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Abstract: - Understanding the basic rules of protein folding is one of the most important challenges of molecular biology. In 
the last years several experiments have been carried out in order to study the pathway and stability of protein folding. 
Empirical models are available for predicting the protein folding rates, based on the linear correlation between structural 
protein features and folding kinetics. However no direct statistical evaluation of their prediction performance is available. 
Recently, a significant number of kinetic data on protein folding was published. This allows the application of machine 
learning methods for predicting the kinetic order and rate of protein folding starting from structural information. 

In this paper we describe a support vector machine-based method suited to predict whether a protein is endowed with 
intermediates in the folding process and also the protein folding rate constants. Using a dataset consisting of 63 experimental 
protein folding data, our predictor correctly classify 78% of the folding pathways in the database and supplies an estimation 
of the logarithm of the folding rate constant with a correlation coefficient of 0.65. The method overcomes previous methods 
in optimizing the solution of folding-rate predictions. Furthermore, by predicting the presence of putative folding 
intermediates, it provides also a scheme for highlighting putative protein folding-mechanisms. 
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1   Introduction 
In the last years, many theoretical and experimental studies 
have focused on the problem of describing the mechanism 
of protein folding [1-7]. An important result was the 
development of empirical models that estimate protein 
folding kinetics and rates. The number of proteins under 
investigation is rapidly increasing, allowing more data to be 
collected. Many proteins fold by a simple two-state 
transition mechanism (TS), lacking observable folding 
intermediates under any experimental condition. In turn, 
other proteins are endowed with intermediates during the 
folding process; their folding process  is therefore classified 
as a multistate one (MS).    

Experimental and theoretical work focused 
particularly on small two-state folding (TS) proteins. It was 
demonstrated that the logarithm of the in-water folding rates 
of these proteins correlates with some topological parameter 
as computed from their 3D structure or from that of closely 
related proteins, such as single point mutants or homologs 
with high level of sequence identity [1,8,9]. Other methods 
predict protein folding rates starting from the Einstein 
diffusion equation [10] or from the secondary structure of 
the protein [11]. More recent work demonstrated that the 
chain length is one of the main determinants of the folding 
rate for proteins with a multistate folding (MS) kinetics 
[12,13]. As a general observation, it appears that the 
logarithm of the folding rate correlates with structural 
topological parameters in TS proteins and with chain length 
in MS proteins.  

In this paper we adopt a different perspective: we use the 
experimental data so far collected and, based on these 
observations, we develop a method to predict salient aspects 
of protein folding that can be directly computed starting 
from the protein structure. 

 
 

2   Problem Formulation 
The problem here addressed concerns the kinetics 

and mechanism of the protein folding: starting from few 
simple parameters derived from the protein structure, the 
aim is to predict important features of the folding 
mechanism.  In particular we implement a support vector 
machine (SVM)-based method trained over a set of 63 
proteins known with atomic resolution and whose folding 
pathway has been experimentally characterized to predict 
the logarithm of the folding rate and whether the protein 
folds through intermediate states or not. 
 
2.1   Database and Tools 
 Our data set is derived from the supplementary material of 
[13]. It contains folding data determined for 63 proteins, 38 
of which are endowed with a TS folding mechanism. The 
other 25 proteins have a MS folding mechanism. The set 
comprises only single-domain proteins having no S-S bonds 
and/or no covalently bound ligands. Furthermore the in-
water folding rates (kf) and native structure of these proteins 
have been established experimentally. The protein 
structures are available at the Protein Data Bank 
(www.pdb.org) [14]. 
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The method proposed here predicts some features 
of the protein folding process using a SVM approach. In 
particular we choose the LIBSVM tools available online at 
the web site http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/.  

The protein secondary structure was calculated with 
the DSSP program (http://www.cmbi.kun.nl/gv/dssp/ [15]). 

Sequence clustering was performed by means of the 
blastclust program available within the BLAST suite at 
http://www.ncbi.nlm.nih.gov/ [16].  
 
2.2   Protein structural parameters   
In order to investigate the relationships between the folding 
rate constant and the protein native conformation we 
evaluate four structure-based parameters. The first 
parameter is the effective length of the protein chain (Leff) 
defined as 

 

HHeff NLLL *3+−=  (1) 
 
where L is the chain length, LH is the number of residues in 
helical conformation and NH is the number of helices. The 
others topological parameters are: the contact order (CO), 
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the relative contact order 
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and the total contact distance 
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where N is the number of  amino acid residues of a protein, 
Nc is defined as total number of contacts and ∆Lij = |i-j|.  
The number of contacts is evaluated considering all the 
residues that have two heavy atoms within a given value of 
cut-off radius R and at a given sequence separation (w). 
 
