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Abstract:-  Seasonality has been observed in the long-term behavior of the incidence of dengue disease
as well as of many other infectious arboviral diseases. It has been hypothesized that these effects are
due to the seasonal climate changes which intern induces a seasonal variation in the incubation period
of the virus while it is in the mosquito. Applying standard dynamic analysis to a modified Susceptible
Infected-Recovered (SIR) model that includes an annual variation in the length of the extrinsic
incubation period (EIP), we found that dynamic behavior of the endemic state changes as the influence
of the seasonal variation of the EIP becomes stronger. As the influence is further increased, the
trajectory when it leaves the chaotic region exhibits sustained oscillations.
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1 Introduction
Dengue disease is the arboviral disease which 
can be found in tropical region of the world. 
There are three forms such that Dengue fever 
(DF), Dengue hemorrhagic fever (DHF) and 
Dengue shock syndrome (DSS). DF is marked 
by an onset of sudden high fever, pain behind 
the eyes and in the muscles and joints. DHF is 
characterized by fever during the initial phase 
and other symptoms like headache, pain in the 
eye, joint pain and muscle pain, followed by 
signs of bleeding such as petechiae, nosebleed 
and gum bleed. If there is blood in the stools or 
blood in the vomit and accompanied by shock, 
this is called DSS and is often fatal. Dengue 
disease is transmitted to the human by biting of 
infected Aedes Aegypti. The mosquito obtains 
the virus by biting an infectious human. There 
are four serotypes of dengue virus, denoted as 
DEN-1, DEN-2, DEN-3 and DEN-4. For the 
arboviral diseases, climatic factors are very 
important since the development of the mosquito 
and of the virus is affected by these factors. For 
instance, the temperature must be above 200 C, 
the threshold temperature below which the virus

can not reproduce in the mosquitoes [1]. Many 
people have also noted that the mosquito 
population increases drastically with the onset of 
heavy rainfalls. It has even been suggested that 
El Nino or La Nina may be responsible [2] for 
the variation of some diseases.  Dowell [3] 
points out that the seasonal variations should be 
distinguished from periodic large epidemics as 
observed every two years for measles.
         In this paper, we are interested in the
transmission of dengue disease taking into
account the seasonal change in the length of the
extrinsic incubation period (EIP) of the dengue
virus when it is in the mosquito. EIP becomes
longer as the mean daily temperature is lowered.
The temperature dependence of the incubation
period τ versus T looks like a hyperbola with τ =
3 days at T = 320 C and τ = 14 days at T = 200 C
[4].
         The infection by any dengue virus in the
human begins when an infectious mosquito bites
a human and injects a large number of the
dengue virus of one serotype into the blood of
the human. There, the virus causes either a
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symptomatic or an asymptomatic infection in the
person. The latter type of infections is more
common than the former infection. The illness
resulting from the former infection last for about
one to two weeks. During this time, the infected
person is immune to further infection by any of
the four dengue virus serotypes. After the person
recovers, he keeps his immunity to the infecting
serotype but losses the temporary immunity he
had to the other serotypes. If a susceptible
mosquito bites a person while he has a high
count of virus in the blood, the susceptible
mosquito can become infected. It takes from
three to fourteen days (the incubation period) for
the virus to develop inside the mosquito before it
becomes infectious, i.e., able to transmit the
disease to a human by its bite.
           Whether the epidemic can sustain itself
and become endemic depends on a number
called the basic reproduction number. It is the
number of secondary infections, which can
results from primary infection. Calling the
number R0, the disease will be self sustaining  if
R0   >   1 and will die out if  R0  ≤   1. This
number can be determined as follows : If b is the
biting rate (per day) of the mosquito and  '

vI  is
the number of infected mosquitoes, then b '

vI   is
the total number of bites made by the infected

mosquitoes per day. 
cN

S

T

'

