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Abstract: - Fundamental theoretical ideas are considered toward the formulation of a measure of
flow complexity that is useful both fundamentally and in applications. General considerations
of geometric fractional dimensions, which can be functions of scale, offer a means to quantify
the physical complexity of multiscale flows including turbulence. An analytical example of
the dependence of the geometric dimension on scale is investigated. It is motivated by its
physical significance and relevance to turbulent flows both at large scales and small scales for
flow conditions associated with large Reynolds numbers. A basic element for a flow complexity
measure must be its ability to incorporate the entire range of multiscale flow behavior. Key
theoretical ingredients, based on the geometric dimension and its dependence on scale, are
investigated to develop a flow complexity measure that exhibits this multiscale capability.

Keywords: - Geometric Dimensions, Fractals, Distribution of Scales, Turbulence, Flow Opti-
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1. Introduction

One of the most basic and challenging fea-
tures of multiscale flows, including turbulence
at large Reynolds numbers, is the presence of
dynamics throughout a wide range of scales
(Catrakis, 2000; Sreenivasan, 1991). Such
phenomena are known to be highly complex,
on the basis of many observations. How-
ever, measures of their complexity are still un-
der development (Bar-Yam, 1997; Gell-Mann,
1995; Gell-Mann & Lloyd, 1996; Richardson,
1926; Reynolds, 1883). The development of
a quantitative physical measure, or measures,
of flow complexity requires advances in the
understanding of the multiscale behavior it-
self. Recent advances on a general theoretical
framework that relates geometric dimensions

to the distribution of scales (Catrakis, 2000,
2004), provide a means toward the realization
of such a flow complexity measure.

The fundamental and applied needs for a flow
complexity measure, in problems involving
multiscale flows and turbulence, arise natu-
rally from the challenges of quantifying mul-
tiscale flow aspects such as the information
content. A possible measure of the geometri-
cal complexity of multiscale flows is the fractal
dimension (Catrakis et al., 2002; Catrakis &
Dimotakis, 1998, 1996; Sreenivasan & Men-
eveau, 1986; Mandelbrot, 1975). To quan-
tify the complexity of the multiscale behav-
ior across the entire range of scales, however,
requires considerations of the dimension as a
function of scale (Catrakis, 2004, 2000).
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2. Theoretical Considerations

Theoretically, the following are desirable as-
pects, useful properties, and key questions re-
lated to the development of a flow complexity
measure that should be kept in mind:

First Set of Ideas: The flow complexity mea-
sure should incorporate not only the small
scales but the large scales as well, i.e. the be-
havior across the entire range of scales. Thus,
it should quantify the total level of complexity
from the behavior as a function of scale.

Second Set of Ideas: The measure should be
useful to quantitatively compare flows at dif-
ferent conditions and in different geometries,
or even if they are at the same conditions
and/or in the same geometries. It should be
useful both for the instantaneous structure of
the flow and its average characteristics. What
are the flow complexity dynamical equations
that result from the basic equations of mo-
tion? What are the limiting behaviors of the
flow complexity as various flow parameters,
such as the Reynolds number, are increased?

Third Set of Ideas: The measure should
be useful for investigating aspects associated
with maximization/minimization, optimiza-
tion, self-optimization, and related concepts.
What are the optima, i.e. maxima/minima,
principles or variational principles for the flow
complexity? Why is the flow complexity not
larger or smaller than it is in each physical
flow? To what extent can the flow complexity
be increased or decreased in adaptive flows
and evolutionary flows? To what extent do
multiscale flows self-optimize?

The first, second, and third set of ideas above
emphasize three key features desirable of a
useful measure of flow complexity: the ability
to incorporate the entire range of scales; the
utility to compare quantitatively flows of dif-
ferent complexity; and the suitability to facil-
itate optimization studies. The fractal dimen-
sion, at least as originally considered in turbu-
lence (Sreenivasan, 1991; Mandelbrot, 1975),
only applies to the small scales, for example.

The general framework on geometrical com-
plexity, developed by Catrakis (2004, 2000),
addresses the multiscale behavior across the
entire range of scales, i.e. both large scales
and small scales. The large-scale behavior can
be expected to be strongly scale dependent in
turbulence. Consider the full range of scales:

λmin
<∼ λ <∼ λmax , (1)

for a multiscale object in a d-dimensional Eu-
clidean space with a topological dimension dt.
For a multiscale object, the geometric dimen-
sion Dd(λ) at a scale λ is:

dt ≤ Dd(λ) ≤ d (2)

without necessarily assuming self-similarity.
The geometric dimension Dd(λ) is a function
of scale λ, can be fractional, and is a scale-
local measure of the complexity of the object.

A key general analytical relation pioneered
and derived by Catrakis (2004, 2000) is the re-
lation between the geometric dimension Dd(λ)
and the distribution fd(λ) of scales:

Dd(λ) = d − λ fd(λ)∫ λ

0
fd(λ′) dλ′

(3)

with λmin = 0 and λmax = ∞, and its inverse:

fd(λ) =
d−Dd(λ)

λ
exp

{
−

∫ ∞

λ

[
d−Dd(λ′)

] dλ′

λ′

}
(4)

where fd(λ) is the probability density of the
distance between a randomly-chosen location,
within a reference region bounding the object,
and the nearest part of the multiscale object.