2.3   The predictor 
The method addresses two different tasks: (1) the prediction 
of the existence of intermediate states in protein folding and 
(2) the prediction of the logarithm of the folding rate value. 
The former case is a classification task, discriminating 
whether for a given protein the folding pathway is or is not 
endowed with intermediate states; the latter one in turn is a 
fitting-regression task for estimating the folding rate. To 
address the two tasks, we developed a method based on 
support vector machines and relying on the same input for 
testing different kernel functions. Also, different SVMs 

explore different protein features. SVMs take two inputs for 
a given protein: the chain length and, one at a time, the four 
structured-based parameters described above (Eqn 1-4). We 
found that the best performing predictor was the one having 
as input the protein chain length and the contact order, 
tested by splitting the dataset in five parts and adopting a 
cross-validation procedure. The methods were then 
optimized trying different values of cut-off radius (R) and 
of sequence separation (w).     

 
2.4   Scoring the classification performance 
All the results obtained with our systems are evaluated 
using a cross-validation procedure on the data pertaining to 
the 63 proteins. The dataset was divided in 5 subsets, 
putting in the same set proteins with the same PDB code 
and proteins with related sequences as obtained by means of 
the blastclust program by adopting the default value of 
length coverage equal to 0.9 and the score coverage 
threshold equal to 1.75. 

The efficiency of the predictor is scored using the 
statistical indexes defined in the following. The overall 
accuracy is: 

 

N
pQ =2    (5) 

 
where p is the total number of correctly predicted folding 
mechanisms and N is the total number of proteins.  
The Matthews correlation coefficient MC is defined as: 
 

D
 u(s)o(s)-p(s)n(s))( =sMC  (6) 

 
where D is the normalization factor [[p(s)+u(s)] [p(s)+o(s)] 
[n(s)+u(s)] [n(s)+o(s)]]1/2 , for each class s (TS and MS, for 
two-state and multistate folding processes, respectively); 
p(s) and n(s) are the total number of correct predictions and 
correctly rejected assignments, respectively, and u(s) and 
o(s) are the numbers of under and over predictions. 

Finally, it is very important to assign a reliability 
score to each SVM prediction. Using one SVM output this 
is obtained by computing: 
 

[ ]5.0)(*20)(Re −= iOabsil  (9) 
 

2.5   Scoring the regression performance 
The quality of the prediction when evaluating the protein 
folding constant rates was assessed by computing the 
Pearson linear correlation coefficient r and the associated 
value of the standard error σ.  

 
 
3   Problem Solution 
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In order to solve the tasks discussed in section 2.3 we 
developed different support vector machines. Taking 
advantage of previous studies, each of the SVMs considers 
two important protein features: (1) sequence length and (2) 
the four structural parameters described above. The best 
performing predictor was then optimized testing different 
values of cut-off radius (R), different sequence separation 
values (w) and different kernel functions. We found that the 
best performance was achieved by a SVM endowed with a 
linear kernel function K(xi,xj)=xiTxj (data not shown). 
 
3.1 Structural parameter optimization 
Previous studies have highlighted in proteins the correlation 
between folding kinetics and structural parameters as 
described in section 2.2 [6,8,9,13]. Table 1 lists the scoring 
performance of each method when predicting the logarithm 
of the folding rate and the folding kinetics. 

 
Table 1.  Scoring the SVM method. The first two rows  list the 
accuracy (Q2) and the Matthew’s correlation coefficient (MC) of the four 
methods that include in the SVM input one of the different structural 
parameters and the sequence length. The four SVM labeled with the 
name of the relative structural parameter, are tested in the binary 
classification between of two-state and multistate folding mechanism. In 
the last two rows the correlation coefficient (r) and the standard error (σ) 
of the previous methods in the prediction of the logarithm of the folding 
rate (kf) are reported. 
 
3.2 Optimization of the cut-off radius 
The results shown in Table 1 indicate that the best SVM 
method has as input the sequence length and the contact 
order (see column CO). For this method we tested different 
values of the cut-off radius. In Table 2, the scoring indexes 
for the two previous tasks are shown as a function of the 
radius value ranging from 4 to 12 Å. 

 
Table 2. Scoring SVMs as a function of the cut-off radius. Here the 
method takes as input protein sequence length and contact order. The last 
structural parameter is  calculated using a  cut-off radius ranging  from 4 
to 12 Å . The first two rows list the quality of the prediction in the 
classification task; the last two rows show the quality of the prediction of 
the logarithm of the folding rate (kf).    
 
