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Abstract: The aim of this paper is to prove the existence of the strong solution to the problem
of the Oseen flow around a rotating body in weighted spaces.

Key Words:
weighted spaces, Muckenhoupt class

1 Introduction

One of the important problems in fluid mechan-
ics is to study of the Navier-Stokes flow past
a rotating obstacle. Among a series of results
on qualitative properties of the problem or re-
alted linear problems let us mention T. Hishida
[H1],[H2],[H3], G. P. Galdi [G1],[G2], R. Farwig,
T. Hishida, D. Miiller [FHM], R. Farwig [Fal],
[Fa2], S. Necasova [Nel], [Ne2], S. Kra¢mar, S.
Necasova, P. Penel [KNPe|, R. Farwig, M. Kr-
bec, - S. Necasova [FKN1],[FKN2|, S. Kra¢mar

,S. Necasova, [KN], M. Geissert, M. Hieber, H.
Heck [GHH].

We investigate the modified Oseen problem
which is the simplified form of the problem of
the fall of the rigid body in viscous fluid. We
consider a coordinate system which is attached
to the body. We assume that the body also ro-
tate and the angular velocity w is in the direction
of gravitational field g, for simplicity we choose
w = Ag.

rigid body, steady fall, strong solution, Lizorkin theory, Marcinkiewicz theory,

2 Mathematical preliminaries

The Lebesgue spaces are denoted by LP(R"),
1 < p < oo, and equipped the norms | - ||g -
By WFP(RN), k > 0 an integer, 1 < p < oo, we
denote the usual Sobolev spaces with the norms
|| - |lkp- Further, we define the homogeneous
Sobolev spaces D™4(R™) equipped with the norm
IV - |[m=1,4- Denote by S(R") the space of func-
tions of rapid decrease. For u € S(R™) we de-
note by @ its Fourier transform. Given a function
® : R" — R, let us consider the integral trans-
form

1

| eo©ae)dn, we sE).
(2.1)

We denote the vector space

WHI(Q) = {p € Lipe(Q): Vp € LY(Q)"},
is called a homogenneous Sobolev space. Here
|IVp||q is only a seminorm, and the quotient space
W-14(Q) /Ny modulo Ny, the space of constants,
becomes a Banach space. The vector space
W) = {u € L, (Q): [V?ully < 00, |9aull < oo},

loc



where ||[VZu || = (327 ket 1050k ullg )4 will be
endowed with the seminorm [|VZul, + [|02ul,-
It is easy to see that |V2ull, + ||G2ull, = 0
if and only if u € Ny = {bix1 + a + bsxs +
.+ bpxy;a,by,bs, ..., b, € R}, Then W2(Q)/No
becomes a Banach space with norm ||VZul|, +
||O2ul|q, where u is understood as a class modulo
Ns. For vector fields we get correspondingly the
spaces W9(Q)" and W4(Q)" /N3, W-L4/Ny, Ny
is the space of constants.

We shall consider the weighted Lebesgue space

LL(R") = LY, = {u €Ll (R):

1/q
lll g = (fw Yo )dm> <oo},

where w € Llloc is a weight function. A weight
or a weight function will be always an a.e. non-
negative and locally integrable function. In or-
der to apply estimates for singular integral op-
erators, multiplier operators, the weight function
w will be supposed to satisfy the Muckenhoupt
Ap-condition.

Definition Let R be a colection of bounded
sets in R". A weight function 0 < w € Llloc be-
longs to the Muckenhoupt class Ay(R",R), 1 <
q < oo, if there exists a constant C' > 0 such that

e e ) (g foeae)

<C < +4o0, forany R€R

if 1 < q¢ < o0, and

1
sup —/ w(x) dx
weR.Rer | R| Jr
< Cw(xg), for a.a. zg€RY,

if ¢ = 1, respectively.

Lemma 2.1. Let ® : R" — R be continuous
together with the derivative % and all pre-

ceding derivatives for |;| > 0,7 =1,...,n. Then,
if for some 3 € [0,1) and M > 0
8k
a8 gt <,
ok gk

where k; is zero or one and K =
0,1,...

