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Abstract: - This paper presents a new algorithm to translate electromyogram (EMG) signals, produced during 
facial muscle contractions, into computer cursor actions.  These cursor actions are: left, right, up, down and 
left-click.  The translation is performed in real-time and the classification of the EMG signals is based on 
features derived from the spectral analysis of the electromyograms. We have sought to improve upon the 
original EMG-based cursor control system described in [1] [2], and have devised a new system set-up and 
algorithm for the translation of the EMG signals into cursor actions. The two systems were compared using 
Matlab simulations and point-and-click trials.  The simulation results show a marked improvement of the new 
system over the previous system in terms of classification accuracy, and the preliminary point-and-click tests 
indicate the possibility of a faster operation for the new system when compared to the old system. 
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1   Introduction 
Typically able-bodied individuals communicate with 
a computer using standard input devices, such as, a 
mouse, trackball, touchpad, or keyboard.  The 
motivation for investigating alternative means for 
communicating with the computer is that there exists 
a population of individuals who are unable to use 
such devices due to some form of physical 
disability.  It is estimated that there are 250,000 – 
400,000 individuals in the United States living with 
spinal cord injury or spinal dysfunction [11].  Given 
the increasing pervasiveness of computer-based 
systems in most of our daily activities, and the 
increasing levels of communication and social 
participation that take place over the Internet, it is 
clear that facilitating access of these individuals to 
Graphical User Interface (GUI)-driven computer 
systems is an important technical goal. 

With today’s GUI-based PC software, most of 
the human-to-computer interaction is based on 
selection operations, which consists of two steps:  

• Pointing: Positioning the cursor at the 
desired location of the screen, over the 
appropriate area or icon. 

• Clicking: Executing the Mouse Down/Up 
function that is interpreted by the 
computer’s operating system as an indicator 
to complete the selection of the item 
associated with the icon at the location of 
the screen cursor. 

There have been a number of approaches that 
have attempted to make these operations available to 
individuals with severe motors disabilities. Several 
of these devices target motor skills that are still 
available to some users.  One such approach utilizes 
the user’s ability to focus his line of gaze on an area 
of interest using his eyes.  This approach is called 
eye-gaze tracking (EGT).  EGT techniques seek to 
determine the user’s visual line of gaze by taking 
video images of the eye in order to establish a 
mapping between the geometric properties of the 
eye and the line of gaze.  The most popular EGT 
technique at present uses the relative position of the 
bright eye (pupil) center and the center of the glint 
(corneal reflection) to determine the line of gaze [6] 
[8] [9] [10] [13].  Once the line of gaze is 
determined, the point of gaze is found by allowing 
the line of gaze to intersect with the plane of the 
scene being viewed (typically the computer screen). 

This approach has been shown to perform faster 
than a mouse in object selection tests (Sibert & 
Jacob, 2000).  However, the approach has some 
disadvantages.  One such disadvantage is the so-
called “Midas Touch” problem [8] [9].  The problem 
originates from the use of eye gaze as an object 
selection technique.  Since there may be situations 
where a user may only desire to stare at an object to 
examine it, rather than to select it, an eye gaze-based 
object selection technique may result in unintended 
selections.  Another disadvantage is the limited 
accuracy inherent to point of gaze estimation.  This 
limitation is rooted in the fact that the eye only 
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needs to focus incoming light on a small area of the 
retina called the fovea, in order to see objects 
clearly.  For an object to be focused on the fovea, it 
must fall within an area covered by approximately 
one degree of visual arc [9] [13].  This physical 
constraint limits the accuracy with which the line of 
gaze can be estimated. 

A different class of alternative cursor control 
approaches seek to drive the manipulation of the 
cursor from electrophysiological signals that occur 
“naturally” in the user, such as the person’s 
electroencephalogram (EEG) or electromyogram 
(EMG). Frequently, approaches that monitor and 
process electrophysiological signals from the brain 
to communicate messages or commands to a 
computer are called “Brain-Computer Interfaces” 
(BCIs).  Present day independent BCIs can be 
classified by the form of physiological signal that 
they use to determine user intent.  These signals 
include: slow cortical potentials, P300 evoked 
potentials, mu and beta rhythms, and cortical 
neuronal activity recorded from electrodes 
implanted in the scalp [14].   