Two paradigms in the study of multiscale be-
havior, which are useful for insight into the
development of a measure of flow complexity,
are the random walk and turbulence. Figure 1
shows a computational simulation of the tra-
jectory of a random walk with 10,000 steps in
two dimensions (top) and an experimental re-
sult of a three-dimensional turbulent jet with
Reynolds number 20,000 (bottom). Both phe-
nomena exhibit complexity that is a function
of scale (Takayasu, 1982; Catrakis, 2000).
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Figure 1: Two paradigms of multiscale behavior: the random walk and turbulence. Top:
Computational simulation of a two-dimensional random walk with 10,000 steps of equal length.
Bottom: Experimental image of a three-dimensional turbulent jet at Reynolds number 20,000.
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3. General Flow Complexity

General considerations, as suggested by
Catrakis (2000), indicate the following 3-level
hierarchy of geometrical complexity:

Level 1: Euclidean Complexity – Complexity
is only at a single scale

Level 2: Fractal Complexity – Complexity is
the same at all scales

Level 3: General Complexity – Complexity is
a general function of scale

It is the third level, i.e. general complexity,
that needs to be addressed in order to develop
a flow complexity measure useful for multi-
scale objects in general, including turbulence.
Consider, as an example in one dimension, a
multiscale fluctuating signal which has a prob-
ability density function p1(λ) of an interval λ
between two successive crossings of a certain
threshold value. In other words, p1(λ) is the
level-crossing probability density. As shown
by Catrakis (2000), the geometric dimension
D1(λ) is directly related to p1(λ) by the fol-
lowing general analytical relation:

D1(λ) = 1−
λ

∫ ∞

λ
p1(λ′) dl∫ λ

0

∫ ∞

λ′
p1(λ′′) dλ′′ dλ′

. (5)

In this case, the probability density f1(λ)
mentioned in the previous section in equa-
tion 3, is related to p1(λ) as f1(λ) =
(λm)−1

∫∞
λ p1(λ′) dλ′ where the mean scale

is λm =
∫∞
0 λ p1(λ) dλ. As an illustration,

consider the case of an exponential probabil-
ity density p1(λ) = exp(−λ/λm) / λm corre-
sponding to Poisson behavior. For this case,
we first note that f1(λ) = p1(λ). Then the an-
alytical result, as derived by Catrakis (2000),
for the geometric dimension as a function of
scale is:

D1(λ) = 1 − λ/λm

eλ/λm − 1
. (6)

This functional form is generalizable also to
two dimensions and three dimensions. Thus,

in d dimensions:

Dd(λ) = d − λ/λm

eλ/λm − 1
, (7)

where the topological dimension dt for these
Poisson processes is understood to be dt =
d−1. The large-scale and small-scale limiting
values of the geometric dimension are:

Dd(λ) −→
{

d, as λ → ∞
dt, as λ → 0.

(8)

This can be thought of as a measure of the
geometrical complexity as a function of scale,
which is shown in figure 2 (left) for Pois-
son behavior with d = 1. The correspond-
ing distribution of scales is shown in fig-
ure 2 (right) as the probability density func-
tion f̃ [log10(λ/λm)] for which, by conservation
of probability, we must have:

f̃
[
log10

(
λ

λm

)]
f

(
λ

λm

) =
d

(
λ

λm

)
d

[
log10

(
λ

λm

)] , (9)

or f̃ [log10 (λ/λm)] = ln(10) (λ/λm) f (λ/λm),
where ln(·) denotes the natural logarithm.

In the general case, based on the geometric
dimension function Dd(λ), let us consider an
interval of scales:

λ1 ≤ λ ≤ λ2 . (10)

Then we can consider a cumulative flow com-
plexity function Cλ1, λ2

for the behavior in
this range of scales as an integral of the dif-
ference between the geometric dimension and
the topological dimension with respect to the
logarithmic scale:

Cλ1, λ2
=

∫ ln λ2

ln λ1

[Dd(λ) − dt] d lnλ , (11)

which is a purely dimensionless quantity since
we have equivalently the dimensionless form:

Cλ1, λ2
=

∫ λ2

λ1

[Dd(λ) − dt]
dλ

λ
. (12)

The total complexity is thus Cλmin, λmax
for

the full range of scales λmin ≤ λ ≤ λmax.
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Figure 2: Fundamental measures useful to quantify the average complexity of multiscale objects
as a function of scale. As an illustrative example, Poisson statistics are shown in one dimension.
Left: Ensemble-averaged geometric dimension D1 plotted as a function of logarithmic scale.
Right: Probability density function f̃ of logarithmic scale.

Figure 3: Cumulative complexities Cλmin, λ and Cλ, λmax shown as functions of scale, on the left
and right respectively, corresponding to the one-dimensional Poisson statistics in figure 2, with
minimum and maximum scales taken as log10(λmin/λm) = −2.5 and log10(λmax/λm) = 1.5.
The total complexity value is Ctotal = Cλmin, λmax ' 1.5, which is the maximum value in both
plots in the range λmin ≤ λ ≤ λmax, corresponding to this behavior.

Available experimental and computational
data, for the random walk as well as for tur-
bulence, support the third level of complex-
ity, i.e. general complexity, because of the
observed dependence on scale. Specifically,
analysis of the random walk in one dimension
(Takayasu, 1982) shows a successive-coverage
dimension that is a function of scale, con-

sistent with experiments and computations
in three dimensions (Tsurumi & Takayasu,
1986). In turbulence, high-resolution mea-
surements in fully-developed flows indicate
the presence of exponential level-crossing dis-
tributions of scales (Kailasnath & Sreeni-
vasan, 1993; Sreenivasan et al., 1983) and thus
support directly the results presented above.
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4. Conclusions

The present considerations indicate that a
measure of flow complexity can be quantified
in terms of an integral of the geometric di-
mension as a function of scale. This provides
a means to quantify the complexity across the
entire range of scales and is useful for compar-
ing different flow conditions, such as for flow
optimization, as well as for quantifying the to-
tal information content of multiscale flows.
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