Z?:1 kz‘ =

,m, the integral transform (2.2) defines
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a bounded linear operator from LY(R™) into
L"(R"), 1< q< o0, 1/r=1/q— [ and we have
| Tull, < cllullg, with a constant ¢ depending only
on M,r and q.

For more details see [Gal].

Lemma 2.2 Let 1 < ¢ < oo and w € A,
Then the following statement holds true: Let m €
C™(R™ \ {0}) satisfy the pointwise Hérmander-
Mikhlin multiplier condition

|f||a| |IDm(§)] < c¢q  for all

£ e R\ {0}

and all multi-indices a € Nj with || < n.
Then the multiplier operator u — F~!(ma), u €
S(R™), can be extended to a bounded linear op-
erator from L to L.

1) Let m € 1n eac uadrant” o an
i) L C™i h ”quad ? of R™ and
such that [|m||. < B,

sup dxy..dxy < B
Tt 1, mk/ ‘61’1 8$k|

for 0 < k < n, J any dyadic interavl in R¥, and
any permutation of (z1,...,x,).If 1 < p < co and
w € Ap(R",Ry) then m is a bounded multipler

from LL,(R") to LL,(R").
Proof: see [GCRF], [Ku].
Lemma 2.3 Let 1 < p < oo and let
oo = (1+|z)®

N = (14 |2)*(1 + s(x))”
Then

oo €Aif —1<a<(p—1)

Nag € Ap if =1 < B <p-1,-1<a+p < (p—1).

Proof: see [Ku],[KNPol,[FKN1].
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3 Oseen problem in the whole

space without weights
We investigate the problem

RU-Vu+ Mg xu—puAu+Vp=Rf
V-u=h

The estimates for (3.1
make replacements

f—f/R,
p—p/R,
h— h/R,

Now, we investigate the problem

U-Vu+Agxu—pAu+Vp=f
V-u=h

Theorem 3.1.
WmHLa(R™), m > 0, 1 < q < oo, there

exists a pair of functions v, 7 with v € D™t24,

7 € DML for any m > 0 and satisfying

a—m—,uAv—wav—i—Vw—f,
V-v=h.

Moreover, for [ € [0,m],i = 1,3 the quantitilies
L [villg, 135 ltgs [0liv2gs |Tlirrq ave finite

|vs
and satisfy the estimate

R‘ a% ; + [vlip2,q + [Pli+1g+

+|villeg + [vili+1,4

< (B[ fllig + RllAlli41,9 + [[2ll1,q), i=1,3.
(3.4)

If 1 < g <4 then RH&’2 i da is finite and
—q

Rl[2e|| ol + st
+R1/4Hg_ﬁ ‘lqu + [Vit2,0 + | 7Tlit1,4 (3.5)

<R[ fllig + RlAlli41,q + [1Pllg), i =1,3.

If 1 < ¢ <2 then |va| 2¢ is finite and
2—q

vy
ox;

(Ioileg + B2, 20) + (loilisr,q+
—q

+| 3 Lo + |Vi+2,4 + |7Tli41,4

< C(R|f|l,q + R|h’l+1,q + |h|l,q)7

l,q)

i=1,3.

(3.6)

(3.1)

) will be obtained if we

(3.2)

Given f € W™4(R"), h €

(3.3)

Proof: We will sketch the proof.
We already have solved problem for the ho-

mogeneous Oseen problem. We can assume that

v=u+w, V-u=0,V-w=g. Then we have

to solve

{ w4 yxw—Aw+ VT =0,

Oxa

V-w=h. (3.7)

Applying the Fourier transformation and Li-
zorkin theorem we get

lwilly < cllblley =13, (38)
whr < el (3.9)

wla, < (3.10)

7l < cllbll (3.10)

h 3.12

|22, < @

— <|h 3.13

122 < n- (3.13)
hwoll e < [IBlly,  1<r<3  (3.14)

