On the steady fall of a rigid body in Oseen flow weighted approach

Kračmar Stanislav ${ }^{1}$, Nečasová Šárka ${ }^{2}$
${ }^{1}$ Department of Mathematics, Czech Technical University, Karlovo nám. 23, Prague 2, Czech Republic
${ }^{2}$ Mathematical Institute of the Academy of Sciences, Žitná 25 ,
11567 Prague 1,
Czech Republic

Abstract: The aim of this paper is to prove the existence of the strong solution to the problem of the Oseen flow around a rotating body in weighted spaces.

Key Words: rigid body, steady fall, strong solution, Lizorkin theory, Marcinkiewicz theory, weighted spaces, Muckenhoupt class

1 Introduction

One of the important problems in fluid mechanics is to study of the Navier-Stokes flow past a rotating obstacle. Among a series of results on qualitative properties of the problem or realted linear problems let us mention T. Hishida [H1],[H2],[H3], G. P. Galdi [G1],[G2], R. Farwig, T. Hishida, D. Müller [FHM], R. Farwig [Fa1], [Fa2], Š. Nečasová [Ne1], [Ne2], S. Kračmar, Š. Nečasová, P. Penel [KNPe], R. Farwig, M. Krbec, : S. Nečasová [FKN1], [FKN2], S. Kračmar ,Š. Nečasová, [KN], M. Geissert, M. Hieber, H. Heck [GHH].

We investigate the modified Oseen problem which is the simplified form of the problem of the fall of the rigid body in viscous fluid. We consider a coordinate system which is attached to the body. We assume that the body also rotate and the angular velocity ω is in the direction of gravitational field g, for simplicity we choose $\omega=\lambda g$.

2 Mathematical preliminaries

The Lebesgue spaces are denoted by $L^{p}\left(\mathbb{R}^{n}\right)$, $1 \leq p \leq \infty$, and equipped the norms $\|\cdot\|_{0, p}$. By $W^{k, p}\left(\mathbb{R}^{N}\right), k \geq 0$ an integer, $1 \leq p \leq \infty$, we denote the usual Sobolev spaces with the norms $\|\cdot\|_{k, p}$. Further, we define the homogeneous Sobolev spaces $D^{m, q}\left(\mathbb{R}^{n}\right)$ equipped with the norm $\|\nabla \cdot\|_{m-1, q}$. Denote by $\mathcal{S}\left(\mathbb{R}^{n}\right)$ the space of functions of rapid decrease. For $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ we denote by \widehat{u} its Fourier transform. Given a function $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$, let us consider the integral transform
$T u \equiv h(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{R^{n}} e^{i x \xi} \phi(\xi) \widehat{u}(\xi) d x, u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
We denote the vector space

$$
\begin{equation*}
\mathbf{W}^{\cdot 1, q}(\Omega)=\left\{p \in L_{l o c}^{1}(\bar{\Omega}) ; \nabla p \in L^{q}(\Omega)^{n}\right\}, \tag{2.1}
\end{equation*}
$$

is called a homogenneous Sobolev space. Here $\|\nabla p\|_{q}$ is only a seminorm, and the quotient space $W^{\cdot 1, q}(\Omega) / N_{1}$ modulo N_{1}, the space of constants, becomes a Banach space. The vector space
$\tilde{\mathbf{W}}^{q}(\Omega)=\left\{u \in L_{l o c}^{q}(\bar{\Omega}) ;\left\|\nabla^{2} u\right\|_{q}<\infty,\left\|\partial_{2} u\right\|_{q}<\infty\right\}$,
where $\left\|\nabla^{2} u\right\|=\left(\sum_{j, k=1}^{n}\left\|\partial_{j} \partial_{k} u\right\|_{q}^{q}\right)^{1 / q}$ will be endowed with the seminorm $\left\|\nabla^{2} u\right\|_{q}+\left\|\partial_{2} u\right\|_{q}$. It is easy to see that $\left\|\nabla^{2} u\right\|_{q}+\left\|\partial_{2} u\right\|_{q}=0$ if and only if $u \in N_{2}=\left\{b_{1} x_{1}+a+b_{3} x_{3}+\right.$ $\left.\ldots+b_{n} x_{n} ; a, b_{1}, b_{3}, \ldots, b_{n} \in \mathbf{R}\right\}$. Then $\tilde{\mathbf{W}}^{q}(\Omega) / N_{2}$ becomes a Banach space with norm $\left\|\nabla^{2} u\right\|_{q}+$ $\left\|\partial_{2} u\right\|_{q}$, where u is understood as a class modulo N_{2}. For vector fields we get correspondingly the spaces $\tilde{\mathbf{W}}^{q}(\Omega)^{n}$ and $\tilde{\mathbf{W}}^{q}(\Omega)^{n} / N_{2}^{n}, W^{\cdot 1, q} / N_{1}, N_{1}$ is the space of constants.

