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Abstract: - As a new central platform in functional genomics, high-throughput microarray technology allows a 
systems-level investigation of fundamental biological processes. Among various microarray analyses, time-
series analysis presents a computational challenge due to the intrinsic nature of high dimensionality. In this 
paper we propose a novel approach to combine wavelet analysis with support vector machine learning scheme. 
This approach is able to extract gene features in both time and frequency domains and to reduce 
dimensionality. The data set includes the expression profiles of over 4,000 genes in malaria parasite 
Plasmodium falciparum, during a 48-hour intraerythrocytic developmental cycle. After wavelet 
decomposition, higher-order statistics are employed to analyze wavelet coefficients and to build feature 
vectors. Our preliminary analysis of 14 functional classes shows that transcriptional regulation and 
developmental progression are highly correlated. Novel malarial genes have been identified based on the 
tempo-specific patterns and further bioinformatics data-mining. Classifying novel “hypothetical proteins” to 
network modules enables a targeted functional characterization, as for a parasite with multiple hosts and a 
dynamic life cycle, “when and where” to initiate wet-lab experiments is of critical importance. 
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1   Introduction 
Malaria is one of the most devastating infectious 
diseases. Over 500 million cases are reported and 
about 2 million people die annually. Four protozoan 
parasite species of the genus Plasmodium, P. 
falciparum, P. vivax, P. malariae, and P. ovale, are 
known to cause the disease in humans. 
     Although useful therapies against malaria have 
existed for over 400 years, resistant parasite 
populations have appeared. The factors including the 
rapid spread of drug resistance, the lack of an 
effective vaccine, and the steadily rising resistance 
of the mosquito vectors to insecticides have led to an 
urgent need for new antimalarial strategies. 

The complete genome of P. falciparum was 
released in 2002 and genomes of other Plasmodium 
species and of other Apicomplexans have been 
released more recently [1-3]. This has opened the 
door to identify new drug and vaccine targets. 
However, difficulties stemming from our inability to 
assign functionality to over 60% of the putative 
genes slow the genome-based target discovery [1]. 

A solution to this problem lies in the domain of 
systems biology, which envisions a high-level view 
of an organism, thereby offering a better 
understanding of cellular networks and interactions 

among network components. A network view would 
allow us to build models of how the Plasmodium 
parasite functions – the protocols that guide the 
system, the modules that comprise the system and so 
on [4-6]. Significantly, a priori information as to the 
identity or function of a gene is not necessary for the 
gene to be placed in a network, but, such a gene can 
be targeted for further study as a therapeutic target if 
it proves to play a key role in the network. 

Microarray technology has enabled a systems 
biology approach to study temporal specific gene 
networks, by monitoring the transcriptional profiles 
of genes in a time-series manner [7, 8]. A ground-
breaking work by Bozdech et al. [7] examined the 
expression profiles of P. falciparum every hour for 
the entire duration of the blood stage (48 hours) and 
presented a blueprint of transcriptomes.  

It is an unprecedented challenge to uncover 
dynamic genetic regulatory networks (GRNs) from 
time-series microarray data, due to the complex 
sources of noise and variations, and high 
dimensionality. Various methods have been 
employed to classify co-expressed genes, using 
supervised learning such as support vector machine 
(SVM) [9, 10], neural networks [11], or 
unsupervised clustering methods such as 
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hierarchical clustering [12] and K-means clustering 
[13]. Alternatively, probabilistic graphical modeling 
methods such as Boolean networks [14] and 
Bayesian networks [15] have been developed to 
infer GRNs.  

Special care must be taken to account for the 
oscillating nature in time-series data. Recently, we 
have developed a linear-Gaussian state-space model 
and variational Bayes Expectation Maximization 
algorithm which takes temporal correlation into 
account to infer the yeast cell cycle network [16]. 

However, in the case of malaria, direct 
probabilistic graphical modeling may not be 
applicable due to our limited knowledge about the 
network components. In this paper, we propose a 
pipeline to discover novel network component that 
combines wavelet analysis for time-expression 
correlation, with powerful supervised learning using 
SVM, followed by genomic data mining.  

This paper is organized as follows: Section 2 
describes the microarray dataset and the analysis 
pipeline. In Section 3, we present the experimental 
results. The conclusions are present in Section 4. 
 
