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New Recurrent Neural Architectures 

 

Abstract:  

This paper presents two new neural networks, the TASM (Temporal 

Associative Subject Memory) and the SelfRecurrent network, described as a 

complex types of recurrent organisms. After a short general definition of 

recurrent neural networks we introduce the theoretical structure of the new 

architectures. The paper shows two relevant applications on an medical 

datasets which show the good classification performances of the networks 

proposed. We conclude with some reflection about the concept of meta-

learning and capability of these architectures to act as meta- learning 

systems. 

Keyword:  Recurrent neural network, Dynamic system, Organism, Meta-

learning, Artificial Intelligence. 

 

 
1 Introduction 

This paper introduces two new recurrent ANNs, based on the interaction of 

two ANNs, a supervised one and an unsupervised: the SelfRecurrent and 

TASM (Temporal Associative Subjective Memory) networks.  

In the theoretical sections these new ANNs are presented as a special type of 

recurrence. In this case, in fact, the recurrence is not a feature of the process 

to be modeled, but it is a specific feature of the learning process itself. 

Consequently, these new ANNs can be used also for pattern recognition, 

where there is not a sequential implication among the input patterns.  

Our analysis of recurrent networks will be based on a new concept of 

“timing”. We named “exogenous”  the timing of a network depend ing only 

upon external events. We will also refer to a kind of complex internal 

dynamics timing as “endogenous”. For example, in Hopfield networks [8,9] 

we have more than a relaxation step for a single input variation. This exists, 

more specifically, with the interactions between more than one network. As 

we will see, these different timings  make the networks we present effective 

systems that learn to learn: the (n+1)-th input model is not accompanied 
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with simple "traces" carried out on the previous n-th model, but rather with 

a synthetic elaboration (clustering) of the memory of the previous model.  

In the experimental section we will show a synthesis of the results of two 

relevant studies obtained using this kind of networks and recently published: 

prediction of malignancy of lesion in contrast-enhanced mammography and 

our study on Alzheimer pathology. These results  reinforce that the complex 

dynamics that characterizes these new types of networks, as system 

composed of two networks that cooperate and coordinate each other in a 

spontaneous way, could help to limit consequences of noisy data and of 

“overfitting” effect during the training phase and  to allow for more accurate 

extrapolation during the recall phase. 

In the conclusive section we discuss the main reason to design and to 

propose Tasm and SelfReflexive ANNs: the simulation of a complex and 

dynamic meta- learning process.  At the most simple level human learning  

consists also to reflect on own learning process. Human learning is a 

complex way to learn to learn, a natural recurrent process.  

 

 

2 Theory 

Generally, a generic neural network is considered to be a discrete-time 

system on an input subspace ℜN and an output subspace ℜM. 

Let us consider this network during the recall phase, when all of its 

characteristic parameters are kept fixed. At each temporal step the network 

will associate to the input presented pattern, i.e. a X(t) vector belonging to 

the input subspace, an output pattern, i.e. a Y(t) vector in the output 

subspace. 

If a Non Recurrent network works as a combinatory system, i.e. associating 

output patterns to input patterns according to the following relationship:  

( ) ( )( )tXFtY =  

a Recurrent Networks operate, on the contrary, as a sequential system, i.e. 

associating output patterns to input patterns depending upon an inner state 

which evolves, on its turn, with the presented inputs over time. 
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If we represent the internal state with a vector Z(t), defined in a subspace 

ℜK, we can determine network behavior according to two equivalent pairs 

of relationship: 

( ) ( ) ( )( )
( ) ( )( )




=
=+

tZGtY
tXtZFtZ ,1

      (1) 

called Mealy's Equations, or: 

( ) ( ) ( )( )
( ) ( ) ( )( )




=
=+

tXtZGtY
tXtZFtZ

,
,1

      (2) 

called Moore's equations. 

In general, a Recurrent Network does not establish an association between 

input patterns and out patterns, but an association between the set composed 

by the initial inner state and the sequence of input patterns and a sequence 

of output patterns. 

Recurrent Networks basically are defined in terms of equations and in terms 

of functions. Equations of a Recurrent Network are characterized by the 

presence of state variables, which create a sequential system. The sequence 

of patterns constitutes a trajectory within the relative phase space. Basic 

functions are characterized by the creation of an association between input 

and output trajectories rather than by the creation of an association of points 

(mapping) between spaces themselves. The latter is typical in non-recurrent 

networks. 

 

 

3 Internal Recurrence 

A new concept is introduced in the analysis of the Recurrent Neural 

Networks: the “timing”. When a simple FF network is trained or recalled, 

timing of the interaction between the network and the environment 

(essentially training and testing data) is fixed and is due only to the 

presentation of an input and a target pattern. Thus every time that there is  a 

new input target pair,  a new step manifests itself in the network. Given that 

the  timing of a network depends only upon external events  we named this 

timing “exogenous”. More timings can operate in other kinds of networks, 
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which are defined by the internal dynamic evolution of the network. For 

example, in Hopfield networks we have more than a relaxation step for a 

single input variation. This exists, more specifically, with the interactions 

between more than one network. We will refer to this kind of complex 

internal dynamics timing as “endogenous”. 