We shall consider the weighted Lebesgue space

$$
\begin{aligned}
& L_{w}^{q}\left(\mathbb{R}^{n}\right)=L_{w}^{q}=\left\{u \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right):\right. \\
& \left.\|u\|_{q, w}=\left(\int_{\mathbb{R}^{n}}|u(x)|^{q} w(x) d x\right)^{1 / q}<\infty\right\}
\end{aligned}
$$

where $w \in L_{l o c}^{1}$ is a weight function. A weight or a weight function will be always an a.e. nonnegative and locally integrable function. In order to apply estimates for singular integral operators, multiplier operators, the weight function w will be supposed to satisfy the Muckenhoupt A_{p}-condition.

Definition Let \mathcal{R} be a colection of bounded sets in \mathbb{R}^{n}. A weight function $0 \leq w \in L_{l o c}^{1}$ belongs to the Muckenhoupt class $\bar{A}_{q}\left(\mathbb{R}^{n}, \mathcal{R}\right), 1 \leq$ $q<\infty$, if there exists a constant $C>0$ such that

$$
\begin{gathered}
\sup _{Q}\left(\frac{1}{|R|} \int_{R} w(x) d x\right)\left(\frac{1}{|R|} \int_{R} w^{-1 /(q-1)} d x\right)^{q-1} \\
\leq C<+\infty, \text { for any } R \in \mathcal{R}
\end{gathered}
$$

if $1<q<\infty$, and

$$
\begin{gathered}
\sup _{x \in R, R \in \mathcal{R}} \frac{1}{|R|} \int_{\mathcal{R}} w(x) d x \\
\leq C w\left(x_{0}\right), \quad \text { for a.a. } x_{0} \in \mathbb{R}^{N}
\end{gathered}
$$

if $q=1$, respectively.
Lemma 2.1. Let $\Phi: \mathbf{R}^{n} \rightarrow \underset{\partial^{n}}{\mathbf{R}}$ be continuous together with the derivative $\frac{\partial^{n} \phi}{\partial \xi_{1} \ldots \partial \xi_{n}}$ and all preceding derivatives for $\left|\xi_{i}\right|>0, i=1, \ldots, n$. Then, if for some $\beta \in[0,1)$ and $M>0$

$$
\left|\xi_{1}\right|^{k_{1}+\beta} \ldots\left|\xi_{n}\right|^{k_{n}+\beta}\left|\frac{\partial^{k} \phi}{\partial \xi_{1}^{k_{1}} \ldots \partial \xi_{n}^{k_{n}}}\right| \leq M
$$

where k_{i} is zero or one and $K=\sum_{i=1}^{n} k_{i}=$ $0,1, \ldots, n$, the integral transform (2.2) defines
a bounded linear operator from $L^{q}\left(\mathbf{R}^{n}\right)$ into $L^{r}\left(\mathbf{R}^{n}\right), 1<q<\infty, 1 / r=1 / q-\beta$ and we have $\|T u\|_{r} \leq c\|u\|_{q}$, with a constant c depending only on M, r and q.

For more details see [Ga1].
Lemma 2.2 Let $1<q<\infty$ and $w \in A_{q}$. Then the following statement holds true: Let $m \in$ $C^{n}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ satisfy the pointwise HörmanderMikhlin multiplier condition

$$
|\xi|^{|\alpha|}\left|D^{\alpha} m(\xi)\right| \leq c_{\alpha} \quad \text { for all } \quad \xi \in \mathbb{R}^{n} \backslash\{0\}
$$

and all multi-indices $\alpha \in \mathbb{N}_{0}^{n}$ with $|\alpha| \leq n$. Then the multiplier operator $u \mapsto \mathcal{F}^{-1}(m \widehat{u}), u \in$ $\mathcal{S}\left(\mathbb{R}^{n}\right)$, can be extended to a bounded linear operator from L_{w}^{q} to L_{w}^{q}.
(ii) Let $m \in C^{n}$ in each "quadrant" of R^{n} and such that $\|m\|_{\infty} \leq B$,

$$
\sup _{x_{k+1}, \ldots x_{k}} \int_{\mathcal{J}}\left|\frac{\partial^{k} m(x)}{\partial x_{1} \ldots \partial x_{k}}\right| d x_{1} \ldots d x_{k} \leq B
$$

for $0<k \leq n, \mathcal{J}$ any dyadic interavl in R^{k}, and any permutation of $\left(x_{1}, \ldots, x_{n}\right)$.If $1<p<\infty$ and $w \in A_{p}\left(R^{n}, \mathcal{R}_{\backslash}\right)$ then m is a bounded multipler from $L_{w}^{p}\left(R^{n}\right)$ to $L_{w}^{p}\left(R^{n}\right)$.

