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Abstract: - The paper deals with the analysis of the model of incompressible, viscous, stationary flow through a
plane cascade of profiles. We present a classical as well as weak formulation of the problem and prove the existenc
of a weak solution. We consider the Navier—Stokes equation with Bernoulli's pressure and the corresponding “do

nothing” boundary condition on the outflow.
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1 Introduction

The plane flow through an infinite cascade of profiles
represents one of the most important mathematical
models of real 3D flows through turbines, compres-
sors, pumps and other similar devices. The theory
and numerical methods for such flows are already rel-
atively deeply elaborated. In this context, the potential
theory and methods of analysis of functions of com-
plex variable were extensively used by E. Meister [15]
and M. Feistauer [2]. The well-known Martensen’s
method, see e.g. [14] and [16], applies results from
the theory of integral equations to the solution of an
inviscid, irrotational and incompressible flow through
a plane cascade of profiles.

The modelling of viscous incompressible flows

through a 2D cascade represents a complicated theo-

retical problem especially due to the variety of bound-
ary conditions. While the boundary conditions on the
inflow and on a profile are of the Dirichlet type, the
reduction of the problem to one space period leads to a
condition of a space—periodicity on another part of the
boundary and finally, a different boundary condition
is reasonable on the outflow. From the point of the
situation on the outlet, the flow through a cascade has
similar features as a flow through a channel. J. Hey-
wood, R. Rannacherand S. Turek [7] explicitly did not
involve any boundary condition on the outflow into the
weak formulation and by means of a backward inte-
gration by parts have shown that this induces the so
called “do nothing” boundary condition

ou
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on + pn

14
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Hereu = (u1,us9) is the velocity,p is the kinematic
pressure and denotes the outer normal to the bound-
ary. However, this approach causes difficulties in
attempts to’prove the existence of a weak solution
because condition (1) does not exclude a backward
flow on the assumed outlet and the backward flow can
eventually bring back to the channel a non—controlable
amount of kinetic energy. Thus, the energy estimate
breaks down. This problem can be avoided by appro-
priate tricks: S. Kréamar and J. Neustupain[8] and [9]
prescribed an additional boundary condition which re-
stricted the kinetic energy brought back on the outflow
and they have therefore described and solved the prob-
lem by means of variational inequalities of the Navier—
Stokes type. P. Kiera and Z. Skak solved the prob-
lem for “small” data, see [11], [10]. In our previous
paper [3], we have subtracted the termfu - n) u
(where the superscript denotes the 1negative part)
from the left-hand side of (1) and we obtained the
boundary condition

ou 1
B_n+p ——(u-n) u = h. 2

This condition alsdenables us to restrict the kinetic
energy broughtback by the backward flow on the outlet
and consequently, to derive the energy estimate and to
prove the existence of a weak solution.

In this paper, we present a different approach. We
study the steady problem and use the notation
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wherew(u) is thevorticity of theflow andg is the so
called Bernoulli pressure.We write the 2D Navier—
Stokessystemin theform

0

~w(u)uy = —8—jl+mul+f1, (5)
0

wu)u, = —8—52+VAUQ+f2. (6)

If we furtherdenotef = (f1, f2) and

ut = (—up,u1), (7

wecanwrite thesystem(5), (6) asonevectorequation:

w(u)ut = —Vqg+ vAu + f. (8)

Thisequatiorwill alwaysbeaccompaniethy thecon-
dition of incompressibility

divu = 0. )
A — B
Iy
Lw
T, - T,
Q
I

Figurel: Domain2

The geometricconfigurationof the flow field is ap-
parentfrom Fig. 1. Our basicdomain,which in fact
represent®ne spatialperiod of the flow field in the
profile cascadeis denotedby Q2. The boundarycon-

dition usedon the inflow T; is a non—homogeneous

Dirichlet condition
ulp =g, (10)

whereg representshe known distribution of the ve-
locity. Theboundaryconditionusedon the profile T,
is theusualno—slipcondition

ulp, = 0. (1D

Furthermorewe considetheconditionsof periodicity

u(z1,z0+7) = u(r1,22) (12)
0 0
%(.’Bl,.fg +7) = —%(wl,xg) (13)
q(r1, 22 +7) = q(z1,72) (14)

for x = (x1,x2) ontheartificial boundaryl’_. (The
points(z,xs + 7), for (z1, z2) € T, form thecurve
I';.) Theconditionusedon the outflov T, will natu-
rally arisesimilarly asthe “do nothing” (1) from the
weakformulationwhichwill begivenin thenext sec-
tion. However, we cannotethatif the weaksolution
u is “smoothenough’thenit will satisfy

—v Ou +qgn =h (15)
on

on T,. By analogywith [3], it canbe shovn thata
classicalrespectiely strong)solutionof the problem
(8)—(14) extendederiodicallyin thedirection ., with
the period, is a classical(respectiely strong)solu-
tion in the infinite andunboundedin the directionof
x9) cascadef profiles.