This two different type of temporal dynamics allow to refine the concept 

itself of recurrence in ANNs literature. 

Traditionally, the concept of recurrence is connected to an exogenous 

concept of time: there is recurrence when the learning process is modified 

by the sequential order of the input patterns. We can figure out a new type 

of ANNs able to generalize the concept of recurrence taking account the 

endogenous time of the learning process itself : there is recurrence when the 

learning process has its sequential timing, independent from the sequential 

order of the input patterns. The ANN , in this case, will be a combinatorial 

machine from a external viewpoint, but its inside learning process will work 

as a sequential machine. 

Briefly, these new theoretical ANNs have to show a combinatorial dynamics 

in relation to the whole patterns, but they also have to show a sequential 

dynamics for each single pattern. 

This independency of internal time from the external time happens with an 

automatic reset of the state vector when a new pattern is processed by the 

ANNs. 

Consequently, we can figure out also an ANN able to manage this two 

independent dynamics simultaneously : in this case, the ANN does not reset 

its state vector when a new input is processed, mixing, in this way, an 

internal recurrence with an external one.  

So, the new ANNs  that we are going to define into details will show a 

meta- learning dynamics. This ability will consist in two features : 

§ their sequential learning process for each input pattern, not influenced 

by the other patterns ; 
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§ their capability to learn and cluster dynamically its own hidden layer, 

using a server ANN able to build in a recurrent way the state vector of 

the ANNs. 

 

 

4 Composed networks 

TASM and SelfRecurrent networks, the new ANNs we are going to define, 

represent a test for the hypothesis that meta- learning process can increase 

the learning capabilities of a ANN. 

Such architectures are based on the consideration that networks belonging to 

the Feed Forward family as well as simple Recurrent Networks, such as 

Jordan's and Elman's [7,9,10,11], could present, at the same time, both a 

weakness and a strength in their makeup. Their layer of hidden units codes 

input vectors in a potentially distributed way,  a very effective coding 

system from a computational point of view. But this kind of input vector 

coding is practically uncontrollable in terms of its power: we do not know 

which is the most effective one based upon the relationship which each 

input variable has with the others among  many possible ways through 

which hidden units codify input vectors. An attempt have been made to 

answer this question, with TASM and SelfRecurrent architectures. 

Two variants of these networks, obtained by suitably introducing meta-

arches in the respective graphs will be described. 

In order to better explain the two networks, we prefer, also in this case, to 

describe them, with the respective variants, autonomously one another, 

proposing in each exposition possible analogous aspects. 

 

4.1 TASM networks 

TASM networks were created by M.Buscema in the second half of the 

1990s at the Semeion, Research Center of Sciences of Communication, 

Rome. 

TASM networks are constituted, topologically, by a composition, in a 

feedback loop, of a normal Feed Forward network, a SelfReflexive (SR) 
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network with free hidden units, drift model [3] and an additional layer of 

PEs, called extended input (figure 1). 
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Figure 1 - Representation of a TASM network with signal flow 

 

The basic structure of the SR consists of four layers: an input layer which 

passively receives the signal from environment and connected by a single 

weight to each of the units of the hidden layer which interprets the signal; a 

further layer of hidden units, free units not subject to any external 

constraint, whose number is completely independent of the number of units 

in the other layers. The connection between the hidden and free layers and 

free output was designed to be maximum gradient. SR networks are not 

supervised with the law of learning based on descending gradient. They 

define target by themselves and modify weights to match output nodes 

activation with the target, equal to the activation of hidden nodes. 

The SR network receives in input the feedback signal from PEs of the 

hidden layer of the Feed Forward, through mono-dedicated connections. 

Outputs from PEs of the free hidden layer of the SelfReflexive are 

connected, through mono-dedicated connections, to correspondent PEs of 

the extended input layer. Outputs from PEs of the extended input laye r are 
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distributed finally in input, to PEs of the Feed Forward hidden layer, 

through full grid connections.  

Inner connections of Feed Forward and SelfReflexive networks, as well as 

those connecting the extended input layer to the Feed Forward hidden layer 

have an adaptive weight. On the other hand,   connections linking the Feed 

Forward hidden layer to the SelfReflexive input layer, and those linking the 

SelfReflexive free hidden layer to the extended input layer have a fixed 

weight, equal to 1, since their only function is to copy or “clone” the 

activation value. 

All activation functions work on the weighted sum of inputs. They are linear 

for input layers of Feed Forward, SelfReflexive and for the extended input 

layer, since such layers work only as a buffer. For all  other layers they are  

tipically sigmoidal. 

We introduce the following notation: 

• ][hid

ij
w  and ][ hidinE

ij
w − : input-hidden weights and extended input-

hidden weights from j-th PE of extended input layer to i-th PE of hidden 

layer; 

• 
][ hid

ix ,
][ in

ix  and 
][ inE

ix : activation values of j-th PE of the hidden, 

input and extended input layers; 

• 
][hid

iϑ  : bias value of i-th PE of the hidden layer; 

• Nin, NinE: number of PEs of the input layer and the extended input 

layer; 

• f(⋅) a generic function. 