It has been found that movement or preparation 
for movement is accompanied by a decrease in the 
mu and beta rhythms, especially in the region of the 
brain contralateral to the movement.  This 
phenomenon is called “event-related 
desynchronization” (ERD).  In addition, it has been 
observed that there is mu rhythm increase or “event-
related synchronization” (ERS) after a movement 
and with relaxation.  It has also been found that 
ERD and ERS do not require actual movement, but 
can accompany imagined movement.  These facts 
make mu/beta rhythms suitable for input into a BCI, 
and work by Fabiani et al. [5], 2004), and 
Pfurtscheller et al. [12] has focused on their use as a 
source of cursor control. 

The major advantage of using a BCI system as an 
assistive technology for individuals with motor 
disabilities is that it does not require the brain’s 
normal output pathways to produce its control 
signals; neither does it require activity in these 
pathways to generate the control signals.  However, 
present day BCI systems are primarily limited by 
speed of operation.  Current BCIs have maximum 
information transfer rates of 10 - 25bits/min [14]. 

Electromyography is the study of muscle 
function through monitoring of the electrical signals 
generated by the muscle [3].  When a surface 
electrode is placed on the skin above a superficial 
muscle while it is contracting, it will receive 
electrical signals emanating from several muscle 
fibers associated with different motor units.  The 
spatio-temporal summation of these electrical 

signals results in what is called an EMG signal.  
Therefore, the EMG signal provides an effective 
means of monitoring muscle activity. 

EMG signals have also been used for cursor 
control.  This approach has been used in [7] [15] and 
[1] [2], with [1] [2] focused specifically on the use 
of EMG from cranial muscles.  Monitoring the EMG 
of cranial muscles makes the approach suitable for 
individuals suffering from severe motor disabilities, 
who are paralyzed from the neck down. 

The advantage of EMG-based cursor control is 
that it provides the user with the ability to perform 
small cursor movements, unlike EGT systems.  
However, it has been shown that this approach 
performs slowly compared to a mouse-operated 
system in object selection tests [1] [2]. 

The EMG system used in [1] [2] utilized three 
electrodes that measured EMG signals from muscles 
in the head of the user.  The EMG signals were 
classified into cursor actions by performing real-
time spectral analysis of these signals. Spectral 
analysis of the EMG signals from different muscles 
revealed that they possessed distinguishing 
frequency characteristics.  An example of this is 
given in Fig. 1. 
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Fig. 1 Spectra observed during a right frontalis 

contraction (left plot) and left temporalis contraction 
(right plot) 

 
After a thorough evaluation of the EMG system, 

it was found that the three-electrode system was 
occasionally inaccurate in discriminating between 
the muscle contractions that command up and down 
cursor movements (eyebrows up and eyebrows 
down, respectively).  To remedy this problem an 
additional electrode was added to the forehead 
region and a new classification algorithm was 
devised to work with this new input configuration. 

Section 2 of this paper details how the new 
system was implemented and the methodology 
behind the new classification algorithm.  Section 3 
describes how the old and new EMG systems were 
evaluated, firstly with Matlab simulations and then 
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with real-time, object-selection tasks. Section 4 
provides tabulated results from these tests. Section 5 
presents our conclusions and goals for future work. 

 
 

2   System Implementation and 
Methodology 
 
 
2.1 Placement of Electrodes for the EMG-

based Cursor Control System 
Fig. 2 displays the placement of the Ag/AgCl 
electrodes on the head of the subject.  Fig. 2 
indicates that electrodes were placed over the right 
frontalis muscle, the left temporalis muscle, the right 
temporalis muscle, and the procerus muscle, 
respectively. An electrode was placed over the right 
mastoid as a reference. 
 

