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Abstract: - Certain work about symbolic computational hydrodynamics is realized. Using computer algebra, the 
explicit solution for the Navier-Stokes equation corresponding to the transient flow within a movable tube, for 
certain fluid with  hydro-dynamical memory and susceptibility to amplify the hydrodynamic perturbations, is 
derived. The method of solution is the Laplace Transform Technique with inverse by residues. The solution is 
obtained by means of certain algorithm for computer algebra. As a result we obtain certain threshold phenomena 
for the triggering of the global amplification of the hydrodynamic perturbations. 
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1.   Introduction 
We consider the transitory and laminar flow inside an 
infinitely long and movable cylindrical tube, for the 
case of a fluid with viscous-elastic properties which 
are  described by a hydrodynamic memory and with a 
susceptibility-resistivity to the amplification of 
hydrodynamic perturbations. The mathematical 
model that is used,  is the linear Navier-Stokes 
equation with memory term, sources and drains of 
fields of speed and external forces possibly of 
electromagnetic origin; complemented with a 
condition of movable boundary. The effective 
transport equation that is considered here, is an 
integral-differential equation of the type reaction-
diffusion with memory and external sources. Such 
equation in spite of being linear, is quite complex and 
although it can be solved analytically of an explicit 
way, the determination of this solution is difficult to 
obtain using pencil and paper and the method of 
separation of variables cannot be used. Here we 
show that the solution of our model can be obtained 
symbolically using computer algebra by means of an 
appropriate algorithm. This algorithm is based on the 
technique of the Laplace transform, together with an 
realization  of the inverse transformation  by means of 
the application of the theorem of the residues of the 
theory of the functions of complex variable. From the 
solution that is obtained, the basic multiplicative 
number for the amplification of hydrodynamic 
perturbations on the considered fluid, is derived. 
 
 

2   The Mathematical Problem 
The Navier-Stokes equations have the form [1, 2, 3] 
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where  � is the density, � is the dynamical viscosity, 
�
�

 is the velocity field, ��  is the pressure gradient, 
�
�

 is the external force, and �� is the laplacian 
operator. 
Here,  we consider the case of axially symmetric  
flow inside a movable infinitely long circular tube of 
radius a. Using cylindrical coordinates (r,� ,z) , we 
assume that the form of the velocity field of the fluid 
is given by 
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where  ��
�

 is an unitary vector at the direction of the 
axis  of tube that coincides with the z axis. 
Using  (2) we have  
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The substitution of (2) and (3) in (1), gives 
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where ��  is the axial component of the external 
force, which is considered as the resultant of three 
forces, to know: a) certain force that comes from the 
susceptibility of fluid to amplify the hydrodynamic 
perturbations, b) other force that comes from the 
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effects of hydrodynamic memory and c)-certain 
electromagnetically induced force.   
We postulate that the form of the driven force is 
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where k is the effective constant of susceptibility of 
amplification of hydrodynamic perturbations, M(r,t) 
is the memory function and c1 and c2 are two 
constants with electromagnetic origin. 
The substitution of  (5) en (4) gives 
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where � is the cinematic viscosity, defined as 
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and the laplacian operator takes the form 
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The constant of susceptibility denoted k, has the 
following structure 
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where �1 is the intensity of hydrodynamic 
perturbations, S0 is the susceptibility to amplification, 
and  �1 is the coefficient of attenuation  of 
perturbations. 
At concomitance with (9) the structure of the 
hydrodynamic memory function is 
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where M1(r,t) is the memory function for the 
susceptibility of amplification  with the form 
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being �2 the constant of susceptibility memory and 
being �1 the factor of attenuation of the susceptibility 
memory. 
From the other side, M2(r,t) is the memory function 
for the attenuation of perturbations, with the form 
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being  �2 the constant of attenuation memory and 
being �2 the factor of decay of the attenuation 
memory. 

We assume that initially the fluid is at rest, it is to 
say, we take the following initial condition 
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We consider the case of  movable infinitely long 
tube, with the following boundary condition at the 
wall of the tube 
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where vb is the velocity of fluid at the wall, and � is 
the factor of attenuation of such velocity. 
The question here, is to obtain the explicit analytical 
solution of the equation (6) with (8)-(12) and 
subjected to the initial condition (13) and the 
boundary condition (14); and to derive from the 
obtained solution some interesting characteristic of 
the fluid under consideration. 
 
 
3   Problem Solution 
The equation (6) is linear but can not be solved by 
means of the method of separation of variables. It is 
necessary to apply the Laplace Transform method 
making the inverse transform by means of the 
theorem of residues [4]. Since the necessary 
manipulations to solve the equations (6) are too 
voluminous as for to be realized by hand with pencil 
and paper, it is necessary to apply some type of 
system of computer algebra that allows symbolic 
computation [5,6].  
 