The  equation for the calculation of the activation values of the hidden layer 

is the following: 







 +⋅+⋅= ∑ ∑

= =

−−
Nin

j

NinE

j

hid
i

hidinE
ij

inE
j

hidin
ij

in
j

hid
i wxwxfx

1 1

][][][][][][ ϑ   (3) 

The SelfReflexive is used in this architecture to find out and code, with its 

free units, some characteristic properties of the pattern presented in input. In 

this case the presented pattern coincides with the hidden layer of the Feed 

Forward. Therefore, characteristics of its own input code are presented 
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again as an extended input to the Feed Forward. Moreover we want the 

network to have a certain number of cycles available to learn its input code. 

For this reason, presenting to the Feed Forward a pattern in input, 

calculation flow recycles more times through the SelfReflexive, producing 

at the same time the correspondent output patterns. 

This network manifests both endogenous and exogenous timing:  

§ An input pattern is presented at each step of the external time,  

§ At each step of an internal time some cycles are carried out with the 

Self-reflexive network in order to learn the code of the hidden  Feed 

Forward layer, 

§ Output patterns are presented.  

So one step of the external time corresponds to more steps of the internal 

time. The activation value of the extended input (called “state”) reached by 

the network at the last internal step is used again to calculate the output of 

the following pattern. 

There are two kinds of behaviors of the network: the basic one, called fixed 

feedback and the advanced one, called adaptive feedback. They differ 

basically in the output condition from the internal cycles on the 

SelfReflexive. In the basic version of fixed feedback, we have a flow 

according to the steps described as follows, where number k of cycles, 

usually two, is a network parameter:  
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Fixed_Feedback_TASM_Flow 
{ 
  extended_input=0; 
  While(enough_patterns)  
  { 
    Get_input_pattern; 
    num_cycles=k; 
    do 
    { 
      Compute_hidden_activation; 
      Compute_Selfreflexive_output_activation; 
      Compute_extended_input_activation; 
      Correct_Selfreflexive_weights; 
      num_cycles= num_cycles -1; 
    } while(num_cycles>0); 
    Compute_hidden_activation; 
    Compute_output_activation; 
    Correct_hidden-output_weights(*); 
    Correct_input-hidden_weights(*); 
    Correct_extended_input-hidden_weights(*); 
  } 
} 
 

The correction learning coefficient for all weights is equal to zero (i.e., all 

weights of the supervised network remain fixed in the particular case of 

recall only, ) while the SelfReflexive weights are changed. The (*) steps are 

not performed during recall for the above described algorithm. 

The adaptive feedback behavior makes the number of cycles adaptive 

through the SelfReflexive network. The adapting criterion can be chosen in 

different ways. One effective choice has been to compare the error of each 

cycle on the SelfReflexive to the error of the previous cycle  until the error 

diminishes. 

In this case,  the necessary calculations  follow these steps: 
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Error_Adaptive_Feedback_TASM_Flow 
{ 
  extended_input=0; 
  While(enough_patterns)  
  { 
    Get_input_pattern; 
    selfreflexive_error=0; 
    do 
    { 
      Compute_hidden_activation; 
 Compute_Selfreflexive_output_activation; 
 Compute_extended_input_activation; 
 previous_selfreflexive_error = selfreflexive_error; 
 selfreflexive_error =Compute_selfreflexive_error; 
 Correct_Selfreflexive_weights; 
    } while(selfreflexive_error > previous_selfreflexive_error); 
    Compute hidden activation; 
    Compute_output_activation;  
    Correct_hidden-output_weights(*); 
    Correct_input-hidden_weights(*); 
    Correct_extended_input-hidden_weights(*); 
  } 
} 
 

The (*) steps are not performed during recall. 

TASM networks, from a functional point of view,  are adaptive systems able 

to dynamically control the effectiveness of the hidden unit’s coding of the 

input vectors through the synthesis operated by the free units of the SR. We 

can say that it is a system that learns to learn.  

In a TASM network (n+1)-th input model is not accompanied with simple 

"traces" which the network had carried out on the previous n-th model, but 

rather with a synthetic elaboration (clustering) of the memory of the 

previous model. SelfReflexive free units supply the values for what we 

could define a metamemory. 

We experimentally verified that SelfReflexive free units tend to code the 

principal components (with a eigenvalue >1) of their own input models. We 

know that the other values free units coding are not at all linearly correlated 

either between themselves or with those expressing the main components. 

From a different point of view, this network architecture seems to simulate 

the transformation that happens in the brain between short-term memory 

and middle term memory. We believe, in fact, that SelfReflexive free units 

work as active and adaptive selectors of the traces of short-term memory. 

The free units, in fact,  transform the latter into more stable components of a 
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syntactic level. They learn  the model x, coded in H by the hidden units of 

the Feed Forward network,  re-code in G, where G has a cardinality lower 

than H and represents the syntactic relationships that G has with the 

previous experiences, which  have already been coded by the Supervised 

Network. 

 

4.1.2 Dynamic Tasm Networks 

In order to increase the architecture feedback dynamism, an interesting 

modification of the TASM networks consists in introducing in the activation 

functions of the Feed Forward hidden layer a dependence of the weights of 

the input-hidden connection on the activation values of the extended input. 