+
 is the fraction of

these bites which are delivered to susceptible
humans (with S′  being the number of
susceptible humans, c, number of other animals
which the mosquitoes can bite and NT, the total
number of humans). Multiplying the product of
the two terms by βh, the probability that the virus
survives in the human, we have the number of
bites by all mosquitoes that will result in new
infections in the humans. Since some of the
infected mosquitoes are not infectious (i.e., those
present in the EIP), they should not be included
in the number b '

vI . If ‘a’ is the percentage of
infected mosquitoes which are not infectious,
then the number a '

vI  should be subtracted from
the total number of infected mosquitoes, leading
the total number of infectious bites delivered to

all humans to be '
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a)(1bβ  is the

probability per day that the infection will be
transmitted from a mosquito to a human.
           Next, we note that '

vSb is the total number
of bites that is made by susceptible mosquitoes
( '

vS being the number of susceptible

mosquitoes). 
cN

I

T +
′  is the probability that

these bites are made on infected humans ( I ′
being the number of infected humans). The
product of these two when multiplied by βv (the
probability that the virus will survive in the
mosquito after it is transmitted from the human)
gives '

vvISbβ  as the number of bites by all
mosquitoes that will lead to infectious in the
mosquitoes. Dividing this by the total number of
mosquitoes, we get for the probability that a bite
by a mosquito on an infected human result in the
mosquito becomes infected is vvISbβ .
Multiplying the product of these two
probabilities by the mean life times of the
humans and mosquitoes, we get the total number
of secondary infections arising from a single
primary infection, or basic reproduction number

         
r)(µµ

a)m(1ββb
R

hv

vh
2

0 +
−

=                        (1)

2 Mathematical model
To represent the transmission process, we divide 
the human populations into three classes, 
susceptible, infected and recovered human. The 
vector populations are separated into two 
classes, susceptible and infected vector 
populations.  Susceptible person is the person 
who both not immune and not infected. Infected 
person is the person who is transmitted dengue 
virus from the infected vector. Recovered person 
is the infected person after the viremia stage 
until after they recover from dengue virus 
infection.
Let

(t)S′ denotes the number of susceptible

         human population at time t,

(t)I′  denotes the number of infected human

         population at time t,

(t)R ′  denotes the number of recovered human

          population at time t,
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(t)S'
v  denotes the number of susceptible

           vector population at time t,

(t)I '
v  denotes the number of infected vector

           population  at time t.

The time rate of change in the number of
subjects in each class is equal to the number of
subjects entering into the group per unit time
minus the number leaving the group per unit
time. This gives

Sµ I S a)(1
N
bβλN      S

dt
d

h
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N
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      I
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h
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h ′+−′−=′ ,                (2)                                   

RµIr      R
dt
d

h ′−′=′ .

        We note that the susceptible humans
become infected only if they are bitten by an
infectious mosquito. (1-a) '

vI  is the number of
infectious mosquitoes. For the vector population,

we have
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with the conditions

RISNT ′+′+′=  and  ''
vv ISN v+=                   (4)

where        

NT is the total number of  the human population,

λ   is the birth rate of the human population,

b   is the biting rate of the vector population,

βh  is the transmission probability of dengue

     virus from the vector population  to the

     human population,

βv is the transmission probability of dengue

    virus from the human population to the

    vector population,

a  is the  percentage  of  the  infected  vector

     population  which  are  not  infectious,

µh  is the death rate of the human population,

r    is  the recover rate of the human population,

A   is the constant recruitment rate of the vector
      population,
µv    is the death rate of the vector population.