Proof: see $[\mathrm{GCRF}],[\mathrm{Ku}]$.
Lemma 2.3 Let $1<p<\infty$ and let

$$
\begin{gathered}
\sigma_{\alpha}=(1+|x|)^{\alpha} \\
\eta_{\alpha, \beta}=(1+|x|)^{\alpha}(1+s(x))^{\beta}
\end{gathered}
$$

Then

$$
\sigma_{\alpha} \in A_{p} \text { if }-1<\alpha<(p-1)
$$

$\eta_{\alpha, \beta} \in A_{p}$ if $-1<\beta<p-1,-1<\alpha+\beta<(p-1)$.

Proof: see $[\mathrm{Ku}],[\mathrm{KNPo}],[\mathrm{FKN} 1]$.

3 Oseen problem in the whole space without weights

We investigate the problem

$$
\left\{\begin{array}{l}
R \tilde{v} \cdot \nabla u+\lambda g \times u-\mu \Delta u+\nabla p=R f \tag{3.1}\\
\nabla \cdot u=h
\end{array}\right.
$$

The estimates for (3.1) will be obtained if we make replacements

$$
\begin{aligned}
& f \rightarrow f / \mathcal{R} \\
& p \rightarrow p / \mathcal{R} \\
& h \rightarrow h / \mathcal{R} \\
& x_{i} \rightarrow \mathcal{R} x_{i}
\end{aligned}
$$

Now, we investigate the problem

$$
\left\{\begin{array}{l}
\tilde{v} \cdot \nabla u+\lambda g \times u-\mu \Delta u+\nabla p=f \tag{3.2}\\
\nabla \cdot u=h
\end{array}\right.
$$

Theorem 3.1. Given $f \in W^{m, q}\left(\mathbf{R}^{n}\right), h \in$ $W^{m+1, q}\left(\mathbf{R}^{n}\right), m \geq 0,1<q<\infty$, there exists a pair of functions v, π with $v \in D^{m+2, q}$, $\pi \in D^{m+1, q}$, for any $m>0$ and satisfying

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial x_{2}}-\mu \Delta v+\omega \times v+\nabla \pi=f \tag{3.3}\\
\nabla \cdot v=h
\end{array}\right.
$$

Moreover, for $l \in[0, m], i=1,3$ the quantitilies $\left|v_{i}\right|_{1, q}\left\|v_{i}\right\|_{q},\left\|\frac{\partial v}{\partial x_{2}}\right\|_{l, q},|v|_{l+2, q},|\pi|_{l+1, q}$ are finite and satisfy the estimate

$$
\begin{align*}
& R\left\|\frac{\partial v}{\partial x_{2}}\right\|_{l, q}+|v|_{l+2, q}+|p|_{l+1, q}+ \\
& +\left\|v_{i}\right\|_{l, q}+\left|v_{i}\right|_{l+1, q} \\
& \leq c\left(R\|f\|_{l, q}+R\|h\|_{l+1, q}+\|h\|_{l, q}\right), \quad i=1,3 \tag{3.4}
\end{align*}
$$

If $1<q<4$ then $R\left\|\frac{\partial v_{2}}{\partial x_{l}}\right\|_{l, \frac{4 q}{4-q}}$ is finite and

$$
\begin{align*}
& R\left\|\frac{\partial v}{\partial x_{2}}\right\|_{l, q}+\left\|v_{i}\right\|_{l, q}+\left|v_{i}\right|_{1, q} \\
& +R^{1 / 4}\left\|\frac{\partial v_{2}}{\partial x_{l}}\right\|_{l, \frac{4 q}{4-q}}+|v|_{l+2, q}+|\pi|_{l+1, q} \tag{3.5}\\
& \leq c\left(R\|f\|_{l, q}+R\|h\|_{l+1, q}+\|h\|_{l, q}\right), \quad i=1,3
\end{align*}
$$

If $1<q<2$ then $\left|v_{2}\right|_{\frac{2 q}{2-q}}$ is finite and

$$
\begin{align*}
& \left(\left|v_{i}\right|_{l, q}+R^{1 / 2}\left|v_{2}\right|_{l, \frac{2 q}{2-q}}\right)+\left(\left|v_{i}\right|_{l+1, q}+\left|\frac{\partial v_{2}}{\partial x_{l}}\right|_{l, q}\right) \\
& +\left|\frac{\partial v}{\partial x_{2}}\right|_{l, q}+|v|_{l+2, q}+|\pi|_{l+1, q} \\
& \leq c\left(R|f|_{l, q}+R|h|_{l+1, q}+|h|_{l, q}\right), \quad i=1,3 \tag{3.6}
\end{align*}
$$

Proof: We will sketch the proof.
We already have solved problem for the homogeneous Oseen problem. We can assume that $v=u+w, \nabla \cdot u=0, \nabla \cdot w=g$. Then we have to solve

$$
\left\{\begin{array}{l}
\frac{\partial w}{\partial x_{2}}+\omega \times w-\Delta w+\nabla \tau=0 \tag{3.7}\\
\nabla \cdot w=h
\end{array}\right.
$$

