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Abstract: - There is a need to develop methodologies enabling one to determine UASB reactor performance, not only 
for designing more efficient UASB reactors but also for predicting the performance of existing reactors under various 
conditions of influent wastewater flows and characteristics. In this work dynamic mathematical models for the 
prediction of the efficiency of a UASB reactor were developed. The dynamic modeling technique was applied 
successfully to a three-month data record from a laboratory milk wastewater treatment UASB reactor. The technique 
used included regression analysis by residuals. 11 parameters were examined including the following: % COD 
efficiency, influent COD, COD reduction, biomass produced, biogas production rate, % methane in biogas, alkalinity, 
reactor’s temperature and RedOx, recirculation vessel’s temperature and pH, and each parameter with a time lag of up 
to 3 days. Finally, after all parameters and all time lag trials two were the best fitted models that were developed. The 
models’ adequacy was checked by X2 test and F test for a data record of the same UASB reactor but at a different 
time period and proved to be very satisfactory. Additionally, the model’s ability to predict and to control the plant’s 
operation was examined. Simulation results thus obtained were carefully analyzed based on qualitative understanding 
of UASB process and were found to provide important insights into key variables that were responsible for 
influencing the working of the UASB reactor under varying input conditions.  
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1 INTRODUCTION 
Anaerobic treatment is a popular choice for removing 
biologically degradable organic matter in domestic and 
industrial wastewater. This is due to the economic 
advantages of anaerobic processes and the low 
generation of surplus sludge [1,2]. One of the most 
popular anaerobic treatment technique is the upflow 
anaerobic sludge blanket (UASB) process, developed 
in the 1970s by Lettinga and co-workers in the 
Netherlands [3]. 
Several researchers have enhanced the state-of-the-art 
on design, operating procedures, and performance 
characteristics of such reactors. Through these efforts, 
a large volume of data on UASB reactor performance 
under various operating conditions has been generated. 
Interpretation of this data has undoubtedly enhanced 
the qualitative understanding of the UASB process.  
Based on the qualitative understanding of the UASB 
process gained over the years, several attempts have 
been made to develop mechanistic models for 
quantitative description of UASB reactor performance 
under various operating conditions. However, none of 
the mechanistic models are able to completely explain 
or predict the performance of a UASB reactor treating 
wastewater from industrial or domestic sources under 
various input conditions. The deficiencies in 

mechanistic model formulation are primarily due to 
insufficient qualitative understanding of the process 
dynamics in the UASB reactor under various input 
conditions, and may only be overcome through 
additional empirical observation and analysis of 
experimental data on UASB reactor performance [4]. 
Given the scenario described above, developed of an 
empirical model for predicting UASB reactor 
performance seems to be an attractive proposition. 
Simulation studies using a validated empirical model 
and subsequent analysis of the simulation results may 
provide valuable information regarding behavior of 
UASB reactor under a variety of conditions. This may 
result in deeper understanding of the UASB process 
and thus provide valuable input for “fine-tuning” of 
mechanistic models for UASB reactors [5,6] .  
The aim of this work is the application of a suitable 
methodology, so as to derive a dynamic mathematical 
model for the control of an operating anaerobic plant, 
either laboratory or industrial. The methodology 
chosen is the regression analysis by residuals, whose 
main advantages are: 

 The model’s construction only needs data of 
routine determinations usually performed in any 
plant. 
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 The derived model takes into account all the 
particularities of the specific plant thus can 
successfully control plant’s operation. 

 
 
2 METHODOLOGY 
2.1 Dynamic model 
The dynamic model used in this study was developed 
from measurements recorded at equally spaced time 
intervals. If the response at time t is denoted by Yt, the 
model will contain terms of the form:  
Υt-1, Υt-2 , …, Υt-n  
where Υt-1 = response one sampling period in the past 
           Υt-2 = response two sampling periods in the 
past, and so on 
Additionally, for variables, Xj, which act as inputs, 
terms of the following type will appear in the model: 
Xj,t, Xj,t-1, Xj,t-2,…, Xj,t-m 
where Xj,t = current measurement of variable j at time t 
 
The model form, which is linear in the coefficients, is: 
Υt = ko + A1Yt-1 + A2Yt-2+ … + AnYn+ 
        + k10X1,t+ ...  + k1mX1,t-m+ 
        + k20X2,t+ … + k2nX2,t-n+ 
        + .... 
This model is called a lagged regression model 
because the variables that are the “independent 
variables” are current values or values at previous 
times or “lags”[7]. 
 
