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Abstract: - The difference for the transmission of dengue disease to asymptomatic and symptomatic
infectious human is used to formulate the mathematical model of dengue disease. The human
population is separated into susceptible, asymptomatic infectious, symptomatic infectious and
recovered classes. The transmission probabilities of dengue virus from the mosquito class to the
susceptible human class are different to become asymptomatic or symptomatic infective classes.
The standard dynamical analysis method is used to analyze the model. Two equilibrium states are
found and the conditions for stability of theses two equilibrium states are established. The numerical
results are used to confirm these results. The control of this disease is discussed in the term of the
threshold condition.
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1 Introduction

The most important mosquito-transmitted viral
disease which occurs in the tropical regions is
dengue disease. It is estimated that there are over
one hundred million dengue cases worldwide
each year. The general symptoms of dengue
incidences are high fever, severe headache,
backache, joint pains, eye pain, vomiting and
rash. Dengue fever (DF), Dengue hemorrhagic
fever (DHF) and Dengue shock syndrome (DSS)
are three forms of this disease. DF is
characterized by the rapid development of a fever
that may last from five to seven days with intense
headache, joint and muscle pain and a rash. The
rash develops on the feet or legs three to four
days after the beginning of the fever. The
hemorrhagic form of dengue fever, DHF is more
severe and associated with loss of  appetite,
vomiting, high fever, headache and abdominal

pain. Shock and circulatory failure may occur,
DSS. Untreated hemorrhagic dengue results in
death in up to 50 percent of cases. DEN-1, DEN-
2, DEN-3 and DEN-4 are four serotypes of
dengue virus. Infection with one of the four
serotypes of dengue virus usually produces
immunity to that serotype but does not provide
protection against the other serotypes. This
disease is transmitted from one person to another
person through the bite of infected Aedes aegypti
mosquitoes. After each person is infected dengue
virus from the mosquito then that person may be
symptomatic or asymptomatic infection. The
mosquito becomes infected with dengue virus
when it bites a person who has dengue or DHF
and after about a week can transmit the virus
while biting a healthy person [1].  
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2 Mathematical model
To study the transmission of dengue disease, the 
human population is divided into four classes, 
su scep t ib l e ,  a sy mpto mat i c  i n fec t ious ,  
symptomatic infectious and recovered human 
populations. For the vector population, we divide 
into two classes, susceptible and infectious vector 
populations. Susceptible human is the human who 
both not immune and not infected. Asymptomatic 
and symptomatic infectious human are the human 
who are transmitted dengue virus from the 
infectious vector population and can transmit 
dengue virus to the susceptible vector. 
Asymptomatic infectious human is the patient 
who shows no symptoms but symptomatic 
infectious human is the patient who shows 
symptoms of dengue disease. Recovered human 
is the infected human after the viremia stage until 
after they recover from dengue virus infection. 
The vector population is separated into only two 
classes because it never recovers from infection 
[2].  Let

(t) S  is the number of susceptible person at

        time t,

(t)E  is the number of asymptomatic

         infectious person at time t,

(t) I   is the number of symptomatic infectious

         person at time t,

(t)R   is the number of recovered person at

         time t,

(t)Sv  is the number of susceptible vector

          population at time t,

(t)I v  is the number of infectious vector

         population  at time t.

         In our SEIR model, the dynamics of each
component of the human population is given by
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For the vector population categories, we have
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where 

Nt is the total number of  human population,

ρ   is the birth rate of the human population,

b    is the biting rate of the vector population,

βha  is the transmission probability of dengue

     virus from vector population to human

     population and become asymptomatic

     infectious human  population,

βhs  is the transmission probability of dengue

      virus from vector population to human

      population and become symptomatic

      infectious human population,

βv    is the transmission probability of dengue

      virus from human population to

      vector population,

µh   is the death rate of the human

      population,

 r    is the recover rate of the human

      population,

C    is the constant recruitment rate of the

      vector population,

µv     is the death rate of the vector population.  
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        We divide the human class by total
human population and the mosquito classes by
the total mosquito populations; we get the
densities for each class. We also have   S + E + I
+ R = 1 and  Sv + Iv = 1 where the absence of the
prime denotes a density. Because of these two
constrains, only four equations are needed to
define the model, i.e.,
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3 Analysis of the mathematical
   model
3.1 Analytical results  
        The equilibrium states are obtained by
setting the RHS of equations (7) to (10) to zero.
We get two equilibrium states, the disease free
state, '

0B  = (1,0,0,0) and the endemic equilibrium
state, '

1B  = (S*, E*, I*, *
vI )
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The local stability of an equilibrium state is
determined from the Jacobian (gradient) matrix of
the RHS of equations (7)-(10) evaluated at the
equilibrium state. If all eigenvalues (obtained by
diagonalizing the Jacobian matrix) have negative
real parts, then the equilibrium state is locally
asymptotically stable.

        i)  For the disease free state, '
0B  = (1,0,0,0),

the eigenvalues are
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It can be easily seen that  1λ ,  2λ  and 3λ have
negative real parts. Next, we check the sign for
the real part of eigenvalue 4λ .