3.3 Sequence separation optimization 

When considering the protein folding mechanism, an 
important issue is the different contribution of local and 
non-local interactions. It is well known that local 
interactions involved in the formation of particular motifs of 
secondary structure are established between residues with a 
sequence separation below 4 residues that is about the 
residue distance of one turn of an α-helix structure. 
Therefore increasing the value of w in the calculation of 
CO, we go beyond local interactions and include also 
contacts between residues that may contributes to non-local 
interactions during the folding process. We address this task 
by evaluating the contact order as a function of sequence 
separation; the best performing implementation of SVMs 
was consequently optimized and the results are shown in 
Table 3 
 

  0 2 4 6 8 
MC 0.48 0.5 0.46 0.53 0.42 Prediction of 

Folding States Q2 75.6 76.1 74.6 77.7 73.1 

r 0.65 0.6 0.61 0.58 0.6 Prediction of 
log(kf) σ 1.35 1.52 1.29 1.45 1.41 

 
Table 3. Local vs global interactions. In this table we report the 
accuracy of the best methods (cut-off radii 9 Å) for different values of a 
sequence separation (w), spanning from 0 to 8 residue, when evaluating 
the contact order number. In other words, we consider only contact 
between residue i and j if  |i-j|>=w. The efficiency of the predictions for 
the two tasks are scored using the same measures reported in Table 1.  
 
3.4 Prediction of the folding mechanism. 
From our results we conclude that the best method for the 
binary classification between the two-state and the 
multistate folding mechanism takes as input the sequence 
length and the contact order. The best discrimination 
between TS and MS proteins is obtained when the contact 
order value is calculated considering a cut-off radius of 9 Å 
and a sequence separation ≥6 residues. In figure 1 we report 
the accuracy (Q2) and the Matthew’s correlation coefficient 
(MC) as a function of the reliability index (RI). 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

  Leff CO RCO TCD 

MC 0.15 0.42 0.27 0.36 Prediction of 
Folding States Q2 57.1 73.2 65.9 69.8 

r 0.45 0.64 0.45 0.63 Prediction of 
log(kf) σ 1.57 1.39 1.57 1.37 

  4 6 9 12 

MC 0.42 0.31 0.48 0.40 Prediction of 
Folding States Q2 73.2 67.1 75.6 72.0 

r 0.64 0.61 0.65 0.64 Prediction of 
log(kf) σ 1.39 1.44 1.35 1.38 
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Figure 1.  Accuracy (Q2) and  Matthew’s correlation coefficient 
(MC) as o function of the reliability index (RI). DB is the fraction of 
the dataset with a reliability value higher or equal to a given threshold.  

 
3.5 Prediction of the logarithm of the folding rate 
Similar to the classification task, the regression task for the 
prediction of the logarithm of the folding rate is optimized 
considering as input the sequence length and the contact 
order. The results of our method are shown in figure 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Value of the logarithm of the folding rate (kf) versus its 
experimental value. The correlation coefficient for the best method 
previously described is 0.65 and the standard error is 1.35. We also 
reported the equation of the linear best fit.    
 
 
4   Conclusion 
This work represents a first attempt to address the problem 
of the prediction of the folding mechanism using a machine 
learning approach. In particular we try to predict whether 
the folding process follows a two-state or a multistate 
mechanism and the logarithm of the folding rate considering 
only few simple inputs: the length of the protein sequence 
and the contact order, as calculated according to the eq. (2). 
This is the first time, at the best of our knowledge, that a 
statistical evaluation of the problem is provided. We 
optimize our method considering different values of the cut-
off radius and introducing a sequence separation for the 
calculation of the contact order (CO) from the protein 
structure, in order to discriminate local versus non local 
interactions. Our approach allows to generalize on the given 
examples since it is tested adopting a cross-validation 
procedure. We find that the best predictive performance is 
achieved when the value of the contact order is calculated 
using a cut-off radii of 9 Å and a sequence separation larger 
or equal to 6, suggesting that non local more than local 
interactions are important in determining the parameters at 
hand for the given protein set.  

With our method the prediction of possible 
intermediate states during the folding process reaches 

accuracy of 78% with a significant Matthew’s correlation 
coefficient of 0.53. Furthermore, when predictions with a 
reliability index value ≥3 are considered, the SVM method 
increases its accuracy to 85% and its correlation to 0.66 
over 75% of the database. Results in Tab. 2 indicate that for 
discriminating between TS and MS folding mechanisms, 
contacts between residues with sequence separation ≥6 are 
important. In turn, for predicting the value of the logarithm 
of the folding rate the highest score is obtained considering 
all the contacts. On the contrary, with respect to the 
classification between TS and MS proteins, the regression 
task for the prediction of the logarithm of kf, performs better 
when local and non local interactions are considered taking 
also into account contacts with sequence separation less or 
equal then 6. In this particular task our best method reaches 
a significant correlation coefficient of 0.65 with a related 
standard error of 1.35. These values can be considered 
satisfactory, since they are obtained with only two element 
vectors as input in the training of the SVM and since the 
method is tested using a cross-validation procedure. 
  This work is a good starting point for building more 
accurate predictors of the folding mechanism considering a 
larger number of features in the training of the SVM and 
merging the two methods here developed that are related to 
different aspects of the protein folding process. 
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