 
 

Right Frontalis 

Left Temporalis 

Right Temporalis 

Procerus 

Right Mastoid 
(Reference) 

 
Fig. 2 Electrode placement for the EMG cursor 

control system 
 
2.2 Hardware Components of the EMG-

Based Cursor Control System 
The hardware components of the cursor control 
system are presented in Fig. 3.  The set of four EMG 
signals were input into the Grass® P5 Series AC 
preamplifiers.  These preamplifiers were set to 
preprocess the signals with analog anti-aliasing 
filters, and with a gain of 10,000 V/V.  Each 
preamplifier also applied a 60Hz notch-filter to each 
EMG channel.  The ADC64TM DSP/AD board 
(Innovative Integration, Simi Valley, CA) performed 
analog-to-digital conversion on each signal at a 
sampling rate of 1.2 kHz, and then applied the 
classification algorithm to these digitized signals in 
real-time.  The board was connected to the computer 
through the PCI bus.  The output of the board was a 
series of TTL-compliant binary voltage sequences 
that were consistent with voltage sequences 
expected from a serial mouse.  The Motorola® 
MC1488C RS-232C driver converted the TTL 
sequences into RS-232C format and transmitted 
these sequences into the serial port of the personal 
computer (PC).  The serial mouse driver of this 

computer communicated with the operating system 
to produce cursor actions consistent with the serial 
input. 
 

 
Fig. 3 Block diagram of hardware components of 

EMG-based cursor control system 
 
2.3 EMG Processing Algorithm for Muscle 

Contraction Identification 
The desired relations between cursor actions, facial 
movements, and muscle contractions are given in 
Table 1. 
 

Table 1 Relations between cursor actions, facial 
movements and muscle contractions 

Cursor 
Action 

Facial 
Movement 

Muscle 
Contraction 

Left Left Jaw Clench Left Temporalis 
Right Right Jaw 

Clench 
Right Temporalis 

Up Eyebrows Up (Right) Frontalis 
Down Eyebrows Down Procerus 
Left-Click Left & Right 

Jaw Clench 
Left & Right 
Temporalis 

 
The purpose of the classification algorithm was 

to determine if a facial muscle contraction had 
occurred and if so, which specific muscle was the 
source of this contraction.  Given the one-to-one 
correspondence between muscle contraction and 
cursor action, the output of an effective muscle 
contraction classification algorithm can be utilized 
in a real-time implementation for hands-free cursor 
control.   

Both the classification algorithm of [1] [2] and 
the classification algorithm discussed in this paper, 
made use of the periodogram estimation of the 
power spectral density (PSD) of the input EMG 
signals.  In both cases, the PSD indicated how the 
power of an EMG signal was distributed over a 
frequency range of 0 Hz – 600 Hz.  Periodogram 
PSD estimations were taken every 256 consecutive 
samples (every 0.213s) from each of the four EMG 
channels. 

The two classification algorithms differed in the 
way each utilized the PSD estimates to classify the 
EMG data.  Firstly the algorithm of [1] [2] only 
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utilized three electrodes, placed on the left 
temporalis muscle, the right temporalis muscle, and 
the right frontalis muscle respectively, to record 
EMG signals.  The classification algorithm adopted 
for this three-electrode system, calculated partial 
accumulations over the frequency ranges of 0 Hz – 
145 Hz and 145 Hz – 600 Hz of the PSD’s produced 
from the three EMG channels.  These partial 
accumulations were used to distinguish between the 
frequency characteristics of a temporalis contraction 
as opposed to a frontalis contraction.  This algorithm 
also utilized PSD amplitude thresholds to estimate 
the strength of contraction from each of the three 
muscles mentioned previously.  The partial 
accumulation and threshold criteria were used to 
classify the facial movements: left jaw clench, right 
jaw clench, eyebrows up, and left and right jaw 
clench.  The eyebrows down movement required a 
divergent set of classification criteria.  The 
eyebrows down movement used a partial 
accumulation over the frequency range 88 Hz – 250 
Hz of the PSD calculated from the frontalis 
electrode.  In addition, it was required that the PSD 
amplitude thresholds of the three electrodes not be 
exceeded. 