 
2   Dataset and Methods 
2.1 Dataset: time series microarray data 
The dataset included the expression profiles of 
malaria parasite during 48-hour red blood cell cycle 
(http://malaria.ucsf.edu/SupplementalData.php) [7]. 
46 consecutive time points were included except 23-
hour and 29-hour during which synchronized 
samples were not available.  Preprocessing and 
normalization led to a complete dataset of signals 
for 7092 probes corresponding to over 4000 genes. 
The log2(Cy5/Cy3) values were used for study, 
where Cy5 and Cy3 signals corresponded to the 
synchronized and asynchonized samples at each 
time point.  
 
2.2 Wavelet analysis  
To reveal the time-expression correlation in 
developmental processes, we employed wavelet 
analysis. Fast Fourier Transform (FFT) was used in 
the original study to extract the phase information 
[7]. However, as FFT only processes signals in the 
frequency domain, it is unable to capture important 
signals with non-stationary characteristics that 
indicate regulatory trends, sudden changes, 
breakdown points, and initiations and terminations 
of cellular events.  

Such transitory signals may be captured by 
wavelet analysis which processes signals in both 
time and frequency domains. Despite its wide 

applications in the fields of signal processing [17], 
wavelet analysis has rarely been employed in 
microarray data.  

A family of wavelets from ϕ by dilating and 
translating is given in equation (1). The parameter a 
controls the scale (or size of details) and then the 
scale becomes increasingly finer as a approaches 0. 
Wavelet can be considered as a mathematical 
microscope due to this property.  

1
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=                                  (1) 

ϕ  should satisfy the following admissibility 
condition as described in equation (2). 
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Wavelet transform is defined in equation (3). It can 
be invertible, where g (t) is an input signal.               
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The wavelet transform with multilevel structures 
can be viewed as decomposition by high-pass and 
low-pass filter banks. As shown in Figure 1, a 3-
level wavelet decomposition can be achieved by 
employing a filter bank, where L and H are the 
analysis low-pass and high-pass filters. Let A3 be the 
input to the analysis filter bank. The outputs of the 
analysis filter bank are then given by 
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where Ai and Di are defined as the approximation 
and detail coefficients of the wavelet decomposition 
of Ai+1. After wavelet decomposition, statistics such 
as mean, variance, higher-order statistics, can be 
used to analyze wavelet coefficients and to build 
feature vectors that characterize temporal features. 
The features contain the approximation coefficients 
A0 and the statistical components which are derived 
from both the approximation and the detail 
coefficients at each level.  These components are 
defined as follows.  
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where µ, σ2, S and K denote mean, variance, 
skewness and kurtosis, respectively, and i = 0,1,2. 
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2.3. Classification by SVM 
SVM is a powerful supervised learning scheme  
based on the combination of a feature selection 
procedure and a classifier. SVM uses a kernel 
function to define an optimal hyperplane to separate 
noisy signals into distinct classes.  

In the microarray study, SVM was employed to 
discriminate the feature vectors of various functional 
classes. Our previous study has shown that SVM 
with polynomial kernel functions had good 
performance in classifying yeast benchmark data 
[18]. However, benchmark data does not exist in 
malaria. To test SVM, we constructed a learnable 
dataset based on 14 classes of 530 genes suggested 
by literature or FFT analysis (Table 1).  

When classifying one class, all the genes in this 
class was labeled positive and the remaining 
negative. For each class, 2/3 positive genes and 2/3 
negative genes were randomly chosen as the training 
set and the remaining as the testing dataset. This 
procedure was repeated for 30 times. Each gene can 
be classified into one of the four: true positive (TP), 
true negative (TN), false positive (FP) and false 
negative (FN). Because the microarray data are 
highly imbalanced, i.e., positive instances are much 
smaller compared to the negative instances, FN is an 
important feature. Hence we employed three 
performance measurements:  
 precision = TP/(TP+ FP),   recall=TP/(TP+FN),  
 f_measure=2×(recal×precision)/(recall+precision). 

Note that the genes listed in Table 1 only 
represent a partial set to each class. We further 
employed SVM classifier to the 6562 (7092-530) 
microarray probes to identify novel network 
components. The underlying assumption is that 
cellular processes are comprised by time-specific 
cascade events involving co-expressed genes.  