In the graph this dependence corresponds to the introduction of what we 

define a node-connection meta-arch. We  add a connection to each input-

hidden weight so that the j-th PE of the hidden layer will be  the  product of 

the activation values of all PEs of the extended input. The Dynamic Tasm 

Network (TASMDa) is illustrated in figure 2. 
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Fig. 2 - Representation of a dynamic TASM Network 

 

Referring to the analogous expression for the  activation of the hidden units 

of basic TASM, we have in this case:  
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4.2 SelfRecurrent networks 

SelfRecurrent networks were ideated by to M.Buscema in 1996 [4]. 

From a topological point of view, SelfRecurrents Networks are composed in 

a feedback loop, by a normal Feed Forward network, an Auto-Associative 

Feed Forward network with two layers [1,14]  and an additional layer of 

PEs, called extended input (fig. 10). 

Auto-Associative network are non supervised, with two or more layers. The 

learning law is based on descending gradient. They present the same 

number of node in its layers since training target is to duplicate the input 

array on the output units. In the Self Recurrent architecture this network 

have only two layers and the weights connecting same index nodes are 

deleted to avoid convergence toward trivial solution. 

More specifically, the Auto-Associative network receives the feedback 

signal in input from PEs of the Feed Forward of the hidden layer, through 

mono-dedicated connections. Outputs from PEs of the output layer of the 

Auto-Associative are connected, through mono-dedicated connections, to 

correspondent PEs of the extended input layer. Outputs from PEs of the 

extended input layer are distributed in input to PEs of the Feed Forward 

hidden layer, through complete net connections.  

The patterns processed by the Auto-Associative coincide with the outputs of 

the hidden layer of the Feed Forward. As the target of the former is to 

reproduce patterns presented in input, through a filter enhancing the 

characteristic properties of the input space, the result of the feedback loop is 

representing in input to Feed Forward a filter coding of the input already 

processes by the same Feed Forward. So the signal will be elaborated 

several times. The Self Recurrent (SelfaSA) network is illustrated in figure 

3. 
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As for the TASM network, inner connections of Feed Forward and Auto-

Associative networks, as well as those connecting the extended input layer 

with the Feed Forward hidden layer have an adaptive weight. On the other 

hand connections linking the Feed Forward hidden layer to the Auto-

Associative input layer, and those linking the Auto-associated output layer 

to the extended input layer have a fixed weight, equal to one, since the ir 

only function is to duplicate the activation value.  
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Figure 3  Representation of a SelfRecurrent Network with signal flow 

 

All activation functions work on the weighted sum of inputs. They are linear 

for the input layers of Feed Forward and Auto-Associative networks and for 

the extended input layer, since such layers work only as a buffer. They are 

they are typically sigmoidal for all other layers. 

The equation for the calculation of the activation values of the hidden layers 

is again  
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Moreover, unlike what we carried out in a classic Recurrent Network such 

as Elman's, we want the network output to consider its way to codify input 

at a hidden level, not in the following step for the following input, but in the 

same step for the same input. For this reason, presenting a pattern in input to 
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the Feed Forward, a calculation flow recycles more times through the Auto-

Associative Network before the output pattern is produced. 

As for the TASM network, Self recurrent network manifests two kinds of 

time: an external time, at each step of it an input and an output pattern are 

presented, and an internal time, at each step of it some cycles of the Auto-

Associative are carried out to learn the coding on the Feed Forward hidden. 

One step of the external time corresponds to more steps of the internal time. 

The state, i.e. the activation value of the extended input, reached by the 

network at the last internal step, is put to zero before executing internal 

cycles to calculate output for the next pattern. This allows the network to 

limit recurrence to calculate each single pattern. 

In the fixed feedback network behavior, we have the flow according to the 

steps described as follows, where number k of cycles, usually two, is a 

network parameter: 

Fixed_Feedback_SelfRecurrent_Flow 
{ 
  While(enough_patterns)  
  { 
    Get_input_pattern; 
    extended_input=0; 
    num_cycles=k; 
    do 
    { 
      Compute_hidden_activation; 
   Compute_Autoassociate_output_activation; 
      Correct_Autoassociate_weights; 
      Compute_extended_input_activation; 
 num_cycles = num_cycles -1; 
       } while(num_cycles>0); 
    Compute_hidden_activation; 
    Compute_output_activation;  // As intermediate / final output 
    Correct_hidden-output_weights(*); 
    Correct_input-hidden_weights(*); 
    Correct_extended_input-hidden_weights(*); 
  } 
} 
 
In the particular case of recall only, the correction learning coefficient for all 

weights is equal to zero; i.e., all weights of the supervised network remain 

fixed, while the SelfReflexive weights are changed. The (*) steps are not 

performed during recall phase. 
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In the advanced version (adaptive feedback), the number of cycles through 

the Auto-associative network is made adaptive. Various options exist for 

choosing the adapting criterion. One which has demonstrated being 

appropriate is comparing the error on the Auto-Associative of each cycle 

with the one of the previous cycle, going out when error decreases. 