      We assume that the total numbers of human 
and vector populations are constant. Thus the 
rates of change for the total human and vector 
populations are equal to zero. This gives λ = µh
for the human population. The total number of 
vector is vv /AN µ= .  We now normalize (2) 
and (3) by letting
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This gives
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with the two conditions

S + I + R  =  1 and Sv  + Iv  =   1.                       (7)

3 Analysis of the mathematical
model

3.1 Analytical results
The equilibrium points are found by setting the
right hand side of (5) equal to zero.  We obtain
1) The disease free equilibrium point,
     E0  =  (1,0,0)   and
2) The endemic disease equilibrium point,
     E1 =  ( *

v
** I,I,S )  where                                           

,
MRβ
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The local stability of an equilibrium point is 
determined from the Jacobian matrix of the right 
hand side of (5) evaluated at the equilibrium 
point. If all eigenvalues (obtained by 
diagonalizing the Jacobian matrix ) have 
negative real parts then the equilibrium point is 
local stability. Diagonalizing the Jacobian for 
the endemic equilibrium point, we obtain the 
characteristic equation

0      aλaλaλ 01
2

2
3 =+++                               (12)
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It can be seen that the coefficients 2a , 1a   and
0a  satisfy the Routh-Hurwitz criteria for local

stability [5]
0  a 0, a 12 >>      and   012 a   aa >                  (14)

when   R0    >   1.
   Therefore the endemic equilibrium point is

local stability for R0 > 1 where 
r)(µµ

a)m(1ββbR
hv

vh
2

0 +
−

=  .

3.2 Numerical results
Since we are interested in the transmission of 
diseases, we should only be interested in 
whether a person is infectious or not and is 
immune or not, not whether he is sick. The 
susceptible class is made up of people who have 
no immunity and are not infectious. A person 
infected with the dengue virus is only infectious 
during the viremia period, which lasts around 
three days. After that, the person remains sick 
for one or two weeks. Once the person becomes 
well, he enters into the recovery class with life 
long immunity to the virus. While the person is 
infected with the virus, he also has immunity to 
further infection by a new virus. Accordingly, a 
recovered person is the same as an infected 
person after the viremia period. Since the 
viremia period last three days [6], the recovery 
rate should be equal to 1/3 per day and not the 
inverse of the length of the illness.

The values of most of the other parameters are 
determined by the real life observations. They 
are µh = 0.0000456 per day, corresponding to a 
life expectancy of 60 years; µv = 0.071 per day, 
corresponding to a mosquito mean life of 14 

days; b = 0.33, one bite providing enough blood 
meal for three days; βh = 0.5 and  βv = 0.75, 
which were chosen arbitrarily. The ratio m can 
be adjusted to give a desired value of R0. Setting 
m to be 2 and ignoring the effect of the time 
delay (EIP), we find that R0 = 3.50. The 
equilibrium point would be the endemic 
equilibrium point (0.286, 0.0000838, 0.000293) 
and according to the conditions established in 
the previous section, it would be a stable spiral 
node. Looking at figure 1a, we see that the 
trajectory in the S-I phase space is spiraling into 
the equilibrium point. In Fig 1b, we find that the 
time evolution of infected human population 
shows a damped oscillation with a period of 8 
years approaching the equilibrium point. If we 
adjust the parameters (i.e., change m to 10) so 
that R0 = 17.50, the period of oscillation is 
reduced to 2.72 years. We have plotted on figure 
2, the time evolution of the infected human 
population when the new set of values is used.

       

   Fig.1   (1a)  Spiral Trajectory in the Susceptible-
Infected plane. Using the numerical values
given in the text, the trajectory spirals into
the equilibrium point (S*, I*) =
(0.286,0.000838) since the values of the
parameters satisfy the Routh-Hurwitz
criterions.

                (1b)  Time Evolution of the infected
human population. The period of
oscillation is about 8 years.

Fig.2 Time evolution of the infected human
population for a new set of values for the
parameters. The change in time evolution
of the infected human population when R0
= 17.5. The period of oscillation is
reduced to 2.72 years.
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           In general, small 0R ’s result in long 
periods while large 0R ’s result in short periods, 
A similar trend was seen in a study of the 
transmission of Plasmodium falciparum based 
on a SEIS model of transmission [7]. In that 
study, the period of the damped oscillation 
predicted by the model dropped from about 40 
years to about 20 years when the set of 
parameter values which yielded a value R0 equal 
1.3 was changed to the set of values which 
yielded a value of 3.34. For our model to 
generate oscillation of one-year period, the value 
of R0 would have to be much greater than the 
values observed in nature. Next section, we will 
show by including a seasonal variation in one of 
the probability factors, both the annual and 
multiple year cycles can be predicted.