Applying the Fourier transformation and $\mathrm{Li}-$ zorkin theorem we get

$$
\begin{gather*}
\left\|w_{i}\right\|_{r} \leq c\|h\|_{r}, \quad i=1,3 \tag{3.8}\\
|w|_{1, r} \leq c\|h\|_{r} \tag{3.9}\\
|w|_{2, r} \leq c|h|_{1, r} \tag{3.10}\\
|\tau|_{1, r} \leq c\|h\|_{1, r} \tag{3.11}\\
\left\|\frac{\partial w}{\partial x_{2}}\right\|_{r} \leq\|h\|_{r} \tag{3.12}\\
\left\|\frac{\partial w}{\partial x_{l}}\right\|_{r} \leq\|h\|_{r} \tag{3.13}\\
\left\|w_{2}\right\|_{\frac{3 r}{3-r}} \leq\|h\|_{r}, \quad 1<r<3 \tag{3.14}
\end{gather*}
$$

Now, putting together with homogeneous case, we get $1<q<\infty$

$$
\begin{gather*}
\left\|\frac{\partial v}{\partial x_{2}}\right\|_{q}+|v|_{2, q}+|p|_{1, q} \leq C\left(\|f\|_{q}+\|h\|_{1, q}\right) \tag{3.15}\\
\left|u_{2}\right|_{1, s_{1}} \leq c\left(\|f\|_{q}+\|h\|_{s_{1}}\right) \tag{3.16}\\
\left|v_{i}\right|_{1, q} \leq c\left(\|f\|_{q}+\|h\|_{1, q}\right), \quad i=1,3 \tag{3.17}
\end{gather*}
$$

where $s_{1}=\frac{4 q}{4-q}$. Applying the Sobolev imbedding we get

$$
\begin{equation*}
\|g\|_{s_{1}} \leq\|h\|_{1, q} \quad 1<q<4 \tag{3.18}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|v_{2}\right\|_{1, s_{1}} \leq c\left(\|f\|_{q}+\|h\|_{1, q}\right) \tag{3.19}
\end{equation*}
$$

Finally, since

$$
\begin{equation*}
\left|v_{2}\right|_{\frac{3 r}{3-r}} \leq|h|_{\frac{3 r}{3-r}} \tag{3.20}
\end{equation*}
$$

and let $\frac{3 r}{3-r}=\frac{2 q}{2-q}$, we get $r_{1}=\frac{6 q}{6-5 q}$ and

$$
\begin{equation*}
\left|v_{2}\right|_{\frac{2 q}{2-q}} \leq|h|_{q} \tag{3.21}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|v_{2}\right|_{\frac{2 q}{2-q}} \leq|h|_{\frac{6 q}{6-5 q}} \leq c\|h\|_{1, q} \tag{3.22}
\end{equation*}
$$

4 Weighted approach in R^{n}

We consider the radial weight functions of the form

$$
M(x)=(1+|x|)^{\alpha}, x \in \mathbf{R}^{\mathbf{n}}
$$

with $0<\alpha<1, n \geq 2$. Multiplying the Oseen equation (3.5) with M we obtain the following equations for $M u$

$$
\left\{\begin{array}{l}
-\Delta(M u)+\partial_{2}(M u)+\nabla(M p)+\omega \times(M u)= \\
M f+F(M) \\
\quad \operatorname{div}(M u)=M g+(\nabla M) \cdot g
\end{array}\right.
$$

where

$$
\begin{aligned}
& F(M)=-2(\nabla M)(\nabla u)-(\Delta M) u+ \\
& \left(\partial_{2} M\right) u+(\nabla M) p
\end{aligned}
$$

We cannot apply Theorem 3.1 directly since $M u$ could leave the spaces which we consider in our theorem. To avoid this problem we introduce a cut-off procedure. Let $\varphi \in C_{0}^{\infty}\left(\mathbf{R}^{\mathbf{n}}\right)$ be a function with $0 \leq \varphi \leq 1$ for $|x| \leq 1, \varphi(x)=1$ for $|x| \leq 1, \varphi(x)=0$ for $|x| \geq 2$ and set $\varphi_{j}(x)=\varphi\left(j^{-1} x\right), M_{j}=\varphi_{j} M$ for all $j \in N$. Replacing M by M_{j} we get the main result