In this case, we have the calculation flow according to the following steps:  

 

Error_Adaptive_Feedback_SelfRecurrent_Flow 
{ 
  While(enough_patterns)  
     { 
    Get_input_pattern; 
    extended_input=0; 
    autoassociation_error=0; 
    do 
    { 
      Compute_hidden_activation; 
 Compute_Autoassociate_output_activation; 
 Compute_extended_input_activation; 
 Correct_Autoassociate_weights 
       previous_association_error=autoassociation_error; 
       autoassociation_error=Compute_autoassociation_error; 
    }while(autoassociation_error > previous_association_error);  
    Compute_hidden_activation; 
    Compute_output_activation; 
    Correct_hidden-output_weights(*); 
    Correct_input-hidden_weights(*); 
    Correct_extended_input-hidden_weights(*); 
    } 
} 
 

In the particular case of recall only, the correction learning coefficient is 

equal to zero for all weights, except for those of the Auto-associated, which 

is pushed toward convergence. Referring to the above algorithm description 

the (*) steps are not performed during recall. 

Like TASM network, SelfRecurrent Network is an adaptive system able to 

dynamically control the effectiveness of coding  of the input vectors 

performed by hidden units. It is a system that learns to learn. We created 

this complex evolution mechanism combining learning mechanisms with 

descendent gradients of the two networks by which SelfRecurrent is 

composed. 
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The role of the Auto-Associative Network and its properties define the 

specificity of this form of learning. Learning of the Auto-Associative works 

as a codification of the parameters p1, …, pr of the implicit function: 

( ) 0...,,,...,, 1
][][

1 =r
hid

Nhid
hid ppxxϕ     (3) 

which is not known and which expresses the dependency between the 

activation values of the hidden units of the Feed Forward which is 

connected with it. 

The Auto-Associative Network works as an adaptive filter of the Feed 

Forward Network to which it is connected. It will reintroduce, as Feed 

Forward extended input, values that are never a copy of the hidden units that 

constituted its input. 

In its working with the Feed Forward, during its learning phase, the Auto-

Associative tends toward an attractor that is not necessary an attractor 

minimizing its error E[Aut]. On the contrary, the Auto-Associative is dragged 

by the Feed Forward toward a value allowing it to filter in output values 

which represent hidden units more correlated with others and which better 

contribute to minimization of the error of supervised Feed Forward to which 

it is connected. 

In this sense, we can state that the SelfRecurrent is a network conjugating 

two gradients, in order to establish the optimal divergence point of one of 

the two (that of the Auto-Associative), so that the maximal convergence of 

the other (that of the Feed Forward) can be obtained. 

This network model's most important strengths are the following: 

a. Precise generalization. This results through a learning phase during 

which the input coding itself is the object of learning. This reduces, at the 

same time, overtraining and coding errors problems. 

b.  A sufficiently good tolerance and strength to noisy inputs. The 

latter are contextualized together with clusters which they activate. 

c. A good biological plausibility. External inputs are, in fact, not 

perceived as external inputs. They are re-read through the categories 

constituted by the system during its previous experiences. New inputs are, 

practically, re-categorized. This seems to have positive effects on the 
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stability and plasticity problems, which affects many artificial adaptive 

systems. 

 

4.2.2 Dynamic SelfRecurrent Networks 

An interesting modification of SelfRecurrent Networks consists in 

introducing a dependence of the activation functions of the Feed Forward 

hidden layer on the weights of the connections of the Auto-Associative. 

This dependence should increase feedback dynamism of this architecture . It 

corresponds, on the graph, to the introduction of what we defined 

connection-connection meta-arches. 

We add to each extended input-hidden weight a connection operating on j-th 

PE of the hidden layer the product of Auto-Associative weights linked to the  

j-th PE in output. Referring to the analogous expression (2) we have:  

( ) 







+⋅⋅+⋅= ∑ ∑ ∏

= = =

−−
Nin

j

NinE

j

hid
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NoutAA

k

NoutAA
ik

hidinE
ij

inE
j

hidin
ij

in
j

hid
i wwxwxfx

1 1

][

1

][][][][][][ ϑ  (4) 

where ][ NautAA
jiw  indicates the weight from i-th PE of the input layer of the 

Auto-Associative to its j-th PE of the output layer. The Dynamic Self 

Recurrent (SelfDA) network is illustrated in figure 4. 
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Figure 4  Representation of a dynamic SelfRecurrent network  
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5 Applications in medical field 

 

5.1 Prediction of malignancy of lesions in contrast-enhanced MR-

mammography 

A dataset, collected at the University Hospital of Mainz, Germany, based on 

Contrast-Enhanced (CE) MRI of the female breast for the detection of breast 

cancer lesions, was used to train and test a Complex Recurrent Network 

against a BP network, and to evaluate this new architecture's performances 

accurately in terms of its generalization capabilities [15].  

A 2 fold cross-validation analysis of this dataset, repeated 5 times 

(2CV5), was selected because these validation protocols seem to suffer less 

problems than the classical K fold cross-validations do. This is particularly 

so in terms of the first type error in algorithm's performance comparison 

[6].The dataset consisted of 604 histologically proven cases of contrast-

enhancing lesions at MRI of the female breast analyzed between October 

1996 and August 2001, 421 malignant and 183 benign tumors. 

Morphological parameters (e.g. size, shape or boundary of the lesion) as 

well as dynamic parameters (e.g. enhancement-style, central signal intensity 

at six different times during the investigation) were collected and stored in 

the database. This was enlarged by additional parameters (e.g. age of the 

patient, indication for the investigation, familiar and self-risk of breast 

cancer). 