2 Weakformulation

We shall usethe following function spacesandnota-
tion.

— (., .)oisthescalaproductof scdarvalued (repec
tively vectorvalued, respectiely tensorvalued)
functionsin L2(Q) (respectiely in L(Q)?, respec-
tively in L2(Q)%).

— H'(Q) is the usual Sobole spacewith the scalar
product

(u,v)1 = /Q(uv—i-Vu-V'u) de.

— H'(Q)? = HY(Q) x H'(R), the spaceof vector
functionswith the scalarproduct

(ua ’0)1 = Z (uia Ui)l

=1

whereu = (Ul,UQ), v = (’Ul,UQ) S Hl(Q)Z.

- X={velC® Q)% v=00nT;UT,,
v(x1,29 +7) = v(x1,T2) V (21, 22) €T},
— V={v e X; dive =0in 2},
— X istheclosureof X in H'(Q)2,
— Vistheclosureof vV in H'(Q)2.
By the sameprocedureasin the proof of Theorem
6.6.4in [12], we canshaw that
X ={veH( Q)% v=0inT;UTy,
v(x1, 22 + 7) = v(21,T2) fOr (x1,22) € T}
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Theidentitieson I}, I, andI_ areinterpretedn the
senseof traces. Similarly asin [4], pagesl42-143,
we canprove that

V = {v € X; divv=0a.e. in Q}.

In thespacél/, we shallusethenorm|| . || inducedby
the scalarproduct

(U, U)V = (V’U,, V'U)O . (16)
It canbe shawvn thatthenorm || . || is equivalentwith

thenorm||.|; in V.

In orderto deriveformally theweakformulationof
the problem(8)—(14),we multiply equation(8) by an
arbitrarytestfunctionv = (v1,v2) € V,integrateover
Q and apply Greens$ theoremand usethe boundary
conditionsand the periodicity (10)—(14). We finally
arrive atthe equation

a(u,v) = (f,v)o + b(h,v), (7)
where
a1(u,v) = (Vu, Vo),
w(wvw) = [ oW wds,
a(u,v)
b(h,v) — —/Fah-vdS.

, U = al(uav) +(],2(U,U,’U),

All theseforms are definedfor u, v, w € H'(Q)?,
f € L?2(Q)? andh € L2(T,)2.
Now theweakproblemreadsasfollows:

Definition 1 Letthefunctiong € H*(T;)? (for some

€ (,1)) satisfytheconditiong(A1) = g(4o). (Re-
call that Ap and A; are the end pointsof I;.) Let
f € L2(Q)? andh € L?(T,)?. Theweaksolution of
theproblem(8)—(14)is a vectorfunctionu € H'(Q2)?
which satisfiesthe identity (17) for all testfunctions
v € V, the condition of incompessibility (9) a.e in
2, the boundaryconditions(10), (11) in the senseof
tracesonT; andT,, andthe conditionof periodicity
(12)in thesenseof tracesonI_ andT.

The pressurdgerm g doesnot explicitly appearin the
definitionof theweaksolution,however, asit is usual
in thetheoryof theNavie—Stolesequationsit canbe
definedonthelevel of distributionsor it canberecor-
eredasafunctionfrom H'(Q), if theweaksolutionis
sufiiciently regular.

We shall further needa suitableextensionof the
givenfunctiong from I; ontothe whole domain{2 in
the weakformulationaswell asin the proof of exis-
tenceof theweaksolution. In thefirst step,weprolong
g ontothewholeboundan®s). Thepossibilityof such
aprolongationis guaranteedby the next lemma.

Lemma 2 Thee exists an extensionof function g
fromT; onto 02 (we shall denotethe extensionagain
by g) sud thatit belongsto H'/2(99)? and

/ g-ndS = 0. (18)
onN

Moreover, thete existsa constantc; > 0 independent
of g suc that

||9||1/2;BQ <a ||9||5;F¢- (19)

The proof canbefoundin [3]. Thenormsin (19) are
thenormsin the Sobol&—Slobodetskspacesd * (T;)?
andH'/2(69)2. Thenext lemma,whichis alsotaken
from [3], shavsthatg canbeextendedirom 90X to Q.