2.2 Residual analysis 
Building the regression models by residual analysis 
will be presented in this article. The method consists 
of the following steps: 
Step 1: Choose the variable best correlated with the Y-
variable, transform it as necessary to produce a straight 
line, and perform a least-squares regression with the 
dependent variable (Y-variable to be predicted with a 

correlation coefficient R0). The result will be an 
equation of the form: 

)X(fbbŶ 110 +=  

where Ŷ = predicted value of Y-variable, b0 and b1 are 
constants and X1 = variable 
Step 2: Calculate “residuals” as follows: 
Zi =Yi – [b0+ b1 f(X1,i)] 
where Zi = residuals, Yi = data for variable to be 
predicted and X1,i = data for variable X1. 
Step 3: Choose the best-correlated X-variable. 
Transform the X-variable, if necessary, to yield a 
linear plot. 
Step 4: Add the new, transformed variable to the 
regression model, and perform a least-squares fit by 
computer, resulting in: 
Ŷ = b0+ b1 f(X1)+b2g(X2) 
Step 5: Calculate residuals and repeat the process until 
all variables have been added. Each time the 
correlation coefficient R of the model is: 
R=R0 +R1(1-R0)+…… 
Each term of the equation expresses the participation 
of each variable in the final correlation coefficient. 
Step 6: Check the goodness-of-fit of the model. 
Moderate deviations from a straight line may not be 
serious [8]. The adequacy of a theoretical model 
implies the difference between the observed and the 
expected results. This was checked by and X2 test. 
 
 
3. CASE STUDY 
In this study, multiple linear regression was used to 
develop a discrete dynamic model for a UASB reactor. 
For the construction of the dynamic model a three-
month data record from a UASB reactor treating milk 
wastewater was used. The reactor’s volume was 22L 
and the mean hydraulic retention time of the 
wastewater was about 1 day (Figure 1).

 
 

Figure1: Laboratory Pilot UASB Plant
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 In order to control the reactor’s operation and 
efficacy, various parameters such as recycle vessel’s 
temperature and pH, UASB reactor’s temperature and 
RedOx and biogas production rate are on-line 
measured and so daily measurements of these 
parameters are available.  Apart from these, % COD 
efficiency, influent COD rate (g COD/d), COD 
reduction (g COD/d), biomass produced as Volatile 
Suspended Solids (g VSS/d), biogas production rate 
(L/d), % methane in biogas, bicarbonate alkalinity (g 
CaCO3/L) are almost daily measured in the laboratory. 
Subsequently, a data record of 11 variables (Figure 2) 
was accessible so as to build a prediction model. 
 

Thus, this study’s main objective was to correlate the 
% COD efficiency with the variables of the data record 
with a time lag up to 10 days. The correlation was 
achieved using the technique mentioned above, 
regression by residual analysis.  
 
The correlation attempt included the equations:  
Y = A + B X 
Y = A eBX 
Y = A + B ln X 
Y = A + B X  

Y= A + 
X
B

 

Y=A XB 

 

0,0

20,0

40,0

60,0

80,0

100,0

120,0

0 20 40 60 80 100
Operation time (d)

%
 e

ff

0

100

200

300

400

0 20 40 60 80 100
Operation time (d)

CODr
CODin

C
O

D
r (

g/
d)

0

20

40

60

80

100

0 20 40 60 80 100
Operation time (d)

VS
S 

(g
/d

)

0

20

40

60

80

100

0 20 40 60 80 100
Operation time (d)

V
 g

as
 (l

/d
)

 
 
 

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
Operation time (d)

%
C

H
4

0

5

10

15

20

0 20 40 60 80 100
Operation time (d)

AL
K

 (g
 C

aC
O

3/
L)

6,0

6,5

7,0

7,5

8,0

8,5

9,0

9,5

0 20 40 60 80 100
Operation time (d)

pH

-700

-600

-500

-400

-300

-200

-100

0
0 20 40 60 80 100

Operation time (d)

R
ed

O
x 

(V
)

0

10

20

30

40

50

0 20 40 60 80 100
Operation time (d)

T
TR

T (o

Figure 2. Fluctuation of wastewater’s and reactor’s characteristics 
 
 
4. RESULTS AND DISCUSSION 
 
Using the methodology mentioned above and the data 
of Figure 2, the following models were developed.  
 
Model 1 
The variables that were strongly correlated with the % 
COD efficiency were: 

• % COD efficiency (%eff),  with time lag t=1d 

• % methane in biogas (CH4), with time lag 
t=3d  

• Recycle vessel’s temperature (TR) with time 
lag t=2d 

• Influent COD mass flow, CODin, with time lag 
t=0d 

 
The dynamic model developed to relate % COD 
efficiency to these variables was: 
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                           (R =0,975)                         Equation 1 
 
The variables of the consecutive levels of regression 
analysis are shown in Table 1. 
 