Testing of this algorithm revealed that it did not 
always classify the eyebrows down movement 
efficiently.  So it was proposed that an additional 
electrode be placed over the procerus muscle, 
because it is one of the muscles directly involved in 
the eyebrows down facial movement.  This new 
four-electrode input configuration required a new 
classification algorithm, the details of which are 
described in the following paragraphs.    

It was decided that this new classification 
algorithm would make use of Mean Power 
Frequency (MPF) values as a means of 
distinguishing spectral differences associated with 
each facial muscle contraction, instead of partial 
PSD accumulations. The MPF is derived from the 
PSD values as a weighted average frequency in 
which each frequency component, f, is weighted by 
its power, P.  The equation for the calculation for the 
MPF is given by: 

 

⎟
⎠
⎞

⎜
⎝
⎛

+++

×++×+×
=

PnPP

PnfnPfPf
MPF

...21

...2211                  (1) 

                      n = 1, 2, …, 256 
 

It has been observed previously that the spectral 
content of the four muscles used in this system are 
distinct [1] [2].  We have also confirmed this in new 
observations made on the subjects involved in this 
research.  The frontalis muscle has the majority of 

its spectral content below 200 Hz, with an MPF in 
the range 40 Hz – 165 Hz.  The temporalis muscles 
have a significant portion of their spectral content 
above 200 Hz, with an MPF in the range 120 Hz – 
295 Hz. The procerus muscle has an intermediate 
spectral content when compared to the frontalis and 
temporalis muscles, with an MPF in the range 60 Hz 
– 195 Hz. 

For a unidirectional muscle contraction to be 
correctly classified by the four-electrode algorithm 
all the following criteria must be satisfied: 

i. The maximum PSD amplitude must 
exceed the threshold set for that 
electrode. 

ii. The sum of the PSD amplitudes for the 
given electrode must exceed the PSD 
sums of the other electrodes. 

iii. The mean power frequency calculated 
from the PSD must fall into a range 
consistent with the muscle associated 
with the electrode. 

For the classification of the bilateral contraction 
of the left and right temporalis muscles used to 
trigger the left-click cursor action, all the following 
conditions must apply: 

i. The maximum PSD amplitude thresholds 
must be exceeded for both electrodes. 

ii. The PSD sums for both electrodes must 
be greater than the other two PSD sums. 

iii. The PSD sums for both electrodes must 
indicate a fairly balanced bilateral 
contraction, that is, each PSD sum must 
be greater than 20% of the total of both 
PSD sums. 

iv. The mean power frequencies calculated 
from both PSDs must fall into a range 
consistent with the muscles associated 
with both electrodes. 

 
2.4 Evaluation of EMG detection 

Algorithms 
The two algorithms were evaluated by applying 
Matlab simulations of the algorithms to recorded 
data.  In addition, they were evaluated using real-
time implementations of the algorithms in point-
and-click trials. 

For the simulations, five subjects (four men and 
one woman, all able-bodied) were used in the testing 
of the algorithms.  Testing involved recording facial 
movement sequences for each subject.  Each 
sequence was 190s in duration.  During each 
sequence the subject was given verbal cues to 
perform specific types of facial movements.  There 
were two unique sequences given to each subject.  
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Each sequence was repeated twice.  The ordering of 
facial movements in the two unique sequences is 
given in Table 2.  Further details of these 
simulations are given in [4]. 