Now, putting together with homogeneous case,
we get 1 < g < o0

|| HHolaa b < COTIH LD, (15)
< c(lfllg + 11llsy), (3.16)
vil1g < (Hqu +lollg), 1=1,3,  (3.17)
where s1 = 44%1(1. Applying the Sobolev imbed-
ding we get
lgllsy <lhllg  1<qg<4 (3.18)
Then
o2l < e[l fllg + [[7ll1,q)- (3.19)
Finally, since
T < T .
oo 3. < [h] 2 (320)
and let 3r = 22 , we get r| = 6?—%{} and
ool 20 < [Bl, (3.21)
—q
then
Vol 20 < |h| o < clhf|1q- (3.22)
2—q 6—5q



4 Weighted approach in R"

We consider the radial weight functions of the
form

M(z) = (14 |z))*,z € R,
with 0 < a < 1, n > 2. Multiplying the Oseen
equation (3.5) with M we obtain the following
equations for Mu

—A(Mu) + 02(Mu) + V(Mp) + w x (Mu) =
Mf+ F(M),
div (Mu) = Mg+ (VM) - g,
(4.1)
where

F(M) = —2(VM)(Va) — (AM)u+
(@ M)u + (VM)p.

We cannot apply Theorem 3.1 directly since Mu
could leave the spaces which we consider in our
theorem.To avoid this problem we introduce a
cut-off procedure. Let ¢ € C3°(R™) be a func-
tion with 0 < ¢ < 1 for |z|] < 1, p(z) =1
for |z] < 1, p(z) = 0 for |z| > 2 and set
pi(x) = o tz), M; = ¢;M for all j € N.
Replacing M by M; we get the main result

Theorem 4.1
Letn=30<a<1,d >a+3, ¢g>1such
that
3 10
l<a+-< —
q 4

and put M(z) = (1 + |z|)*, M'(z) = (1 +
|z)), z € R". Assume that f € LY(R")", g €
WL4(R™) such that ||[(M'f, M'g, M'V )|, < oo,
and let (u,p) € WI(R™)" x W-14(R") be such a
solution of the equations

—Au+dou+ Vp+w xu=f,
divu = g.

Then, after redefining modulo N3 x Ny, (u,p)
satisfies the estimate

1(V2(Mu), da(Mu), V(Mp), Muj,d(Muy)lly
+||MV2u, Mdyu, MVp||, <

CH(M/fv M/g7M/v9HQ7 ] = 17 3

0
[uzllgy + 1522 Pllgat+
s
HVQ’U;, 82“7 Vp, aix;’uj”qg, <

cl(M'f,M'g,M'Vgl|lg, j=1,3,1=1,3
(4.2)
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1 _ 1, 2 1 _ 1 1

3 @ 'ntllge T gz n
0 is a constant and assuming
q

[(V2(Mu), 8y(Mu), V(Mp))||,+

+{[(MV?u, Mdyu, MVp)|, <

< C([(Mf, Mg, MVg)|lq + ||(f,g,Vg)||q4(1), |
4.3

Wher? ql4 = % — % + g + H% with a [ satisfying
a<ﬂ<%—%and%+ﬂ<a’itholds.
Proof:

. 1 6 3
Since 0 <a<1,d >a+3, 5252 <q< 15

o g L — 1 _ 1, «a 1 1,1
1t1mphesq—1—q 2t n >0 =12 =
1,1 _1,1 0 1_1,d
q—2+g—q+6+3<1andQ3<q+3'”Itf0HOWS
that, 1 < g3 < g2 < ¢1 < 0¢. Setting @’ =1 +a
1—1 . 1 1, o
we get || M H%<ooandsmceq—3—q+3.

/—1 1—1
[ fllgs = 1M M fllgy < [M" || 5 [[M'fllq < oo

(4.4)
Similarly, ||gllgz < oo and ||Vgllg < oo.
Therefore Theorem 3.2 yields a solution (u,p) €

Was(R3)3 x Whas(R3) of (3.1) satisfying

ou;
1(V2u, Do, Vp, g, 5i) s < cill(£59,V9)llgs
< col[(M'f,M'g, M’V g)| g

(4.5)
. 1 1 1 |
Slncel<q3<2and§<E+%<E+%_q—3,
1 < g3 < 3, we may use Theorem 2.2 to get (u,p)
modulo N§ x N such that
||1$2||q1 <C(f,9,Vllgs>
1552 las < ClIVZullgs, (4.6)

1pllg; < ClIVPllgs-
Then

ou;
luallg + ||(8—4,P)|!q2 <c|(M'f,M'g,M'Vg)||q.