 
2.4 Bioinformatics data mining 
Next, we performed genomic analysis on the 
predicted network components. Their potential 
functionality was consolidated with the Gene 
Ontology [19].Conserved domains/motifs in protein 
sequences were identified by searching the profiles 
constructed by Hidden Markov Models which are 

available at the InterPro database 
(http://www.ebi.ac.uk/interpro/). Multiple 
alignments were obtained by the program T-coffee 
(http://www.ch.embnet.org/software/TCoffee.html), 
followed by manual editing. Graphic presentation of 
the alignment and consensus sequences were 
deduced by the program BOXSHADE  
(http://www.ch.embnet.org/software/BOX_form.ht
ml). Phylogenetic trees were inferred by the 
neighbor-joining method using MEGA 3.1 
(http://www.megasoftware.net/). Unweighted 
maximum parsimony and maximum likelihood were 
used to consolidate the tree topology. The bootstrap 
resampling with 1000 pseudoreplicates was carried 
out to assess support for each individual branch.  
 
 
3   Experimental Results 
3.1 Features extraction by wavelet analysis 
Daubechies wavelet (db8) was used at three levels. 
Figure 2 shows the clear distinction of feature 
vectors for five functional classes.  The three 
processes, transcription translation, and replication, 
comprising the central dogma for genetic 
information flow, take place at consecutive cellular 
stages.  In particular, transcriptional and translation 
are tightly linked. Their time-expression features, 
which were not distinguishable by either visual 
inspection or FFT analysis, can be captured by 
feature vectors derived from wavelet decomposition 
(Figure 2). Similarly, wavelet analysis successfully 
captured temporal distinctions between two 
consecutive metabolic processes: glycolysis and 
TCA cycle (Figure 2).  Moreover, the dimension of 
feature vectors was reduced from 46 to 22.  
 
3.2 Classification by SVM  
SVM with polynomial kernel functions was 
employed to classify the malaria “benchmark” data. 
Table 1 shows the precision, recall, f_measure and 
their standard deviation of 30 replications for 14 
functional classes.  

SVM successfully classified genes in classes 
2, 8, 9, 10, and 12, as indicated by high precision, 
recall, and f_measure values. Previously, we 
showed that PDA, LDA, and SVM usually had low 
(<20%) precision, recall and f_measure for highly 
imbalanced data in yeast experiments [7]. 
Similarly, one class with small size showed 0 
precision, recall, indicating all the positive 
instances recognized were wrong. Nevertheless, the 
transcription class, given its small number of 
positive instances and highly dynamic biology, 
SVM achieved reasonably good performance. 
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Figure 1. Three-level wavelet transform. The symbol 
↓2 denotes the down sampling by 2. 
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Table 1. SVM classification of 14 functional classes 
based on wavelet feature vectors 

Class Function 
(#genes) 

precision 
(%) recall (%) f_measure 

(%) 

1 transcription 
(23) 22.13±11.28 30.86±14.40 25.14±11.64 

2 translation (159) 79.77±4.58 81.21±5.73 80.29±3.36 

3 Glycolysis (14) 43.89±15.28 57.50±24.70 47.39±15.62 

4 RNA synthesis 
(18) 19.92±9.28 28.57±13.80 22.53±9.54 

5 DNA synthesis 
(7) 0 0 NaN 

6 replication (40) 39.58±12.21 46.67±16.17 42.00±12.18 

7 TCA cycle (11) 14.86±5.56 33.33±0 20.04±5.09 

8 proteasome (35) 79.87±9.50 90.00±9.47 84.20±7.29 

9 plastid (27) 85.70±13.28 90.00±10.59 86.94±8.90 

10 merozoite 
Invasion (87) 78.42±6.11 80.64±7.92 79.25±5.21 

11 Actin myosin 
motors (17) 37.46±16.86 37.93±16.34 35.65±13.33 

12 Early ring 
transcripts (34) 92.07±8.80 90.67±11.43 90.65±6.99 

13 Mitochondria 
(19) 13.97±5.64 27.14±9.94 18.02±6.52 

14 Organellar 
translation (39) 34.24±10.70 41.82±11.60 37.03±9.68 

 
We further tried to predict novel genes using the 

entire genome data of 6562 genes, using the 
benchmark data.  