4λ  has negative real part when
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Thus all eigenvalues have negative real part for

1              H < .

          ii)  For the endemic equilibrium state,
'
1B  = (S*, E*, I*, *

vI ) , the eigenvalues are found
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by  solving the characteristic equation.
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It can be seen that one eigenvalue has negative
real part. The other eigenvalues have negative
real part if it satisfies the Routh-Hurwitz criteria
[3],  that is

0          A 0,          A 12 >>   and  012 A         AA >

                                                                         (20)

It can be demonstrated that the coefficients A2, A1
and A0  satisfy (20) for H > 1.

              Therefore the endemic equilibrium state
would be local asymptotically stable if  H > 1.

3.2 Numerical results
           We are interested in the transmission of
diseases, we should only be interested in whether
a person is infectious or not and is immune or not,
not whether he is sick. Both asymptomatic and
symptomatic infectious human can transmit
dengue virus. The susceptible class is made up of
persons who have no immunity and are not
infectious. A person infected with the dengue
virus is only infectious during the period of
viremia, which lasts around three days. After that,
the person remains sick for one or two weeks.
Once the person becomes well, he enters into the
recovery class with life long immunity to the
virus. While the person is infected with the virus,
he also has immunity to further infection by a
new virus. Accordingly, a recovered person is the
same as an infected person after the viremia
period. Since the viremia period last three days

[4]. the recovery rate should be equal to 1/3 per
day and not the inverse of the length of the
illness. Most of the other parameters are
determined by the real life observations. They are
µh = 0.0000456 day-1, corresponding to a life
expectancy of 60 years; µv = 0.071 per day,
corresponding to a mosquito mean life of 14
days; b = 0.33, one bite providing enough blood
meal for three days; the transmission probabilities
(βha, βhs, βv) are chosen: βha = 0.8, βhs = 0.2 and
βv = 0.75. The ratio q can be adjusted to give a
desired value of H. We let q equals to 0.2 and 3,
we find that H = 0.7 and 10. The equilibrium state
would be the disease free equilibrium state
(1,0,0,0) and the endemic equilibrium state
( 0 . 0 9 66 4 36 , 0 . 00 00 98 8 5 ,0 . 0 00 02 4 71 2 4 ,  
0.000430542), respectively.

  

     

Fig.1. Time series of  susceptible human, 
Asymptomatic  infect ious,  Symptomatic 
infectious  and infectious vector population. The 
values of the parameter are µh = 0.0000456 day-1, 
µv = 0.071 day-1,  b = 1/3 day-1,  βha = 0.8,            
βhs = 0.2, βv = 0.75, q = 0.2, r = 1/3 day-1, H = 0.7.
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Fig.2. Time series of  susceptible human, 
Asymptomatic  infect ious,  Symptomatic 
infectious  and infectious vector population. The 
values of the parameter are µh = 0.0000456 day-1, 
µv = 0.071 day-1,  b = 1/3 day-1, βha = 0.8,             
βhs = 0.2, βv = 0.75, q = 3, r = 1/3 day-1, H = 10.

           We show the time development of 
susceptible human, Asymptomatic infectious, 
Symptomatic infectious and infectious vector 
population. The value of H less than 1, the 
numerical solutions are shown in figure 1. Figure 
2 show the numerical solutions for H greater than 
1. We will see that the numerical solutions 
oscillate to the disease free and endemic 
equilibrium states, respectively.

4 Discussion and conclusion

The mathematical model which we analyze in this
study, the human and vector population are
assumed that constant size. The quantity

HH =′  is the basic reproductive number of the

disease where 
thv
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indicates that average number of secondary
patients that one patient can produce if introduced
into a susceptible person. For a disease to be
capable of invading and establishing itself in a
host person, this must be greater than one. If the
number is less than one, then every successive
generation will diminish in size until its number
approaches zero. To determine what this number
is, we note that an infectious human will be bitten

by 
th

v
r)N(µ

)b(C/µ
  

+
  mosquitoes, during the time of

human is infectious. A proportion of them will
become infectious (the above numbers multiplied
by  βV).  One of these infectious mosquitoes will

in turn bite 
vµ

b  . Multiplying this number by

βa + βs, we obtain  the number of human infected
by an infectious mosquito. Multiplying the
number of infected human by the number of
mosquitoes infected during the lifetime of the
infectious human, we obtain the value of  H.
            The expressions for the basic reproduction
number are yielded in the different models.
Theses expressions have provided for the control
of the various diseases. For example, the
expression of the basic reproduction number for
the spread of Malaria is given by
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where q is the ratio between the vector population
and the human population. Corresponding to the
epidemiological data, Molineaux and Gramiccia
[5] estimated H to be 80 for the Malaria epidemic
in Northern Nigeria. The implication of this (each
infective person infects 80 other people) points to
possible shortcoming of the model.
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