Theorem 4.1

Let $n=3,0<\alpha<1, \alpha^{\prime}>\alpha+\frac{1}{2}, q>1$ such that

$$
1<\alpha+\frac{3}{q}<\frac{10}{4}
$$

and put $M(x)=(1+|x|)^{\alpha}, M^{\prime}(x)=(1+$ $|x|)^{\alpha^{\prime}}, x \in \mathbf{R}^{n}$. Assume that $f \in L^{q}\left(\mathbf{R}^{n}\right)^{n}, g \in$ $W^{1, q}\left(\mathbf{R}^{n}\right)$ such that $\left\|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right)\right\|_{q}<\infty$, and let $(u, p) \in \tilde{\mathbf{W}}^{q}\left(\mathbf{R}^{n}\right)^{n} \times \mathbf{W}^{11, q}\left(\mathbf{R}^{n}\right)$ be such a solution of the equations

$$
\begin{gathered}
-\Delta u+\partial_{2} u+\nabla p+\omega \times u=f \\
\operatorname{div} u=g
\end{gathered}
$$

Then, after redefining modulo $N_{2}^{n} \times N_{1},(u, p)$ satisfies the estimate

$$
\left\{\begin{array}{l}
\|\left(\nabla^{2}(M u), \partial_{2}(M u), \nabla(M p), M u_{j}, \partial\left(M u_{j}\right) \|_{q}\right. \tag{4.2}\\
+\left\|M \nabla^{2} u, M \partial_{2} u, M \nabla p\right\|_{q} \leq \\
C \|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g \|_{q}, j=1,3\right. \\
\\
\left\|u_{2}\right\|_{q_{1}}+\left\|\frac{\partial u_{2}}{\partial x_{l}}, p\right\|_{q_{2}}+ \\
\left\|\nabla^{2} u, \partial_{2} u, \nabla p, \frac{\partial u_{j}}{\partial x_{l}}, u_{j}\right\|_{q_{3}} \leq \\
c \|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g \|_{q}, j=1,3, l=1,3\right.
\end{array}\right.
$$

where $\frac{1}{q_{1}}=\frac{1}{q}-\frac{1}{n}+\frac{\alpha}{n}, \frac{1}{q_{3}}=\frac{1}{q_{1}}+\frac{2}{n+1}, \frac{1}{q_{2}}=\frac{1}{q_{3}}-\frac{1}{n}$, $c=c\left(n, q, \alpha, \alpha^{\prime}\right)>0$ is a constant and assuming $\|(M f, M g, M \nabla g)\|_{q}+\|(f, g, \nabla g)\|_{q_{4}}<\infty$. we get

$$
\left\{\begin{array}{l}
\left\|\left(\nabla^{2}(M u), \partial_{2}(M u), \nabla(M p)\right)\right\|_{q}+ \tag{4.3}\\
+\left\|\left(M \nabla^{2} u, M \partial_{2} u, M \nabla p\right)\right\|_{q} \leq \\
\leq C\left(\|(M f, M g, M \nabla g)\|_{q}+\|(f, g, \nabla g)\|_{q_{4}}\right)
\end{array}\right.
$$

where $\frac{1}{q_{4}}=\frac{1}{q}-\frac{1}{n}+\frac{\bar{\beta}}{n}+\frac{2}{n+1}$ with a $\bar{\beta}$ satisfying $\alpha<\bar{\beta}<\frac{10}{4}-\frac{3}{q}$ and $\frac{1}{2}+\bar{\beta}<\alpha^{\prime}$ it holds.

Proof:

Since $0<\alpha<1, \alpha^{\prime}>\alpha+\frac{1}{2}, \frac{6}{5-2 \alpha}<q<\frac{3}{1-\alpha}$ it implies $\frac{1}{q_{1}}=\frac{1}{q}-\frac{1}{n}+\frac{\alpha}{n}>0, \frac{1}{q_{3}}=\frac{1}{q_{1}}+\frac{1}{2}=$ $\frac{1}{q_{2}}+\frac{1}{n}=\frac{1}{q}+\frac{1}{6}+\frac{\alpha}{3}<1$ and $\frac{1}{q_{3}}<\frac{1}{q}+\frac{\alpha^{\prime}}{3}$. It follows that, $1<q_{3}<q_{2}<q_{1}<\infty$. Setting $\alpha "=\frac{1}{2}+\alpha$ we get $\left\|M^{\prime-1}\right\|_{\frac{3}{\alpha^{\prime \prime}}}<\infty$ and since $\frac{1}{q_{3}}=\frac{1}{q}+\frac{\alpha^{\prime \prime}}{3}$.
$\|f\|_{q_{3}}=\left\|M^{\prime-1} M^{\prime} f\right\|_{q_{3}} \leq\left\|M^{\prime-1}\right\|_{\frac{3}{\alpha^{\prime \prime}}}\left\|M^{\prime} f\right\|_{q}<\infty$.
Similarly, $\|g\|_{q_{3}}<\infty$ and $\|\nabla g\|_{q_{3}}<\infty$. Therefore Theorem 3.2 yields a solution $(u, p) \in$ $\widetilde{W}^{q_{3}}\left(R^{3}\right)^{3} \times \dot{W}^{1, q_{3}}\left(R^{3}\right)$ of (3.1) satisfying
$\left\{\begin{array}{l}\left\|\left(\nabla^{2} u, \partial_{2} u, \nabla p, u_{j}, \frac{\partial u_{j}}{\partial x_{l}}\right)\right\|_{q_{3}} \leq c_{1}\|(f, g, \nabla g)\|_{q_{3}} \\ \leq c_{2}\left\|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right)\right\|_{q} .\end{array}\right.$
Since $1<q_{3}<2$ and $\frac{1}{3}<\frac{1}{q}+\frac{\alpha}{3}<\frac{1}{q}+\frac{\alpha^{\prime \prime}}{3}=\frac{1}{q_{3}}$, $1<q_{3}<3$, we may use Theorem 2.2 to get (u, p) modulo $N_{2}^{n} \times N_{1}$ such that