Lemma 3 Afunctiong € H'/?(09)? which satisfies
(18) canbeextendedo a functiong* € H'()? suth
that

g*laa = g (inthesenseoftraces) (20)
divg* = 0 inQ, (21)
lg*lli < callglli/z; o0 (22)

whete theconstantc, > 0 is independentf g.

Now we shallconstructheweaksolutionu in the
formu = g* + z wherez € V is anewv unknavn
function. This form of w4 guaranteeshatu satisfies
theequation(9) andtheboundaryandperiodicitycon-
ditions (10)—(12). Substitutingu = g* + z into the
equation(17), we getthe following problem: Find a
functionz € V suchthatit satisfieghe equation

G,(g* +Z,’U) = (fav)O —I-b(h,’l)) (23)

forallveV.

3 Estimatesof the form a(u, v)

The next two lemmaswill give a sufficient condition
for coercvity of theform a.

Lemma4 Thele exist positive constantscs and ¢y
sud that

a(g* +z,2) > ||| (V lizll = vezerllglls;r

~csllglir, — collglm ll2l)  (24)

forall z e V.
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Proof. Usingthe definitionsof the formsa, a; and
a2, wefind that

a(g* —I—Z,Z) = al(zaz) +a’1(g*7z) +a2(g*,g*,z)
+a2(g*, 2, 2) + aa(z,9%, 2) + az2(z, 2, 2).

Sincezt - z = 0 in Q, thetermsay(g*, 2, z) and
as(z, z, z) vanish.Hence,

a(g* +z,2) > ai1(z,2) —|a1(g*, 2)|
—laz(g*, g%, 2)| — |az(z,9%,2)[.  (25)
We obviously have
a1(z,2) = v(Vz,Vz)y > v|z|> (26)

Letusfurtherestimatehetermsontheright-handside
of (25). If we usethe Cauchyinequality the contin-
uousimbeddingof H'(Q) into L*(Q2), Greens theo-
remandthetheorenmontraceswe successiely obtain

la1(g*, 2)| = v (Vg™ Vz)o
< vig*l:ll=ll, (27)

[tatior za
Q

< llw(g®)llo llg™* (e l2lze
< o llg*IIz =l (28)

/ w(z) g*t - zde
Q

lw(2)llo lg* Ml l|2]| 4
e [Iz]1” llg* |1 (29)

Substituting(26)—(29)into (25) andusing(19), (22),
we get

laz(g*, 9%, 2)| =

|a2(z,g*,z)| =

AN

IN

a(g* +z,2) > vl|z[* —vlg* | =]l
—csllg* [T ll=ll — es llg* |11 =
> |l (V lz[l = v e1 ez liglls;r — es ¢ €5 llgllz;
—cs e |lgllsir, 1211 (30)
This completeghe proof. O
Lemma5 Thee existse > 0 sud thatif

||9||5;F¢ <€ (31)

thenthe form a(g* + z, z) is coecive on the space
V. It meanghat

lim a(g*+2z,2) = +oo. (32)
llZ]|—+o0

Proof. Lemma4 impliesthatit is sufficientto choose
€=v/cy. a

4 Construction of approximations

Theexistenceof aweaksolutionwill beprovenby the
Galerkinmethod.

The spaceV is a separableHilbert space. By
analogywith [2] or [17], we shallusea basis{e; }$°,
in V which consistf elementdrom V andwhichis
orthonormalvith respecto thescalarmproduct(. , .)y .
Forary n € N we set

Vn = L’{el,eg, ,en},

i.e. the linear hull of the functionseq, es, ..., e,.
Theapproximatesolutionof problem(23) will becon-
structedasanelementof V,,:

2y = Z g ey . (33)

If wesetd = (¥4, ..

n 1/2
9] = ( ﬁ%)
k=1
then

n 1/2
lzall = (Z «9m<ek,el>v) — 0. (34

k,l=1

.,¥y) and

Theapproximatesolutionz,, cannow besearchedor
asanelemenof V,, which satisfies

(f,v)o+b(h,v)  (39)

for all v € V,,. Theproblem(35)is equivalentto the
system

a(g* + zn,er) = (f,ex)o +b(h,er)  (36)

fork = 1,2,...,n. Expressingheform a by means
of a; andas, (36) canberewrittenin theform

a(g® + z,,v) =

U/l(g* + znaek) + a2(g* + zn,g* + znaek)
= (f7 ek)O + b(h, ek) (37)

for k = 1,2,...,n. Substituting(33) into (37), we
obtain

n
ai1(g*,ex) + Y drai(er,er) + az(g*, g%, ex)
=1

n
+Z'19l [GQ(Q*,el,ek) + a?(elag*aek)]
=1

n
+ Z 19119771 ag(el, emaek) - (f’ek)O

I,m=1

—b(h,ey) = 0 (38)
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for k = 1,2,...,n. Thisis a systemof n quadratic
equationdor theunknawns ¢4, ¥-, .. ., 4,. If wede-
noteby A () theleft-handsideof the k—th equation
andset

the system(38) canbewritten asoneequation
AW) = O (40)

in R™. (O denoteghe zeroelementof R™.) We shall
furtherusethenext lemma.