3.3 Bioinformatics data mining   
In this initial proof of concept study on gene 
networks, we identified putative genes in the 14 
selected classes that may represent different types 
of biological interactions. The Gene Ontology 
study supported the predictions. For examples: 
(1) Glycolysis/TCA cycle and Nucleotide (DNA or 
RNA) synthesis processes exemplify metabolic 

networks which involve protein-metabolite 
interactions. For example, the presence of a cascade 
of co-expressed enzymes, including glucose-6-
phosphate isomerase, glycerol-3-phosphate 
dehydrogenase, pyruvate kinase, lactate 
dehydrogenase, not only suggests that malaria 
parasite possesses conserved key components in 
carbohydrate metabolism, but also portrays the 
various co-factors and metabolites that are involved 
in the activity of each enzyme. 
(2) Transcription, translation, and DNA replication 
machineries are complex networks that involve fine 
regulations of DNA (RNA)-protein and protein-
protein interactions. For instance, Gene Ontology 
prediction suggested that, besides essential factors 
(e.g., initiation factors and elongation factors), 
other important components such as nascent 
polypeptide associated complex and peptide chain 
release factor may belong to translation machinery. 
(3) Proteasome is a tightly-wrapped complex of 
threonine proteases and regulatory proteins that 
mediate protein-protein interactions in cell cycle 
control and stress response. In previous work [20], 
we predicted a number threonine proteases and 
ubiquitin hydrolases, sketching the core elements of 
malarial proteasome. A concerted regulation pattern 
revealed by this study is consistent with the 
postulation of an essential ATP-dependent 
ubiquitin-proteasome pathway, which was inferred 
from the results of inhibition assays [21].  

In particular, we have explored the 
transcriptional machinery which is comprised by 
key enzymes and transcription factors which bind to 
the promoter elements, upstream elements and other 
proteins, and either facilitate or inhibit transcription.  
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Figure 2. Features of five functional classes extracted by wavelet analysis. 
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However, to date little is known about the 
transcriptional machinery in P. falciparum. Only 14 
transcription factors were predicted by the P. 
falciparum genome annotation based on Gene 
Ontology. It seems implausible that this limited 
number of transcription factors represents the whole 
transcription factor repertoire, given the apparent 
need for extensive transcriptional control.  

Using 23 putative genes in transcriptional 
machinery as a training set, SVM learning machine 
yielded 557 positive hits. These genes share similar 
profiles with peaks in ring and early-trophozoite 
stages, active stages for cascade transcriptional 
events.Our bioinformatics analysis suggested that 
the predicted genes belong to three categories:  
(1) Genes involved in transcriptional process (Table 
2): multiple probes that correspond to DNA-
directed RNA polymerase II (PFC0805w) were 
picked. In addition, several putative transcription 
factors with characteristic domains such as zinc 
finger domain may play a role in transcriptional 
regulation. Most interestingly, a putative 
transcription factor, PF10_0327, showed 
considerably high homology to the Myb and cdc5 
proteins which both play multiple key roles in 
mitosis and cytokinesis. This prediction is 
reinforced by the observation of two Myb domains 
and the associated Tryptophan signature motifs, 
which are present in all known characterized Myb 
transcription factors (Figure 3).   
(2) Genes involved in processes that are tightly 
associated with transcription. Several genes may be 
components of downstream processes such as pre-
RNA processing after transcription.  

 
Table 2: Putative genes predicted by SVM that may 

be involved in transcriptionary machinery. 
Oligo_ID Gene_ID Annotation 

f22770_1 PFC0805w DNA-directed RNA pol II 
opfi17677 PFC0805w DNA-directed RNA pol II 
opfc0750 PFC0805w DNA-directed RNA pol II 
j132_12 PF10_0327 Myb2,Transcription factor 
opfn0273 PF14_0241 basic transcription factor 

3b 
f21506_2 MAL8P1.131 Transcription factor Gas41  
n134_51 PF14_0612 putative zinc finger protein 
f34582_1 MAL6P1.193 Zn-finger C2HC domain 
m44300_14 PF13_0152 sir2 homologue 
M33088_1 MAL13P1.213 transcription activator 

 
 