The Bp was configured with 4 hidden units, with sigmoidal activation and 

softmax [2] function for the output nodes. One node was for malignant and 

one was for benign breast lesion. All recurrent network used in this 

experiment have an adaptive definition of number of internal iterations. In 

following table TASM architecture is compared to statistic model and an 

expert radiologist. For details (optimization protocol and learning laws 

used) we refers the reader to the reference. 
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ANN Sensitivity Specificity 

BP 91.7% 83.7% 

TASMDa 93.6% 91.9% 

Logistic Regression 90.5% 68.9% 

Expert radiologist 92.1% 85.6% 

Table 1 – Comparison between architecture. 
The DA postfix means dynamic and represents the presence of second order connections. 

 

 

5.2 Prediction of Alzheimer pathology only on the basis of cognitive and 

functional Status 

Data from several studies have pointed out the existence of a strong 

correlation between Alzheimer’s disease (AD) neuropathology and 

cognitive state. To predict the results of postmortem brain examinations, we 

applied ANNs to the Nun Study data set, a longitudinal epidemiological 

study, which includes annual cognitive and functional evaluation [5]. One 

hundred seventeen subjects from the study participated in this analysis. We 

determined how demographic data and the cognitive and functional 

variables of each subject during the last year of her life could predict the 

presence of brain pathology expressed as Braak stages, neurofibrillary 

tangles (NFTs) and neuritic  plaques (NPs) count in the neocortex and 

hippocampus, and brain atrophy. The result of this analysis was then 

compared with traditional statistical models. ANNs proved to be better 

predictors than Linear Discriminant Analysis in all experimentations (+ 

~10% in overall accuracy), especially when assembled in Artificial 

Organisms (+ ~20% in overall accuracy). Demographic, cognitive, and 

clinical variables were better predictors of tangles count in the neocortex 

and in the hippocampus when compared to NPs count. In the following 

table we show part of the results of prediction experiments with a 

comparison between two protocols (random vs optimization). For details 

(optimization protocol and learning laws used) we refers the reader to the 

reference. 
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Table 2  Prediction by Artificial Neural Networks and Linear Discriminant Analysis of the 
Neuropathological Outcomes by Using Cognitive and Functional Variables in 117 Subjects 
*FFSn: Feed Forward Sine Net: feed forward with Sine learning law (Semeion) 
TasmSaBm: Tasm Static with Bimodal learning law (Semeion) 
Num: number of elaborations; A. Mean: arithmetic mean; W. Mean: weighted mean. 
 

The performance of these netowrks has been confirmed by other various 

other applications analyzing real data [8,12,13]. This reinforces that the 

complex dynamics that characterize these new types of networks could help, 

during the training phase, to limit consequences of noisy data and of 

“overfitting” effect and, during the recall phase, to allow for more accurate 

extrapolation.  

It must be emphasized that these results were obtained using a system 

composed of two networks that cooperate and coordinate each other in a 

spontaneous way. The analysis of these networks obviously needs to be 

extended given the encouraging experimental results. This could be a way to 

build complex organisms which are able to enhance the capabilities of 

classical networks. 

SUMMARY RESULTS 

Experiments Models Num Target Classification A. Mean W. Mean 

   Tangles < 1.0  Tangles > 1.0    
LDA - Random 10 74.12% 73.48% 73.80% 73.85% 
ANN FFSn* - Random 20 86.51% 81.81% 84.16% 84.57% 
Best ANN FFBp Optimized 10 89.18% 86.49% 87.83% 87.08% 

Tangles NeoCortex 
 

SelfDABp 40 93.36% 87.37% 90.36% 89.95% 
   Tangles > 10 Tangles < 10   

LDA - Random 10 76.83% 74.21% 75.52% 75.62% 
ANN FFSn*- Random 20 84.12% 83.77% 83.95% 83.92% 
Best ANN-FFBm Optimized 10 84.65% 88.70% 86.68% 86.33% 

Tangles 
Hippocampus 

TasmSaBm 40 88.00% 87.68% 87.83% 87.87% 
   Plaques > 1.5  Plaques < 1.5    

LDA - Random 10 64.03% 75.50% 69.77% 66.37% 
ANN FFSn* - Random 20 87.11% 80.25% 83.68% 85.16% 
Best ANN- FFBp Optimized 10 89,74% 88.13% 88.93% 88.11% 

Plaques NeoCortex 

SelfDABp 40 88.59% 91.25% 89.92% 88.62% 
   Plaques > 1.5  Plaques < 1.5    

LDA - Random 10 61.68% 68.53% 65.10% 65.36% 
ANNs - FFSn Random 20 79.24% 74.16% 76.70% 76.26% 
Best ANN- FFBp Optimized 10 77.01% 79.93% 78.47% 78.14% 

Plaques 
Hippocampus 

SelfSaBp 40 79.40% 85.02% 82.21% 81.94% 
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6 Conclusion: recurrence and meta-learning 

The main reason to design and to propose Tasm and SelfReflexive ANNs  is 

to simulate a complex and dynamic meta- learning process.   

Learning is not enough: human learning is not a simple way to adapt brain 

connections to a new situation. At the most simple level it consists also to 

reflect on own learning process. Human learning is a complex way to learn 

to learn.  