$$
\begin{align*}
& \left\|u_{2}\right\|_{q_{1}} \leq C\|(f, g, \nabla g)\|_{q_{3}} \\
& \left\|\frac{\partial u_{2}}{\partial x_{l}}\right\|_{q_{2}} \leq C\left\|\nabla^{2} u\right\|_{q_{3}} \tag{4.6}\\
& \|p\|_{q_{2}} \leq C\|\nabla p\|_{q_{3}}
\end{align*}
$$

Then

$$
\begin{equation*}
\left\|u_{2}\right\|_{q_{1}}+\left\|\left(\frac{\partial u_{j}}{\partial x_{l}}, p\right)\right\|_{q_{2}} \leq c\left\|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right)\right\|_{q} \tag{4.7}
\end{equation*}
$$

Choosing $\bar{\beta}$ such that $\alpha<\bar{\beta}<\frac{10}{4}-\frac{3}{q}, \frac{1}{2}+\bar{\beta}<\alpha^{\prime}$, $r_{1}=\left(\frac{1}{q}-\frac{1}{n}+\frac{\bar{\beta}}{3}\right)^{-1}, r_{3}=\left(\frac{1}{r_{1}}+\frac{1}{2}\right)^{-1}, r_{2}=\left(\frac{1}{r_{3}}-\right.$ $\left.\frac{1}{3}\right)^{-1}, \bar{\alpha} "=\frac{1}{2}+\bar{\beta}$ correspondingly to $q_{1}, q_{2}, q_{3}, \alpha$ ". Then the arguments above yield the same inequalities (4.5),(4.6) with q_{1}, q_{2}, q_{3} replaced by $\bar{q}_{1}, \bar{q}_{2}, \bar{q}_{3}$, in particular $(u, p) \in \widetilde{W}^{r_{3}}\left(R^{n}\right)^{n} \times$
$\dot{W}^{1, \bar{r}_{4}}\left(R^{n}\right)$. Multilplying (3.1) by $M_{j}=\psi_{j} M, j \in$ N, with ψ_{j} as above, we obtain the equations

Applying Theorem 3.2. and using (4.8) from the last estimates we obtain
$\left\{\begin{array}{l}-\Delta\left(M_{j} u\right)+\partial_{2}\left(M_{j} u\right)+\nabla\left(M_{j} p\right)=M_{j} f+F\left(M_{j}\right), \\ \operatorname{div}\left(M_{j} u\right)=M_{j} g+\left(\nabla M_{j}\right) \cdot u .\end{array}\right.$
Since $M_{j} u, M_{j} p$ have compact support we may apply Theorem 3.3. First we will estimate the expressions on the right of (4.8) independently of $j \in N$. The functions ψ_{j} have the following elementary properties:

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} \psi_{j}=1 \text { for all } x \in R^{n} \\
& \operatorname{supp} \nabla \psi_{j} \subseteq\left\{x \in R^{n} ; j \leq|x| \leq 2 j\right\} \\
& \left|\nabla \psi_{j}(x)\right| \leq C(1+|x|)^{-1} \\
& \left|\nabla^{2} \psi_{j}(x)\right| \leq C(1+|x|)^{-2}
\end{aligned}
$$

where c is independent of j, x. Further

$$
\nabla M_{j}=(\nabla M) \Psi_{j}+M \nabla \Psi_{j},
$$

which gets

$$
\begin{aligned}
& \left|\nabla M_{j}(x)\right| \leq C(1+(x))^{\alpha-1}, \\
& \left|\nabla^{2} M_{j}(x)\right| \leq C(1+|x|)^{\alpha-2}
\end{aligned}
$$

for all $j \in N, x \in R^{3}$.
Hence for $(4.5),(4.7) r_{1}, r_{2}, r_{3}$ we get the following estimate

$$
\begin{equation*}
\left\|\left(\partial_{2} M_{j}\right) u\right\|_{q} \leq\left\|\partial_{2} M_{j}\right\|_{\left(\frac{1}{n}-\frac{\bar{\beta}}{n}\right)^{-1}}\|u\|_{r_{1}} \leq c\|u\|_{r_{1}} . \tag{4.9}
\end{equation*}
$$