(3) Genes that encode hypothetical proteins. By 
identifying co-expressed genes in developmental 
cycle, it also helps us to identify what could 
conceivably be network modules. Any network 
module could contain a range of proteins and 
regulatory elements [44]. The key components of 
these modules may have stringent functional 
constraint and hence are conserved across species 
[45, 46]. Subtracting these known from the 
modules, the remaining “hypothetical” in 
transcriptomic maps represent lineage-specific gaps 
in gene networks. The ability to assign a 
“hypothetical” gene to a specific network module 
opens an opportunity toward a tempo-specific 
functional characterization, because for a parasite 
with multiple hosts (human and mosquito) and a 
dynamic life cycle, “when and where” to initial 
wet-lab experiments is of critical importance. This 
network view should allow us to locate choke 
points in the parasite - potential vulnerabilities that 

 
 
P.falcipraum    1 -MRIQIKGGIWKNCEDEVLKAAVMKYGLNNWSRVASLLVRKSAKQCKARWYEWLDPSVRKTEWNKEEEEK 
P.berghei       1 -MRIQIKGGIWKNCEDEVLKAAVMKYGLNNWSRVASLLVRKSAKQCKARWYEWLDPSVKKTEWSKEEEEK 
P.yoelii        1 -MRIQIKGGIWKNCEDEVLKAAVMKYGLNNWSRVASLLVRKSAKQCKARWYEWLDPSVKKTEWSKEEEEK 
Frog cdc5       1 MPRIMIKGGVWRNTEDEILKAAVMKYGKNQWSRIASLLHRKSAKQCKARWYEWLDPSIKKTEWSREEEEK 
mouse cdc5      1 MPRIMIKGGVWRNTEDEILKAAVMKYGKNQWSRIASLLHRKSAKQCKARWYEWLDPSIKKTEWSREEEEK 
Arabidopsis     1 -MRIMIKGGVWKNTEDEILKAAVMKYGKNQWARISSLLVRKSAKQCKARWYEWLDPSIKKTEWTREEDEK 
Maize cdc5      1 -MRIMIKGGVWKNTEDEILKAAVMKYGKNQWARISSLLVRKSAKQCKARWYEWLDPSIKKTEWTREEDEK 
consensus       1  mRImIKGGvWkNtEDEiLKAAVMKYGkNqWsRiaSLLvRKSAKQCKARWYEWLDPSikKTEWsrEEeEK 
 
 
P.falcipraum   70 LLHLAKLFPTQWRTIAPIVGRTAQQCLEHYEYLLDEAEGKV--YDKNKNPRHLRPGEIDPAPESKPARAD 
P.berghei      70 LLHLAKLFPTQWRTIAPVVGRTAQQCLEHYEYLLDEAEGKV--YDKNKNPRHLRPGEIDPAPETRPARAD 
P.yoelii       70 LLHLAKLFPTQWRTIAPIVGRTAQQCLEHYEYLLDEAEGKV--YDKNKNPRHLRPGEIDPAPETRPARAD 
Frog cdc5      71 LLHLAKLMPTQWRTIAPIIGRTAAQCLEHYEYLLDKAAQRDNEEESADDPRKLKPGEIDPNPETKPARPD 
mouse cdc5     71 LLHLAKLMPTQWRTIAPIIGRTAAQCLEHYEFLLDKTAQRDNEEETTDDPRKLKPGEIDPNPETKPARPD 
Arabidopsis    70 LLHLAKLLPTQWRTIAPIVGRTPSQCLERYEKLLDAACTKDENYDAADDPRKLRPGEIDPNPEAKPARPD 
Maize cdc5     70 LLHLAKLMPTQWRTIAPIVGRTPSQCLERYEKLLDAACAKDENYEANDDPRKLRPGEIDPNPESKPARPD 
consensus      71 LLHLAKLmPTQWRTIAPivGRTa QCLEhYEyLLD a akd  yd nddPRkLrPGEIDPnPEtkPARpD 
 
Figure 3. Multiple alignment of the predicted Myb domain regions of the putative malaria gene PF10_0327, with 
6 homologs. The arrows represent the two Myb regions. The boxes enclose the characteristic tryptophan residues. P. 
berghei and P. yoelii are rodent malaria parasites.  
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could result in new malarial control strategies. 
  
 
4   Conclusion 
This study complements the exciting model-based 
inference of genetic regulatory networks by 
enriching the list of network components. We have 
discovered novel network components from 
temporal expressional profiles using an integrated 
wavelet decomposition, SVM and bioinformatics 
data mining approach. These components could shed 
light on as yet unrecognized network interactions, 
and can serve as the starting point for model-based 
inference or/and functional characterization.  
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