(Liu,o(n, f)) —u= Kni1 +(p—1u

because K,11 < [ (respectively, o(1,u,o(n,f) —
u > 0 because K 11 > «). Thus ¢(n + 1,u, f)
o(1,o(n,u, f),o(n, f)) < u (respectively, o(n +
1,U,f) = w(law(nauvf)aa(naf)) > u)'



uK,x

Corollary 4.4 Let f(n,z) := Jrewu ey

Z. and x € Ry, then

(1)

for alln €

limsup p(n, u, )l < 256 (10)

n—+00
for allu € Ry;
(ii) a — h < o(n,u, f) < B+ h foraln e Z, and
u € [a—h,B+ h], whe7"60<h<ﬁ.77'QY

Proof. By Lemma 4.3 we have
1

<,0(n+1,u,f)— _1Kn
KZ
(K + (p = D)) (p — 1)
for all n € Z, and, consequently,
lim sup |p(n, u, f)| < limsup K, < Lﬂ.
n—+00 n—+oo M — 1 M= 1

The second statement of Corollary follows directly
from Lemma 4.3.

Lemma 4.5 Let f(n,z) := % foralln € Z,
and v € Ry and 0 < h < mm{—‘—,ﬁa -
ﬁﬁ}, then
1B?
|fo(n, )| < k(h) = <1 (11)

(ho— B~ D)
for all x € [a — h, B + h].

Proof. f 0 < h < mln{—— —a} then
1 < 1
(K + (u = 1Dz)? = (po = h(p = 1))?

for all € [a — h,B + h] because a < K,, < 8 (V
n € Z). Thus we have

B
(pa —h(p—1))?

Since k(0) = £, < 1, then 0 < k(h) < 1 for
sufficiently smaﬁ posmve h. It easy to check that

k(h) = 1iff hp = tra+ ” ,8 and k(h) > 1 for
all h € (hy,ho). Consequently 0 < k(h) < 1 for all

fo(n,z) <

= k(h).

f-a 1/2
0<h<m1n{ ,ﬁa—’;ilﬁ}.
Corollary 4.6 Let f(n,x) := K’f((iu"”l) for alln €
Zy and x € Ry and 0 < h < min ——a,ﬁa—
”l/iﬁ}, then
|<p(n7u17f) —SD(TL,UQ,f” < k(h)n|u1 —U2| (12)

for all ui,us € o —h,B+h] andn € Z,.
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Proof. According to Lagrange’s formula we have

(p(n_*_l;ul;f)_so(n—}_l;u?;f) (13)

= fé(n7<p(n7u1=f) + en(w(nau%f)

_Qa(naula f)))((p(naula f) - (10(”7U27 f))a

where 8,, € (0,1) foralln € Z;. If uy,uy € [@—h, B+
h], then by Corollary 4.4 we have p(n,u;, f) € [a —
h,B+h] (Vn € Z; and i = 1,2) and, consequently,
(P(na Uy, f)+0n(90(n7 U2, f)—cp(n, Uy, f)) € [Oé—h, ﬂ+h]
for all n € Z. Thus

|falc(n7<p(naulaf) +9n(§0(n,U2,f) (14)

—p(n,us, f)))| < k(h)

for all n € Z, . From the relations (13)-(14) we obtain

|<p(n+ 1,U1,f) _90(”+17u27f)|

S k(h)ho(n:ul:f) - (,O(H,Uz,f”

(Vn € Z) and, consequently,

|<p(n7u11f) - @(n,uQ,f)| S k(h)n|“1 — U2

for all uj,us € [@ — h,+ h|l and n € Z.

Denote by C(Z,R,) the space of all numerical se-
quences M = {Mp},cz equipped with the distance

i 1 dy(M, M?)

aMt, M2 =Y R o )
(M, M%) £ 2K 1 dy (MY, M2)

where M? := {M:},c7 (i =1,2) and dy(M*, M?) :=
max{|M} — M2| :n € [k, k]}. Let (C(Z,R),Z,0)
by the dynamical system of translations on C(Z, R)
(ie. o(n,M)k) = M,y for all £ € Z) and
H(M) = {o(n,M) : n e Z}, where by bar we de-
note the closure in C'(Z, R). This means that M €
H(M) iff there exists a sequence {m;} C Z such that

M, = lim My, for every n € Z.
k——4o00

Theorem 4.7 Let f(n,z) := K‘j_l((iu"fl) for all n €
ul/?

Z, x€R+,0<h<mln{—;aﬁ _u 7B}
and the conditions (C1)-(C8) hold. Then the equa-
tion (8) admits at least one almost periodic solution
90(”7 U, f)




Proof. Let f(n,z) % Vn e Z
and x € Ry) and YV := H(f), where H(f) :=
{o(n,f) : n€ Z} and by bar we denote the closure

in C(Z x Ry,Ry). Tt easy to see that g € H(f) iff
there exists a sequence K € H(K) (K := {Kp}nez)

phnz " for all n € Z and

such that g(n,z) = Tt(u—1)z

T € R+.
Consider the equation

LTnt+1 = f(n:l'n) (15)

and denote by (Ry,p,(H(f),Z,0)) the cocycle gen-
erated by equation (15) (see Examples 2.6 and 3.8).
Let ((X,Zy,7),(Y,Z,0),h) be the non-autonomous
dynamical system generated by cocycle ¢ (i.e. YV :=
H(f), (Y,Z,0) is the shift dynamical system on Y,
X =R, xY, m:=(p,0)and h:=pry : X = Y).
Note that the set X = [a — h,f+ h] xY C X
by Corollary 4.4 is invariant with respect to dynam-
ical system (X,Z;,n). Thus we can consider the
non-autonomous subsystem ((X,Z;,n),(Y,Z,0),h)
of system ((X,Z,,n),(Y,Z,0),h). According to
Corollary 4.6 the non-autonomous dynamical sys-
tem ((X,Z4,m),(Y,Z, 0),h) is contracting because
p(m(n,z1), 7(n,z2)) < k(h)"p(x1,z2) for all z1,29 €
X (h(z1) = h(zz2)). By Theorems 2.8 and 3.7 there
exists a continuous function u : H(f) — [a— h, 5+ h]
such that u(o(n,g)) = ¢(n,u(g), g) for all g € H(f)
and n € Z and the solution ¢(n, u(f), f) of equation
(15) is almost periodic.
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