Lemma6 Let A beacontinuousnappingof R” into
R™. If there exists R > 0 sud that

A(9) -9 > 0 (41)

for all 9 € R™ in the sphee with theradius R, then
theequation
A(W) = O (42)

hasat leastonesolutiond € R* sud that |[¢| < R.

The proof of thelemmacanbe foundin [2] (Lemma
4.1.53)orin [17] (Lemmall.1.4).

Obviously, ourmappingA4, definedby (39), maps
continuouslyR" into R™. Using Lemma4 and the
theoremon traces,we can successiely expressand
estimatethe scalarmproductA(49) - ¢ in thisway:

AW) -9 = Ap(@®) 9 = > Ipai(g*, ep)
k=1 k=1

n n
+ Z I N al(el,ek) + Z’l?k ag(g*,g*,ek)
k=1 k=1

n
+ > k9 [aa(g*, e, €x) + az(er, g%, ex)]
k=1

n
+ Z ’19k '19[ 'l9m Gg(el,em,ek)
k,l,m=1

n n
=Y Ok (frex)o — Y _ O b(h, ex)
k=1 k=1

= a1(g%, zn) + a1(2n, 2n) + a2(g™*, g%, zn)
+a2(znag*azn) - (fazn)() - b(hazn)
(fazn)o - b(h,Zn)

> Nzall (v lzall = v st lgllsr,

= a(g* + 2zn, 2n) —

~csllglr, = cellglssr, llzall)
—crl|fllo llzall = cs lRllo;r, Nzall. — (43)

Now, if g is so smallthatit satisfies(31) with ¢ =
v/ca, thentheright handside of (43) is greaterthan
or equalto zerofor suficiently large |¢|, namely for
|¥| = Ry, where

Ry = [vesen llgllsr, + s llgllr, + er I£17
+alblon] / [r-cilalon]. @

Lemma6 implies that equation(42) hasat leastone
solutiond with |9| < Ry. Thefunction z,, given by
(33)isthesoughtapproximatesolutionof theproblem
(23). Dueto (34),

lznll < Ro. (45)
Thus,we have proventhefollowing lemma.

Lemma 7 Letusassumehatg is sosmallthatit sat-
isfies(31) with e = v/cy. Letn € N. Thenthe
problem(35) hasa solution z,, € V,, satisfyingthe
estimatg(45).

We shall further alwaysassumehate = v/c, andg
satisfieq31).

5 Convergenceof approximate
solutions

SincethespacéV/ is reflexive, the boundednessf the
sequencéz, } impliesthatthereexistsasubsequence
(for thesale of simplicity denotecagainby { z, }) and
anelementz € V suchthat

zp, — z weaklyin V. (46)

Thenormin V is equivalentto the normof the space
H(9)?2, hence

z, — z weaklyin H'(Q)2. (47)

ThespaceH ()2 is compactlyimbeddednto
L4(Q)? for every g > 1. Thisimpliesthat

z, — z stronglyin LI(Q)? (48)

foreveryqg > 1.

6 The limit transition
Theequation(35) canbewrittenin theform

ai(g*,v) + ai(2zn,v) + a2(g*, g*,v)
+a2(znag*av) + GQ(Q*, Zn,’U)

+a2(zn, 2, v) = (f,v)0 +b(h,v). (49)
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Letv € V,, for fixedm € N. Thenw isinfinitely dif-
ferentiablein Q. Furtherletn € N, n > m. We shall

write z, = (2n1,2n2), 2 = (21,22), % = (97, 95) @
v = (v1,v9). By (47),we have

a1(zn,v) — a1(z,v). (50)
Furtherin view of (47), we get
GIQ(Znag*av) - GQ(Z’Q*’U)
= /w(zn—z)g*L-vd:c — 0. (51)
Q
Thenext termsatisfies

