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Abstract: - Certain work about symbolic computational mass transfer is realized. Using computer algebra, the 
explicit solution for a reaction-diffusion equation with memory and boundary conditions for a circular reactor, is 
derived. The method of solution is the Laplace Transform Technique with inverse by residues. The solution is 
obtained by means of certain algorithm for computer algebra. As a result we obtain  the basic reproductive 
number for the reactor. We conclude that the transport problem that was considered, to despite to be linear, is 
symbolically non-computable due to the effects of the  memory. 
 
Key-Words: - Reaction-diffusion equation, Residue Theorem, Computer Algebra, Memory, Amplification, Basic 
Reproductive Number, Threshold, Bessel Functions, non-computable problem 
 
1   Introduction 
We consider certain reaction-transport process with 
memory for the case a circular reactor. The 
mathematical   model  that we use, is a linear 
reaction-diffusion equation with memory  and 
external sources. The effective transport equation 
considered here, is a linear and in-homogeneous  
integral-differential equation subjected to determined 
boundary condition of the Dirichlet kind. Such 
equation to despite to be linear, is very complicated 
and its solution is very hard to obtain when the only 
way is using pen and paper. From other side, such 
equation can not be solved using the method of 
separation of variables. 
Here we show that the solution of our linear model 
can be obtained at symbolical form, when we use 
certain relatively simple algorithm for computer 
algebra. 
Our algorithm is based on the Laplace transform 
technique, jointly with the realization of the inverse 
transform by mean of residue theorem of the theory 
of functions of complex variable. 
From the solution that is obtained, the basic 
reproductive rate for the reactor is derived. 
Is remarkable that our problem, to despite to be linear 
and with algorithmic solution, is after all non-
computable symbolically is only computable 
numerically.  We have an example of non-
computable linear problem. 

2   The Mathematical Problem 
Here we consider certain “chemical” reaction of the 
form 
 A + B �B � C                                                  (1) 
We assume that we have a solid disk of radius a 
which is made of the substance A. Then we attach at 
the boundary of disk, certain ring of substance B, and 
the reaction (1) starts. Our problem is to obtain a 
mathematical formula for the evolution on time of the 
concentration of substance B inside the solid disk, 
and to derive the threshold condition for the reaction 
(1) effectively occurs. 
We consider here, the following transport equation 
for the substance B  [1, 2, 3] 
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 (2) 
where the mass transport of substance B, is realized 
within a circular region of radius a with polar 
coordinates (r,�); and u(r,t) denotes the concentration 
of the substance B, at place r at time t. The Laplacian 
operator for polar coordinates reads 
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for the case of axial symmetry, which is assumed. 
The constant  � is the effective rate of production of 
the substance B, and has the following structure: 
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where �1 is reactivity of substance A, S0 is the 
initial density of the solid disk of substance A and �1 
is rate of decaying of substance B that produces 
substance C. 
We assume that the reaction (1) has memory and this 
memory is of two kinds to know: M1(r,t) denotes the 
memory of reactivity of substance A relative to the 
substance B, and is given by 
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where �2 is the intensity of the memory of reactivity 
and �1 is the factor of attenuation of such memory. 
From the other side M2(r,t) denotes the memory of 
production of substance C, relative to the substance 
B, and is given by 
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where �2 is the intensity of the memory of 
production of substance C and �2 is the factor of 
attenuation of this memory. 
We also assume that apart of the ring of substance B 
attached to the boundary of the solid disk of 
substance A, we have a permanent source of 
substance B, denoted F(r),  inside the disk with the 
distribution: 
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where a1 and a3 are certain constants. 
The initial condition is the corresponding to the case 
when initially the solid disk only contains substance 
A, it is to say: 
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The boundary condition is the corresponding to 
the presence of the ring of substance B and 
reads 
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where �b is the density of the ring and � is constant 
of decay of the substance B on the ring. 
The mathematical that is proposed here, is the 
solution of the equation (2) with (3)-(7), subjected to 
the initial condition (8) and to the boundary 
condition (9). 

 
3   Problem Solution 
Our problem is a linear problem analytically soluble, 
but our problem can not be solved by means of the 

method of separation of variables. It is necessary to 
apply the Laplace Transform method, and to make 
the inverse transform by means of the theorem of 
residues [4]. Since the equations (2)-(9) are too 
voluminous like being solved by hand with pencil 
and paper, it is necessary to apply some type of 
system of computer algebra that allows symbolic 
computation [5,6].  
 
3.1. Method of Solution 

 
Figure 1.  sketch of the algorithm 

 
Figure 1 shows a sketch of the algorithm that we have 
used to solve (2)-(9). As it is observed, the inputs of 
the algorithm are:  Eq, that represents the equation (2) 
with (3)-(7); I.C. that represents the initial conditions 
(8); B.C. that represents the boundary condition (9); 
and F.C. that represents a certain finitude condition 
for the solutions.  
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The output for the algorithm is the basic reproductive 
rate of the substance B inside the solid disk of 
substance  A , denoted R0. 
The algorithm operates as it follows. 
 