This process of Meta- learning is a natural recurrent process. And the 

number of recurrences has to be adaptive, according to the interaction 

between the prior knowledge and  the new ones.  

In a first approximation we can define meta- learning as the learning of a 

new input with the code through which the same new input was learnt one 

step before. This dynamic recoding is the background of meta- learning 

process : 

• an ANN codes in its hidden layer a new input; 

• the same ANN codes again in its hidden layer the new input plus the 

way the ANN understood it in the precedent step; 

• and so on until the ANN finds no new information in the vector 

composed by the new input and the its precedent interpretation codified in 

its hidden layer. 

We can try to formalize this dynamic: 

))(( tttt xGFy =              (5) 

where: 
ty  Output at time t 

tF  Output function at time t 
tG  Hidden function at time t 

tx  Input at time t 
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The equation (5) is the general representation of a supervised feed forward 

multilayer ANN. The time, t, points out the external time of the process: 

when the Input-Output pair changes the time increases. 

The equation of one of the more classical and simple recurrent ANN, 

instead, should have this representation : 

))(...,...)),(,(( 211 −−−= ttttttt GxGxGFy    (6) 

Also in this case, the time, t, is an external time: the time of the hidden 

layer, G, is always the same time of the input, x. The ANN is not reflecting 

on its way to code the input. It is simply forcing the precedent input coding 

on the actual input coding. In this case we cannot say that the ANN has a 

memory. We have to say that the ANN architecture forces the ANN to link 

the actual learning to the precedent one. We can talk about “memory” if the 

ANN reflects and weights on this link. We can talk about memory if a meta-

learning process is implied. 

Meta- learning is possible if the time of the function and the time of its 

argument are not the same. It implies the existence of two different times: 

the external time, connected to the Input-Output pairs changes, and an 

internal time, dependent from the iterative processes between the hidden 

layer function and the input layer. 

Memory happens when the ANN tries to understand now the way it 

understood the actual and the precedent input. Memory is much  more 

complex than meta- learning, and meta-learning is much more complex than 

passive learning. 

In the case of  the Self Recurrent network, this more complex condition 

makes the Auto-Associative ANN weights matrix updating  temporally 

independent from the external time of the global process. Internal time is 

completely independent from the external time: the Auto-Associative ANN 

updates its weights at any recurrence, not making difference between two 

different input vectors or the iteration of the same input vector. 

The criterion trough which the meta- learning recurrence process stops 

depends from the dynamics of the Auto-Associative ANN : when the Auto-

Associative ANN error at the internal time decreases respect to the same 
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error at the time (t-1), the feed back loop terminates and the signal can flow 

up to the output, y, of the global ANN. The error reduction, in fact, means 

that the global ANN is beginning to understand the connection between the 

new input and its understanding of the same new input. 

This specific time articulation works also during the recall phase of the 

trained ANN. For any new input the ANN works updating the Auto-

Associative weights matrix after every loop, but maintaining fixed the other 

weights matrices. 

This dynamic answering is interesting  because it means that the ANN 

continues to iterate the meta- learning process also during the recall phase.  

Tasm ANN works in the same way of the SelfReflexive ANN. 

The main difference is that in Tasm ANN, the server ANN for the meta-

learning process is an  unsupervised SelfReflexive ANN.  The free units of 

SelfReflexive ANN represent the main features of what the Tasm 

understood of the input vector. So, this condensed understanding modules 

the weights strength from the same input vector to the ANN hidden nodes. 

The meta- learning process, by the way, will happen on a double 

background:  

• the indirect effect of input vector added with the condensed 

understanding that the ANN did of the same input in the precedent step; 

• the direct modulation of the input vector itself on the hidden units, 

because of the interpretation of ANN precedent coding. 

This process should be able to optimize the Tasm training further. 

With the SelfRecurrent ANN we have followed a different line of thought, 

linked to the different mathematic nature of the Auto-Associative ANN, 

connected to the main ANN.  

The Auto-Associative ANN has the same cardinality in input as in output. 

But its cardinality is also the same cardinality of the hidden units of the 

main ANN. 

So, it is possible to assert that each output of the Auto-Associative ANN 

represents an internal interpretation of the  correspondent  hidden node of 

the main ANN.   
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In fact, the fan in of each output node of the Auto-Associative ANN is equal 

to the number of the hidden nodes of the main ANN.  

When we desire to increase the order of the SelfRecurrent ANN, we need to 

connect directly the Auto-Associative weights of each Auto-Associative 

output node to each connection coming from the Auto-Associative Output 

node to the correspondent hidden node of the main ANN. 

In this way, the meta-connections will module the sign and the strength of 

meta- learning on every specific hidden node, according to the internal 

understanding that the Auto-Associative ANN is developing of what the 

global ANN understood of the input vector [16]. 

Also in this process every meta- learning feed back loop is a double meta-

learning : what the ANN understands of the new input with the content of 

what it understood of the same input the step before, considering what the 

ANN has meta-understood with the precedent input vector.  

Finally, Tasm and SelfReflexive are “double time” ANNs, showing specific 

features that make them different from the usual recurrent ANNs. 