CLQ(Q*,Zn,’U) - CLQ(g*,Z,’U)
= /w(g*) (zf —2zt) vde — 0 (52)
Q
dueto the strongcorvemenceof the sequence z,, }
to z in L2(Q)2, see(48). The possibility of the limit

transitionin thetermaq(z,, z,, v) canbe provenas
follows:

|a2(Zn,Zn,'U) - GQ(Z,Z,’U)|
S |a2(zn,zn,’v) - CL2(Zn,Z,’U)|

+ |a2(zn7z7v) - ag(z,z,v)|

/ w(zn) (24 —21) -vde
Q

+ /w(zn—z)zL-vdw
Q

< ¢ llzall1 ll2n — 2|24 ]| 24

+ /w(zn—z)zL-vdx
Q

wherecy is aconstantndependentf n. Thefirstterm
ontheright—-handsidetendsto zeroasn — +oo due
to the strongconvergenceof the sequencg z,, } to z
in L9(Q2)?, see(48). Thesecondermtendsto zerofor
n — +oo dueto theweakcorvemenceof {z, } to z
in HY(Q)?, see(47). Thus,

a,Q(Zn,Zn,’U) — GQ(Z,Z,’U). (53)

Thelimits in (50)—(53)finally imply the possibil-
ity of thelimit transitionin (49), whichmeanghatthe
limit function z satisfies(23) for all v € V,,,. Since
the naturalnumberm was chosenarbitrarily, (23) is
satisfiedfor all v € U}*°, V,,,. This unionis densein
V' (becauseét obviously containsall elementsof the
basiseq, ey, ...) andeachtermin (23) dependson-
tinuouslyon v in the normof V. This consideration
enableausto concludethat (23) holdsfor all v € V.

Consequentlythe function w definedby the identity
u = g* + z is a weaksolution of the problemde-
finedin Definition 1. This resultis formulatedasthe
following theorem.

Theorem 8 (on the existenceof a weak solution)
Letthenorm||g||s,r; satisfy(31)with e = v/c4. Then
there exists a weak solution u of the cascadeflow
problemdefinedn Definition 1.

7 Conclusion

As we have already mentionedin Sectionl, if the
weaksolutionu givenby Theoren8 is “smooth”, we
can integrate back by partsfrom (31). We canuse
the Helmholtz decompositiorof L2(02)? into the di-
rectsumof two closedorthogonalsubspacesne of
thembeingthe spaceof solenoidafunctionswith the
normalcomponenequalto zeroon the boundary(in
the senseof traces)andthe secondof thembeingthe
spaceof functionsof thetype V¢. Thus,we arrive at
the existenceof a function ¢ which satisfies(15) on
the outflow T,. The original pressure is thengiven
by (4). The questionup to which rateis the boundary
condition(15) physicallyrelevant,canonly bejudged
from the comparisorof numericalresultswith exper
imentally obtaineddata. However, the form (8) of
theNavier—Stolesequationis veryadvantageoufrom
theanalyticpoint of view, becaus¢henonlinearterm
w(u) ut is pointwiseperpendiculato thevelocity u.
Thus,if we testthe equation(8) by u (i.e. we multi-
ply it by u), the nonlinearterm disappearpointwise
andit is not necessaryo simplify it or evenremove
it by meansof the integrationby parts. This enables
to derive simplythenecessargstimatesvithoutusing
artificial additionaltermslike e.g.% (u-n)"uin (2).

In themonograph$6], [13], [17] and[2], the ex-
istenceof aweaksolutionof theboundaryalueprob-
lemfor the Navier—Stolesequationsn aboundedio-
main €2 with the Dirichlet boundarycondition

ul =g, (54)
prescribedon the whole boundaryof? is established
underthe assumptiorthatg € H'/2(9Q)* (where
k = 2 or k = 3) andundertheassumptiorhat

/g-ndS:O (55)
r

for eachcomponent” of the boundarydf2. In this
case,it is not necessaryo assumethe smallnessof
the function g in a suitablenorm, becauséhe exten-
sion g* of g into Q can be constructedso that the
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norm ||g*||; is arbitrarily small. The generalprob-
lem,whentheboundaryof €2 hasseveralcomponents,
theDirichlet boundarycondition(54)is prescribedn
o9 andthefunctiong satisfieghe condition

/ g-ndS =0 (56)
N

in the whole, but the integrals of g - n over the in-
dividual component®f the boundaryarenonzero,is
solvedin [5]. However, in this case the proof of the
existenceof a weaksolutionrequiresthe assumption
thattheflows betweerthedifferentcomponentsf 02
aresufiiciently small. The questionof existenceof a
solutionwithout this assumptioron smallnessepre-
sentsa challengingopenproblem. Our problemhas
a similar characterthe role of differentcomponents
of the boundarywith a “big” possibleflow between
themnow play I; andT,. Thus,we have provedthe
existenceof a weaksolutionunderthe restrictve as-
sumption(31).
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