Since $\frac{1}{q}=\left(\frac{1}{3}-\frac{\bar{\beta}}{3}\right)+\frac{1}{r_{1}}$ and $\sup _{j}\left\|\partial_{2} M_{j}\right\|_{\left(\frac{1}{3}-\frac{\bar{\zeta}}{3}\right)^{-1}}<\infty$ it follows

$$
\begin{equation*}
\left\|\left(\partial_{2} M_{j}\right) u\right\|_{q} \leq C\left\|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right)\right\|_{q}, \tag{4.10}
\end{equation*}
$$

with C not depending on j. Further we get

$$
\begin{align*}
& \left\|\left(\nabla M_{j}\right)(\nabla u)\right\|_{q} \leq\left\|\nabla M_{j}\right\|_{\left(\frac{1}{n}-\frac{\vec{\beta}^{\prime}}{n}\right)^{-1}\|\nabla u\|_{r_{2}}}^{\leq C_{1}\|\nabla u\|_{r_{2}} \leq C_{2}\left\|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right)\right\|_{q} .}
\end{align*}
$$

Similarly, we obtain

$$
\begin{aligned}
& \left\|\left(\nabla M_{j}\right) p\right\|_{q} \leq C\left(\| M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right) \|_{q}, \\
& \left.\left\|\left(\Delta M_{j}\right) u\right\|_{q} \leq C \| M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right) \|_{q}, \\
& \left\|\left(\nabla M_{j}\right) u\right\|_{q} \leq C\left\|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right)\right\|_{q},
\end{aligned}
$$

and
$\left\|\nabla \operatorname{div}\left(M_{j} u\right)\right\|_{q} \leq C\left\|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right)\right\|_{q}$.

$$
\begin{align*}
& \left.\|\left(\nabla^{2} M_{j} u\right), \partial_{2}\left(M_{j} u\right), \nabla\left(M_{j} p\right)\right) \|_{q} \leq \\
& \leq C_{1}\left(\|(M f, M g, M \nabla g)\|_{q}+\right. \tag{4.12}\\
& \left.\left\|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right)\right\|_{q}\right),
\end{align*}
$$

with C_{1} not depending on j. Therefore $\|\left(\nabla^{2}\left(M_{j} u\right), \partial_{2}\left(M_{j} u\right), \nabla\left(M_{j}\right) \|_{q}\right.$ is bounded uniformly is $j \in N$ and using weak convergence properties for $j \rightarrow \infty$ yields

$$
\begin{align*}
& \|\left(\nabla^{2}(M u), \partial_{2}(M u),\right. \\
& \nabla\left(M_{p}\right)\left\|_{q} \leq C\right\|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right) \|_{q} \tag{4.13}
\end{align*}
$$

Moreover the above estimates leads to

$$
\begin{align*}
& \left\|\left(M_{j} \nabla^{2} u, M_{j} \partial_{2} u, M_{j} \nabla p\right)\right\|_{q} \\
& \leq C_{1}\left(\|\left(\nabla^{2}\left(M_{j} u\right),\right.\right. \\
& \partial_{2}\left(M_{j} u\right), \nabla\left(M_{j} p\right) \|_{q}+ \tag{4.14}\\
& +\|\left(\left(\nabla M_{j}\right)(\nabla u),\right. \\
& \left.\left.\left(\nabla^{2} M_{j}\right) u,\left(\partial_{2} M_{j}\right) u,\left(\nabla M_{j}\right) p\right) \|_{q}\right) \\
& \leq c_{2}\left\|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right)\right\|_{q},
\end{align*}
$$

for all $j \in N$; therefore we get
$\left\|\left(M \nabla^{2} u, M \partial_{2} u, M \nabla p\right)\right\|_{q} \leq C\left\|\left(M^{\prime} f, M^{\prime} g, M^{\prime} \nabla g\right)\right\|_{q}$.
Using (4.5), (4.7), (4.13) we get (4.2).
We consider homogeneous Oseen problem

$$
\left\{\begin{array}{l}
R \tilde{v} \cdot \nabla u+\lambda g \times u-\mu \Delta u+\nabla p=R f \tag{4.16}\\
\nabla \cdot u=0
\end{array}\right.
$$