For this reason we named them composite recurrent ANNs. 

Composite ANNs : 

• are composed from different ANNs (at least two) , working together 

in recurrent way; 

• their mutual and local convergence is not globally supervised; 

• work following two different times: a external time and an internal 

one; 

• the number of inside feed back loops is adaptive; 

• can present with easy modifications an high order of dynamics; 

• can be structured also for classical temporal learning; 

• are meta-learning oriented; 

• are able to simulate more likely than classic recurrent ANNs human 

memory processes. 

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp174-201)



 26 

REFERENCES 

 

[1] Anderson J.A., Associative Networks, in Arbib M.A.(ed), The Handbook of 

Brain Theory and Neural Networks, The MIT Press, Cambridge, Massachusetts, 

1995. 

 

[2] Bridle J.S. (1989), Probabilistic Interpretation of Feedforward Classification 

Network Outputs, with Relationships to Statistical Pattern Recognition, in F. 

Fogelman-Soulié, and J. Hérault (eds.), Neuro-computing: Algorithms, 

Architectures, Springer-Verlag, New York. 1989. 

 

[3] M.Buscema, SelfReflexive Networks. Theory, Topology, Applications, in 

Quality & Quantity, Kluwer Academic Publisher, Dordtrecht, The Netherlands, 

November 1995, vol.29(4), 339-403. 

 

[4]  M. Buscema, Self -Recurrent neural network, in Special Issue of Substance 

Use & Misuse, The International Journal of the Addictions, Marcel Dekker, New 

York ,Vol. 33 n. 2, 1998, pp. 495-501. 

 

[5]  M. Buscema, E. Grossi, D. Snowdon, P. Antuono, M. Intraligi, G. Maurelli, R. 

Savarè, Artificial Neural Network can predict Alzheimer pathology in individual 

patients only on the basis of cognitive and functional status, in NeuroInformatics,  

Humana Press, Winter 2004 2(4), pp. 399-416. 

 

[6] Dietterich T.G. (1997), Approximate statistical tests for comparing SuperVised 

classification learning algorithms in Neural Computation, by The MIT Press, Vol. 

10, 1998, pp. 1895-1923,. 

 

[7] J.L.Elman, Finding Structure in Time, in Cognitive Science, vol.14, pp.179-

211. 

 

[8] E.Grossi, M.Buscema, M.Intraligi, A. Seeberg Use of Artificial Neural 

Networks in Predicting Adverse Reactions in Individual Patients Receiving 

Contrast Media, in Proceedings of  “Artificial Intelligence meets R&D” , 2002. 

 

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp174-201)



 27 

[9] J.J.Hopfield, Neural Networks and physical systems with emergent collective 

computational abilities, Proceedings of the National Academy of Sciences 

79:2554-2558, in J.A.Anderson and E.Rosenfeld (Eds) Neurocomputing 

Foundations of Reasearch, The MIT Press, Cambridge, MA, 1988. 

 

[10] J.J.Hopfield, Neurons with graded response have collective computational 

properties like those of two state neurons, Proceedings of the National Academy of 

Sciences USA, Bioscences 81, pp.3088,3092. 

 

[11] M.I.Jordan, Serial Order: A parallel distributed processing approach, in 

J.L.Elman, D.E.Rumelhart, Advances in Connectionist Theory: Speech, Erlbaum, 

Hillsdale, NJ. 

 

[12] P.Mecocci, E.Grossi, M.Buscema, M.Intraligi, R.Savaré, P.Rinaldi, 

A.Cherubini, U.Senin , Use of artificial neural networks in Clinical Trials: a Pilot 

Study to predict Responsiveness to Donepezil in Alzheimer Disease Patients, in 

JAGS, vol. 50, n. 11, November 2002, pp. 1857-1860.    

                                  

[13] F.Pace, M.Buscema, M.Intraligi, E.Grossi, P.Dominici, R.Cerutti, G.Bianchi 

Porro, Neural Networks in GERD to Discriminate between Patients with or without 

Pathological Reflux on the Basis of Clinical data alone, in Proceedings of  

“Artificial Intelligence meets R&D”, 2002. 

 

[14] Rumelhart D.E., Hinton G.E., and Williams R.J., (1986), "Learning internal 

representations by error propagation", in Rumelhart D.E. and McClelland J. L., 

eds. (1986), Parallel Distributed Processing: Explorations in the Microstructure of 

Cognition, MA: The MIT Press. 1986, Volume 1, 318-362, Cambridge. 

 

[15] T. W. Vomweg, M. Buscema, H. U. Kauczor, A. Teifke, M. Intraligi, S. 

Terzi,  C.P. Heussel, T. Achenbach, O. Rieker, D. Mayer, M. Thelen, Improved 

Artificial Neural Networks in dignity prediction of enhancing lesions in contrast-

enhanced  MR-Mammography, in Medical Physics, W. R. Hendee Ed., vol. 30 (n. 

9) September 2003, pp. 2350-2359. 

 

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp174-201)



 28 

[16] C.Yonghong, J.Yaolin, X.Janxue, Dynamic properties and a new learning 

mechanism in higher order neural networks, Neurocomputing, Elsevier Ed.,  Vol. 

50, January 2003 pp. 17-30. 

 

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp174-201)