 
Table 2 The ordering of facial movement sequences 

Time Sequence 1 
Facial 

Movements 

Sequence 2 Facial 
Movements 

0s – 20s No Movement No Movement 
20s – 40s Right Clench Right Clench 
40s – 50s No Movement No Movement 
50s – 70s Eyebrows Up Eyebrows Up 
70s – 80s No Movement No Movement 
80s – 100s Left/Right 

Clench 
Left/Right Clench 

100s – 110s No Movement No Movement 
110s – 130s Eyebrows Down Eyebrows Down 
130s – 140s No Movement No Movement 
140s – 160s Left Clench Left Clench 
160s – 170s No Movement No Movement 
170s – 190s No Movement Neck Movement 

 
In order to evaluate the real-time 

implementations of both algorithms, a test program 
was created in Visual Basic to compare their point-
and-click capabilities.  The program was displayed 
on a 17” color monitor.  For each point-and-click 
trial, a 8.5 x 8.5 mm “Start” button was presented in 
a corner of the screen and a “Stop” button was 
presented in the center.  The “Stop” button had four 
possible dimensions: 8.5 x 8.5 mm, 12.5 x 12.5 mm, 
17 x 17 mm, 22 x 22 mm.  Each subject was 
instructed to click the “Start” button to begin timing 
a trial, move the cursor to the “Stop” button, and 
click on it as quickly as possible. This would record 
the total task time for the trial. The subject would 
then click a “Next” button to display another trial 
layout with the “Start” button located in another 
corner of the screen.  Fig. 4 shows an example 
layout of a point-and-click trial. 

 

 
Fig. 4 Point-and-click trial layout 

 

The real-time evaluations were divided into four 
sessions.  During a session only one “Stop” button 
size was presented.  The “Start” button was rotated 
through the four possible corners in subsequent 
trials, such that five trials started from each corner.  
Therefore, there were twenty trials per session and 
80 trials per subject. 

Six able-bodied, male subjects were used in the 
real-time evaluations of the old algorithm.  Also six 
able-bodied, male subjects were involved in the real-
time evaluations of the new algorithm. 
 
 
3   Results 
The results of the simulation evaluations are given 
as classification percentages for both algorithms in 
Table 3. 
 

Table 3 Summary of classification percentages on a 
subject-by-subject basis 

Subject No. Classification Percentages (%) 
 Three-Electrode 

(“Old”) Algorithm 
Four-Electrode 
(“New”) Algorithm 

 Correct Incorrect Correct Incorrect 
1 82.38 17.62 99.52 0.48 
2 78.36 21.64 99.01 0.99 
3 83.85 16.15 99.08 0.92 
4 75.10 24.90 99.01 0.99 
5 72.47 27.53 95.49 4.51 
Average 78.43 21.57 98.42 1.58 

 
The statistical results for the six  test subjects used 
in the point-and-click evaluations of the two 
algorithms are shown in Table 4. 
 
Table 4 Preliminary statistics for point-and-click trials 

 Three-Electrode 
(“Old”) Algorithm 

Four-Electrode 
(“New”) Algorithm 

Mean Trial 
Time (s) 

16.36 13.24 

Std. Dev. (s) 7.29 3.28 
 
 
4   Conclusions and Future Work 
The average results from Table 3 indicate that the 
four-electrode algorithm has a higher correct 
classification percentage than the three-electrode 
algorithm.  This would lead one to conclude that the 
new algorithm is more accurate than the old 
algorithm in classifying the source of muscle 
activity.   

In addition, the results of Table 4 show that the 
mean time for point-and-click trials is 3.12 s less for 
the four-electrode algorithm (13.24 s) when 
compared with the three-electrode algorithm (16.36 
s).  The results also show that the standard deviation 
of the trials for the four-electrode algorithm is about 
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half of the standard deviation for the three-electrode 
algorithm.  These facts suggest that the new 
algorithm produces a system that enables users to 
complete tasks more quickly and with a higher 
degree of consistency (which may imply greater 
ease of use). 

Given these favorable preliminary results, testing 
will continue in order to further validate the 
assumption that the new four-electrode system 
provides faster and more accurate cursor control 
when compared to the three-electrode system.  
Further testing and data analysis will involve 
collecting test data from a larger pool of subjects 
and using a t-statistic to test the significance of the 
difference in mean trial times between the two 
algorithms. Additionally, more complex test tasks 
could be devised to enable the performance of Fitt’s 
Law analysis for both cursor control approaches. 
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