Theorem 4.1. Given $f \in L_{w}^{q}\left(\mathbf{R}^{n}\right), 1<q<\infty$, with $w=\sigma_{\alpha}, \eta_{\alpha, \beta}$ there exists a pair of functions (u, p) with $u \in D^{2, q}, \nabla p \in L^{q}, u_{1}, u_{3} \in L^{q}, \frac{\partial u_{1}}{\partial x_{2}}$, $\frac{\partial u_{2}}{\partial x_{2}}, \frac{\partial u_{3}}{\partial x_{2}} \in L^{q}$, satisfying (4.16) and moreover

$$
\begin{align*}
& R\left\|\frac{\partial u}{\partial x_{2}}\right\|_{q, w}+R\left\|\frac{\partial u_{1}}{\partial x_{l}}\right\|_{q, w}+R\left\|\frac{\partial u_{3}}{\partial x_{l}}\right\|_{q, w}+ \\
& +\left\|u_{1}\right\|_{q, w}+\left\|u_{3}\right\|_{q, w}+|\nabla p|_{q, w}+|\Delta u|_{q, w} \\
& \leq c_{1} R\|f\|_{q, w} . \tag{4.17}
\end{align*}
$$

Proof: It follows Theorem 3.1, Lemma 2 and from results [FKN1].

Acknowledgement:

First part of this article was supported by the European network HYKE, funded by the EC
as contract HPRN-CT-2002-00282, which is acknowledged. Second part of this article was supported by the Grant Agency of the Academy of Sciences No.IAA10019505 and second author was supported by the Academy of Sciences of the Czech Republic, Institutional research plan No. AV0Z10190503. First author was supported by the reserach plans of the Ministry of Education of the Czech Republic N. 6840770010.

5 References

[F1] R.Farwig, H. Sohr, Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains, Theory of the Navier-Stokes equations in exterior domains.,1130, Ser. Adv. Math. Appl. Sci., 47, World Sci. Publishing, River Edge, NJ, 1998
[Fa1] Farwig, R., An L^{q}-analysis of viscous fluid flow past a rotating obstacle. FB Mathematik, TU Darmstadt, Preprint no. 2325 (2004); to appear in: Tôhoku Math. J. (2006).
[Fa2] Farwig, R., Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle. Banach Center Publications, Vol. 70, Warsaw 2005.
[FKN1] R. Farwig, M. Krbec, Š. Nečasová, A weighted L^{q} - approach to Oseen Flow around a rotating body, Preprint 2005
[FKN2] R. Farwig, M. Krbec, Š. Nečasová, A weighted L^{q} - approach to Stokes Flow around a rotating body, Preprint 2005
[FHM] Farwig, R., Hishida, T. and Müller, D., L^{q}-Theory of a singular "winding" integral operator arising from fluid dynamics. Pacific J. Math. 215 (2004), 297-312.
[Ga1] Galdi, G. P., An introduction to the mathematical theory of the Navier-Stokes equations: Linearised steady problems. Springer Tracts in Natural Philosophy, Vol. 38, 2nd edition, Springer 1998.
[G1] Galdi, G. P., On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics, Vol. 1, Ed. by Friedlander, D. Serre, Elsevier 2002.
[G2] Galdi, G. P., Steady flow of a NavierStokes fluid around a rotating obstacle. J. Elasticity 71 (2003), 1-31.
[GCRF] Garcia-Cuerva, J. and Rubio de Francia, J. L., Weighted norm inequalities and related topics. North Holland, Amsterdam 1985.
[GHH] M.Geissert, H. Heck, M. Hieber, L^{p} theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, TU Darmstadt, Preprint. No. 2367, (2005)
[H1] T. Hishida, An existence theorem for the Navier Stokes flow in the exterior of a rotating obstacle Arch. Rational Mech. Anal. 150, (1999), 307-348
[H2] T. Hishida, The Stokes operator with rotating effect in exterior domains, Analysis 19, (1999), 51-67
[H3] T. Hishida, L^{q} estimates of weak solutions to the stationary Stokes equations around a rotating body, Hokkaido Univ. Preprint series in Math., No. 691, (2004)
[KNPo] Kračmar, S., Novotný, A. and Pokorný, M., Estimates of Oseen kernels in weighted L^{p} spaces. J. Math. Soc. Japan 53 (2001), 59111.
[KNPe] Kračmar, S., Nečasova, Š. and Penel, P., Estimates of weak solutions in anisotropically weighted Sobolev spaces to the stationary rotating Oseen equations. IASME Transactions 2 (2005), 854-861.
[KN] S. Kračmar, Š. Nečasová, $A L^{q}-a p-$ proach of the weak solution of the problem of Oseen Flow around a rotating body, Preprint 2005
[Ku] G. S. Kurtz, Littlewood - Paley and multiplier theorems on weighted L^{p} spaces, Transactions of the American Mathematical Society, Volume 259, Number 1, May (1980)
[Ne1] Nečasova, Š., On the problem of the Stokes flow and Oseen flow in \mathbb{R}^{3} with Coriolis force arising from fluid dynamics. IASME Transaction 2 (2005), 1262-1270.
[Ne2] Nečasova, Š., Asymptotic properties of the steady fall of a body in viscous fluids. Math. Meth. Appl. Sci. 27 (2004), 1969-1995.