Table 1: Levels of the regression by residual analysis 
of the model  

Level Best-fitted 
Variable 

Variable’s participation % 
in the final R 

1st (%eff)t=1 78,9 
2nd (CH4)t=3 8,8 
3rd (TR)t=2 9,1 
4th CODin,t=0  3,2 

 
Model 2  
The variables that were strongly correlated with % 
COD efficiency were: 

• % COD efficiency (%eff),  with time lag t=1d 
• RedOx, with time lag t=3d  
• Recycle vessel’s temperature (TR) with time 

lag t=2d 
 

The dynamic model developed to relate biogas 
production rate to these variables was: 
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(R=0,975)               Equation 2                                                                                                       

 
The variables of the consecutive levels of regression 
analysis of the third model are shown in Table 2. 
 
Table 2: Levels of the regression by residual analysis 
of model 2 

Level Best-fitted 
Variable 

Variable’s participation % 
in the final R2 

1st RedOxt=3 52,8 
2nd (%eff)t=1 37,0 
3rd (TR)t=2 10,2 
 

4.1 Goodness-of-fit test 
The correlation coefficient R that was calculated for 
the resultant model cannot give sufficient information 
for its adequacy. In other words, it cannot predict how 
the model will react in an unknown data range. In 
order to check the model, F and X2 tests were 

conducted for a data record of the same UASB reactor 
but at a different time period.  
 
Figures 3 and 4 compare the observed values to the 
predicted values of models 1 and 2 respectively for the 
new study period.  
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Figure 3:  % COD efficiency, predictions and observed 
values for the new time period for model 1 
 
They are plots of the predicted % COD efficiency 
based on previous actual waste and system operating 
data. Both models predict the ratio adequately well. 
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Figure 4: % COD efficiency, predictions and observed 
values for the new time period for model 2 
 
The results of X2 and F tests that are shown in Tables 3 
and 4 reveal that the models can be a satisfactory 
prediction tool for the specific plant.  
 
Table 3: Goodness-of-fit using x2 test 
Model Degrees of freedom x2 Results 

1 4 0,978 Perfect 
2 4 2,158 Perfect 

 
Table 4. Goodness-of-fit using F test 
Model Degrees of freedom F Results 
1 (71, 31) 0,170 Perfect 
2 (71, 33) 0,184 Perfect 
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5 CONCLUSIONS 
The methodology of regression analysis by residuals 
for the construction of a dynamic model proved to be 
very satisfactory. It is worth noticing that for this kind 
of model construction it is not necessary to conduct 
tedious factorial experiments, but routine 
determinations in a plant are sufficient. The models 
that arise from this data can be used as a powerful tool 
for the plant’s control.  
An important aspect that has to be examined is the 
model’s ability to predict and control the plant’s 
operation. This ability is based on how handlable the 
parameters are and how long is their time lag. The 
derived models have a satisfactory ability for 
prediction and thus control due to the fact that most 
parameters (model 1: three out of four, model 2:all) 
have time lag over t=1day.  
Despite the fact that the three models have the same 
effectiveness to estimate the % COD efficiency, the 
results of the goodness-of-fit tests reveal a slight 
superiority of model 1. On the other hand, model 2 
includes just 3 parameters that can be easily measured. 
Besides this, all parameters of model 2 have a time lag 
of more than one day and thus, model 2 can also be 
considered very useful. 
 
 
6 APPENDIX 
TR Recycle vessel’s temperature 
pH Recycle vessel’s pH 
T Reactor’s temperature, °C 
RedOx Reactor’s RedOx, mV 
QB Biogas production rate, L/d 
%eff % COD efficiency  
CODin Influent COD mass flow, g COD/d 
Biomass Biomass produced as Volatile 

Suspended Solids, g VSS/d 
CH4 % methane in biogas 
ALK  Bicarbonate alkalinity, g CaCO3/L  
CODr COD reduction, g COD/d 
At=I Parameter A with time lag t=i days 
R2 Correlation coefficient 
Res %eff - ffeˆ% , residuals are calculated 

by substituting data-set values into 
the regression equation of the 

previous stage and subtracting them 
from the corresponding measurement 
of efficiency 

UASB Up-Flow Anaerobic Sludge Blanket  
VSS Volatile Suspended Solids, mg/L 
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