()

Choosing Bsuch that a < B < -3 143 <o/,
11, By- 1 1\— 1
7'1:(5—54‘%) 1’T3:(E+§) 1;7"2:(@_
%)*1, a = %—i—ﬁ correspondingly to q1,¢2, ¢3, o .
Then the arguments above yield the same in-

equalities (4.5),(4.6) with q1,q2,q3 replaced by
q1,2,q3, in particular (u,p) € W™ (R")" x



WL (R™). Multilplying (3.1) by M; = v; M, j €
N, with 1; as above, we obtain the equations
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Applying Theorem 3.2. and using (4.8) from the
last estimates we obtain

{ —A(Mju) + 0o (Mju) + V(M;p) = M, f + F(M;), [[(V2Mju),85(Mju), V(M;p))|lg <

div(Mju) = Mg+ (VM;) - u
(4.8)
Since Mju, M;p have compact support we may
apply Theorem 3.3. First we will estimate the
expressions on the right of (4.8) independently
of j € N. The functions v; have the following
elementary properties:

lim; . 9; =1 for all z € R",

supp V¢); € {z € R";j < [z] < 25},
[Vapj(z)] < C(1+ |z[)~!

[V2;(z)| < C(1+ [z])~

where c¢ is independent of j, x. Further
VMj = (VM)\IIJ + MV\I/]',
which gets

VM ()| < C(1+ (2))*,
[V2M;(2)| < C(1 + [af)* 2

for all j € N,z € R3.
Hence for (4.5),(4.7) r1, 2, 73 we get the fol-
lowing estimate

1@ Mj)ullg < 102Mll 15y llullyy < ellull -

(4.9)

-5)-
Since % (% - g) + L and
ﬁ
3

e =
sup; [|02 M; H _, < oo it follows

1

3
1(02M))ullq < CI(M'f, Mg, M'Vg)llq, (4.10)

with C not depending on j. Further we get

IVM)Vullg <IVMl, =2Vl

n n

< Cil|Vully, < Co||(M'f, M'g, M'V g)| 4.
(4.11)
Similarly, we obtain

I(VM;)plly < C(IM'f, Mg, M'V g)]lq,

[(AM;)ully < C|IM'f, Mg, M'Vg)|q,

I(VM;)ullq < C|[(M'f, M'g, M'Vg)|q,
and

IVdiv(Mju)lly < C|[(M'f, M'g, M'Vg)|q.

< Cu(|[(M f, Mg, MV g)lq+ (4.12)
(M’ f, M'g, M’V g)llg),

with C; not depending on j. Therefore
[(V2(Mju), do(Mju), V(M;)|l; is bounded uni-
formly is 5 € N and using weak convergence
properties for j — oo yields

H(V2(Mu),82(Mu),

4.13
(M), < CIOL S, Mg Mg, 1Y
Moreover the above estimates leads to
1(M;V?u, M;dau, M;Vp)|q
< Ci([(V*(Mju),
62(Mju),V(Mjp)”q+ (414)

+ (VM) (V)

(V2M;)u, (82 Mj)u, (VM;)p)|lq)
< eol|(M'f, Mg, M'N g)]|q,

for all j € N; therefore we get
(MY ?u, Mdyu, MVp)l|l, < C||(M'f, M'g,?z’lzg)!!q-
Using (4.5), (4.7), (4.13) we get (4.2). '

We consider homogeneous Oseen problem

Ry -Vu+ A g xu—pAu+ Vp=Rf
{ V-u=0

(4.16)

Theorem 4.1. Given f € LL,(R"), 1 < q < o0,

with w = 04,1, there exists a pair of functions
(u,p) with u € D%, Vp € L9, uy,uz € L4 Quy

) Dxg?

€ LY, satisfying (4.16) and moreover

Ouz  Oug
3332’ 8:132

Jut

Bxl +R‘
q,w + |Vp

ous
Qus || 4
Bxl qw

Rz, + A

+||U1||q, Jr||U3
<cR|f

q,w-
(4.17)
Proof: It follows Theorem 3.1, Lemma 2 and
from results [FKN1].
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