The inputs Eq., I.C., and B.C, by means of a Laplace  
Transformer are turned into a transformed equation 
denoted T.Eq.  and a transformed boundary condition 
denoted T.B.C.  Then, T.Eq, T.B.C. and F.C. are 
processed by a certain Dsolver that generates the 
transformed solution denoted Tsol. Next, Tsol is 
processed by means of an inverser with residue 
theorem, and we obtain the explicit form of the 
solution, denote sol. Finally using a stability analyzer, 
we deduce the explicit form of R0 and the algorithm 
is finished. 
 
3.2. Results of Computations 
Using our algorithm for computer algebra, the 
solution of the equations (2)-(9), that is obtained, is 
given by 
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with 
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where the coefficients A are given at Table 1 (up); 
and being Si,n the roots of the equation of fifth  degree 
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with the coefficients B are given at Table 1 (down), 
Finally, Jm(x) is the Bessel function of order m of the 
first kind, a is the radius of the circular reactor and �n 
are the zeroes of  J0 , namely [7] 
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3.3  Analysis of Results 
As is evident from the equations (10)-(25), the 
solution of (2)-(9) is very formidable as for to be 
manipulated by hand using pen and paper. The great 
advantage of computer algebra is protuberant. 
As it is observed at the equation (10), the solution  of 
(2)-(9), consists of three summands. The first one is 
given at (11) , the second is given at (12)-(14) and the 
third is given at (15)-(21) with the specifications 
(22)-(25).  For �  > 0, the first summand (11), decays 
exponentially with the time and it does not represent 
any amplification of the concentration of substance B 
inside the circular reactor.. 
The second summand (12)-(14)  does not depend on 
time and represents the stationary concentration 
profile of substance B, that is established within the 
reactor and again, it does not give any kind of 
amplification of the concentration of substance B. 
The third summand (15)-(21) is also a sum of terms 
with exponential dependence on time and some of 
such terms can be exponentially increasing with the 
time and then an amplification of the concentration of 
the substance B inside the circular reactor , would be 
had. The condition so that a such amplification is 
generated is that (24) admits a positive real solution, 
it is to say that B5 < 0,  where B5 is given at the Table 
1. This last condition can be rewritten as the 
threshold condition for the triggered of the 
amplification of the concentration of the substance B 
inside the circular reactor,, namely,   R0,n > 1, where  
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The critical parameter R0,,n will be named the basic 
reproductive number for the substance B and 
measures the effective tendency of the circular 
reactor to amplify the concentration of the substance 
B. The fundamental or ground value of the 
reproductive number (26), corresponds to n=1,  with 
�1=2.405 , namely 
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The equation (27) can be rewritten as 
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where R0 is the basic reproductive number  when  a 
� � ,  and is given by 
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Now, for the case when � = 0,  the equation (11) lost 
its dependence on time and can be considered as 
certain stationary concentration profile of substance 
B inside the circular reactor, jointly with the terms 
(12)-(14).  The condition for (11)-(14) be really 
genuine stationary concentration profiles of substance 
B inside the reactor  is  
�	�� � �
 �                                                               (30) 

which is equivalent to L(0)> 0 with L(s) being given 
at (23), and this last is equivalent to  A5 > 0, where A5 
is given at the Table 1. This condition  can be 
rewritten as R0 > 1, where R0  is given at (29). 
Finally, when � < 0, then (11) has exponential 
increasing with time and corresponds to the irruption 
of the global amplification of the concentration of the 
substance B inside the reactor, without necessity of 
any kind of reaction threshold  
We can see from (28) and (29) that 

�	��
	� �

�
�                                                               (31)

 

Now, from the perspective of the possibility of to 
control the reaction (1), we have that the percentage 

of decreasing of the initial density of the substance A 
inside the circular reactor, denoted  S0, both to 
prevent the stationary concentration profiles (11)-(14) 
as to obstruct the exponential amplification of the 
concentration of the substance B according with  
(15)-(21), are given, respectively by 
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From (31)-(33) we deduce that 
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it is to say the percentage of decreasing of the initial 
concentration of the substance A inside the reactor, to 
prevent the stationary concentration profiles of 
substance B, denote Pst  is greater than the percentage 
of decreasing  the initial concentration of substance A 
for to prevent the global amplification of  the 
concentration of substance  B, denoted PA. In other 
words is more expedite to avoid the amplification of 
the concentration of the substance B  that  to avoid 
the presence of stationary concentration profiles of B. 
Finally, from the solution that was obtained we can to 
derive the formula for the total mass of substance B 
at every time t inside the reactor, which is given at 
the Fig. 3, and it is defined as 
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4   Conclusion 
The problem that was considered here, is a linear 
problem, whose solution can be obtained 
symbolically using certain algorithm and then the 
basic reproductive rate for the reaction can be 
derived. From this perspective the considered linear 
problem is fully computable. But to say the truth, the 
solution (24) is non-computable symbolically, is just 
only numerically computable.  This implies that our 
linear transport problem is truly non-computable 
symbolically, and then the solution that was provided 
here, is a schematic solution that can not be specified 
symbolically with more details given the non-
computable character of (24).   
In all case, the algorithm that was used can be applied 
for others linear problems with boundary conditions, 
both computable as non-computable. Computer 
algebra is very useful to study transport phenomena. 
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Table 1. Coefficients of equations (23) and (24) 
 

 
Coefficients of  equation  (23) 
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Coefficients of  equation  (24) 
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Figure 2. Full analytical solution of the problem  (2)-(9) 
 

 
Figure 3.  Explicit form of the equation (35) 
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