3.3 Seasonality in the incidence of dengue
disease
It was suggested long time ago, [8] that the
variation in the extrinsic incubation period (EIP)
caused by changes in the (lowest daily)
temperature changes was the cause of the
seasonality in the transmission of dengue
disease. In this study, the EIP enters into the
model through the dependence of ‘a’ (the
fraction of the infected mosquitoes existing in
the EIP) on τ. The fraction is given by

a       =      ∫ −τ

0

tvµ dte

         =       
v

τvµ

µ
e1 −−                                     (15)

where τ is the length of incubation period (day)
of dengue virus in mosquitoes. Substituting this
into the probability '

hβ  = hβ (1-a) and then
expanding the exponential, we get
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        As we have already point out, the
dependence of '

hβ on T appears because the
dependence of the latent period depends on T.
Though the dependence looks like a hyperbola,
with τ = 13 days at T = 24 0C and τ = 25 days at
T = 18 0C, we have modeled the variation as a
sinusoidal variation such that

)tsin1(h
'
h ωδ+β=β ,

where δ is a measure of the influence of the
seasonality on the transmission process.

        Depending on the values of  δ and the other
parameters, the basic reproduction number could
remain above R0 = 1 throughout the year or it
could drop below 1 during part of the year,
resulting in some complicated behaviors. To see
what could happen, we have plotted on  figure 3,
a bifurcation plot using δ as an index parameter.
We see in figure 3, the first period doubling
bifurcation at δ = 0.24, the second at 0.62, the
third at 0.77. At δ = 0.8, a chaotic band appears.
As δ is further increased, a non-chaotic interval
appears at δ = 0.88 and enters into another
chaotic band as δ is increased to 0.92. We have
changed some values, which were used to get
the curves in figure 1. The changed values are m
= 11, µv = 1/17, βv = 1.0 and      βh = 1.0. These
and the other values used yield a R0 = 62. In
figure 4, we plot the time evolution of the
infected human population after a long passage
of time. We observe that the chaotic behavior
occur as the time is passed.

Fig. 3  Bifurcation diagram showing the
            Maximum value of  I for the range of
            values of the index parameter δ. The
            values of the parameters are given in the
            text.We see a  series of period doubling
            bifurcation occurring at δ = 0.24, 0.62
            and 0.77. When δ reaches 0.80, a
            bifurcation into a chaotic band occurs.
            A non-chaotic band emerges at δ = 0.88
            and a new chaotic band appears as δ is
            increased to 0.92.
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Fig.4 Long time incidence rate where a seasonal
variation in the EIP occurs. The values of
the parameters are given in the text. The
value of the index parameter δ is set at
0.90, a value putting Imax in the non-
chaotic band emerging from the first
chaotic band.

4 Discussion and conclusion
The generation of chaotic behavior by a
seasonally forcing term should not be surprising.
In addition to Ferguson et al. [9] study on
measles, Olsen et al., [10]  have also noted the
possibility of oscillations and chaos in six
childhood diseases in Copenhagen, Denmark.
Recently, Gakkhar and Naji [11] have studied
the effects of seasonality on a prey-predator
model where in the absence of the seasonality,
the system has a globally stable limit cycle.
They detected an abundance of steady state
chaotic solutions. Their results support the
conjecture that seasons can give rise to complex
population dynamics. In a later study, [12] they
considered the cases where the seasonality
appears in two places in their model. They
obtained extremely rich bifurcation diagrams,
which showed long periodic regions emerging
from chaotic bands as various parameters in
their predator-dependent functional response
term in a Lotka-Volterra like model of a
predator-prey system.  In present study, the
seasonality appears in one place.
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