 
3.1.  Method of Solution 
 
 
Figure 1 shows a sketch of the algorithm that we have 
used to solve (6) with  (8)-(14). As it is observed, the 
inputs of the algorithm are:  Eq, that represents the 
equation (6); I.C. that represents the initial conditions 
(13); B.C. that represents the boundary condition 
(14); and F.C. that represents a certain finitude 
condition for the solutions. 
The output for the algorithm is the explicit solution of 
(6)-(14) and certain threshold parameter, denoted R0, 
which will be explained more later. 
The algorithm operates as it  follows. 
The inputs Eq., I.C., and B.C,  by means of a Laplace  
Transformer are turned into a transformed equation 
denoted T.Eq.  and a transformed boundary condition 
denoted T.B.C. Then, T.Eq, T.B.C. and F.C. are 
processed by a certain Dsolver that generates the 
transformed solution denoted Tsol.  
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Figure 1. Sketch  of the algorithm 

 
Next,  Tsol is processed by means of an inverser  
with residue theorem, and we obtain the explicit form 
of the solution, denote sol. Finally using  a stability 
analyzer, we deduce the explicit form of R0 and the 
algorithm is finished. 
 
 
3.2.  Results of Computations 
The solution of the equation (6) with (8)-(14) that is 
obtained using our algorithm of computer algebra is 
given at Figure 2. and has the form 
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where   
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with 
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and being Si,n the roots of the equation of third degree 
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Finally, Jm(x) is the Bessel function of order m of the 
first kind, a is the radius of the circular tube and �n 
are the zeroes of  J0 , namely [7] 
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3.3  Analysis of Results 
It is evident from the equations (15)-(39) that the 
solution of (6) is very formidable as for to be 
manipulated by hand using pen and paper. The great 
advantage of computer algebra is prominent. 
As it is observed at the equation (15), the solution  of 
(6),  consists of three summands. The first one is 
given at (16) , the second is given at (17)-(19) and the 
third is given at (20)-(26) with the specifications 
(27)-(39).  For �  > 0, the first summand (16), decays 
exponentially with the time and it does not represent 
any amplification of the hydrodynamic perturbations. 
The second summand (17)-(19)  does not depend on 
time and represents the stationary flow that is 
established within the tube and it does not give any 
kind of amplification of perturbations. 
The third summand (20)-(26) is also a sum of terms 
with exponential dependence on time and some of 
such terms can be exponentially increasing with the 
time and then an amplification of the hydrodynamic 
perturbations would be had. The condition so that a 
such amplification is generated is that (33) admits a 
positive real solution, it is to say that B3 < 0,  where 
B3 is given at the equation (38). This last condition 
can be rewritten as the threshold condition for the 
triggered of the amplification of hydrodynamic 
perturbations, namely,   R0,n > 1, where  
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The critical parameter R0,,n will be named the basic 
multiplicative number and measures the effective 
tendency of fluid  to amplify the perturbations. The 
fundamental or ground value of the multiplicative 
number (40), corresponds to n=1,  with �1=2.405 , 
namely 
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The equation (41) can be rewritten as 
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where R0 is the basic multiplicative number  when  a 
� � ,  and is given by 
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Now, for the case when � = 0,  the equation (16) lost 
its dependence on time and can be considered as 
certain stationary flow inside the tube jointly with the 
terms (17)-(19).  The condition for (16)-(19) are 
really genuine stationary flows is  
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which is equivalent to L(0)> 0 with L(s) being given 
at (29), and this last is equivalent to  A3 > 0, where A3 
is given at the equation (32). This condition  can be 
rewritten as R0 > 1, where R0  is given at (43). 
Finally, when � < 0, then (16) has exponential 
increasing with time and corresponds to the irruption 
of the global amplification of perturbations without 
necessity of any kind of hydrodynamic threshold  
We can see from (42) and (43) that 
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Now, from the perspective of the possibility of to 
control the flows, we have that the percentage of 
decreasing of the susceptibility of the fluid S0, both to 
prevent the stationary flows (16)-(19) as to obstruct 
the exponential amplification of the perturbations 
(20)-(26), are given, respectively by 

	�	�

�

	�	�
�

�
�                                                          (46)

 

Proceedings of the 2006 WSEAS/IASME International Conference on Fluid Mechanics, Miami, Florida, USA, January 18-20, 2006 (pp13-18)



	�	�
�

	�	�
�

�
�� �                                                       (47)

  

 
From (45)-(47) we deduce that 
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it is to say the percentage of decreasing of 
susceptibility to prevent the stationary flows, denote 
Pst  is greater than the percentage of decreasing  the 
susceptibility for to prevent the global amplification 
of  perturbations, denoted PA. In other words is more 
expedite to avoid the amplification of the 
perturbations  that  to avoid the presence of stationary 
flows. .  
Finally, from the solution that was obtained we can to 
derive the formula for the total flow across the 
section of the tube, which is given at the Fig. 3, and it 
is defined as 
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4   Conclusion 
The problem that was considered here, is a linear 
problem, whose solution can be obtained 
symbolically using certain algorithm and then the 

basic multiplicative number  for the amplification of 
hydrodynamic perturbations on the fluid, can be 
derived. Our principal contribution is the equation 
(42). 
The algorithm that was used can be applied for others 
more complex linear problems with boundary 
conditions. It is evident from this work  that  
computer algebra is very useful to study those 
problems on fluid dynamics that demands the 
analytical solution of the Navier-Stokes equation.  
The method that was proposed here, can be applied 
also for linear boundary problems of transport 
phenomena such as heat and mass transfer.. 
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Figure 2. Full analytical solution of the problem  (6)-(14) 

 
 

 
Figure 3.  Explicit form of the equation (49) 
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