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Abstract: A mathematical model analogous to a devised model of biological pattern formation (Rauch and
Millonas, 2004) is proposed to investigate the effects of Retinoic Acid(RA) and activated Notch1 (i.e., Notch1
intracellular domain, NICD) on neurite outgrowth in N2a cells. The model consists of reaction-diffusion systems
with feedback loops. Here we consider RA as an external signal with a positive feedback and activated Notch
as an inhibitory signal in a negative feedback loop. In our model the perturbations introduced by diffusion
terms destabilize the balance between the positive and the negative feedback loops. Consequently, the symmetry
between the neurites (transmembrane proteins) breaks and one of them starts growing faster than the other
neurites (Andersen and Bi, 2000). The conditions for the existence of symmetry breaking instabilities are
established by linear analysis. We show that these conditions are dependent on the strength of the feedback loops.
We hypothesize an interaction between Notch and RA signaling pathways. This interaction is considered as a
perturbation to the systems. On the basis of numerical results, we present a bifurcation analysis for the cases
of perturbed and unperturbed systems. Numerical solutions are presented and used for further predictions. The
analytical and numerical outcomes of the model are explored along with laboratory experimentations.
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1. Introduction
The nervous system is developed as a result of an
orchestrated series of cell division, cell fate com-
mitment and differentiation that give rise to specific
cell types called neurons and glia. Each of these cell
types demonstrates a specific structure. In particular,
a neuron consists of a single axon (signal transmitter),
a nucleus and a host of dendrites. A key question in
Mathematical Biology is how the fate of an axon is
determined. It has been suggested that all processes
have an equal potential to become an axon prior to
neuronal differentiation (Dotti and Banker, 1988).
But only one of the processes becomes committed
to an axonal fate. In a proposed molecular model of
axon formation (Anderson and Bi, 2000), it has been
suggested that the regulation between the positive and

negative feedback loops provides a robust mechanism
for spontaneous symmetry breaking and formation
of only one axon. This occurs when the symmetry
between the neurites (transmembrane proteins) breaks
and one of them starts growing faster than the other
neurites. It is known that Notch signals can antagonize
neurite outgrowth in neuroblastoma cells (Franklin
et al., 1999) whereas experiments demonstrate that
Retinoic Acid(RA) promotes neurite outgrowth in
neuroblastoma cells. Here we consider RA as an
external signal with a positive feedback and activated
Notch as an inhibitory signal in a negative feedback
loop. In our model, the perturbations by diffusions
destabilize the balance between the positive and the
negative feedback loops and the symmetry is broken.
Lateral inhibition is a type of cell-cell interaction
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whereby a cell that adopts a particular fate inhibits
adjacent cells from acquiring the same fate. This
is controlled by a negative feedback loop: the more
inhibition a cell delivers to its neighbors, the less it
receives back from them and the more it is conse-
quently able to deliver (Wearing et al., 2000). The
mechanism ’lateral inhibition with feedback’ has been
used in modeling Delta-Notch signaling for biological
pattern formation and cell fate determination (Collier
et al., 1996). Collier and his colleagues showed
that the initial slight difference of the level of Delta
and activated Notch between the neighbors will
become self-amplifying, generating a full-blown
spatial pattern of inhomogeneity. Correspondingly,
there is evidence that N2a neuroblastoma cells with
high levels of Delta activity and low levels of Notch
activation become neurons while cells with low Delta
activity and high Notch activation levels remain
undifferentiated (Franklin et al., 1999). This suggests
that the mechanism of lateral inhibition with feedback
can be used to enlighten the regulation of neurite out-
growth in N2a neuroblastoma cells. Turing (Turing,
1952) showed that chemicals can react and diffuse in
such a way that spatial patterns of concentration are
established and as a consequence of this, the fate of
a cell is determined. There are a growing number of
articles suggesting the realistic relevance of Turing
mechanism to spontaneous symmetry breaking (see
Sawai et al., 2000, for example). In both the Turing
mechanism and feedback mechanism, the pattern
formation happens when there are instabilities to the
small perturbations. The assumption is that there is a
direct relation between the strength of the feedback
loops and the diffusion of the signaling molecules, so
that the perturbations by diffusion can be interpreted
as the perturbations by feedback loops and vice-versa.
The phenomenon of Turing instability has been widely
used in many branches of biology. A recent interesting
approach to Turing instability is proposed in a model
wherein activator and inhibitor are included into the
biochemical context (Rauch and Millonas, 2004). In
fact, for the first time, a network of signaling pathways
is added to the Turing mechanism. The present work
utilizes the same approach for the production of a
broken spatial symmetry. We develop a model analo-
gous to their devised model to investigate the effects
of RA and activated Notch on neurite outgrowth and
neuronal differentiation. In Section 2, we introduce

our model and describe the main assumptions. In
Section 3, we use linear stability analysis to derive the
conditions for the existence of Turing instabilities. We
provide a two-cell system analysis similar to the work
by Collier et. al (1996) In Section 4, on the basis of
numerical results, we present a bifurcation analysis
for the cases of perturbed and unperturbed systems.
We demonstrate that conditions for pattern formation
depend on the strength of the feedback loops. And
finally in Section 5, we submit our conclusions.

2. The Mathematical Model
The present model extends that proposed by Rauch
and Millonas (2004) in two important respects. First,
it takes into account the essential role of nonlinearity
in the equations representing the transformation of
activator and inhibitor into corresponding signaling
molecules and the reverse transformation of the
molecules into activator and inhibitor. Secondly, it is
well known that lateral inhibition plays a key role in
pattern formation and cell fate determination (Lewis,
1998; Collier et al., 1996; Owen et al., 1999 ). The
influential mechanism of lateral inhibition is a crucial
factor in a system of feedback loops that we consider
in our model. The Model we present here, embodies
the following assumptions:
1. Cells interact through feedback loops only with
their adjacent cells.
2. The strength of feedback loops can be affected by
external signals: activated Notch weakens the negative
feedback and RA signals strengthen the positive
feedback.
3. The symmetry breaks only when a feedback
gets stronger and the balance between the feedbacks
becomes unstable.
4. The level of activated Notch and the concentration
of RA in a cell determine cell differentiation: low
levels of Notch and high concentrations of RA lead
to neuronal differentiation, otherwise a cell remains
undifferentiated.
5. The system is perturbed by interactions between
Notch and RA signaling pathways: NICD slows down
RA signals by blocking Retinoic Acid receptor (RAR)
in the nucleus and in a set of reactions RA catalyzes
the production of more inhibitor (Notch).
The elements of the model are activated Notch protein
(v), the level of Delta activity(w), concentration
of RA in each cell(u) and the level of microtubule
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associated protein 2 (MAP-2) activity(q) in terms
of local polymerization in each cell. In terms of
activator and inhibitor, Notch is the inhibitor and
Delta is the activator. Also RA is considered as the
second activator in our model. Here, RA is an external
signal with a positive feedback such that it catalyzes
the polymerization of MAP-2. Notch-RA interaction
is considered as a perturbation to the system.The
non-dimensionalized form of the model is as follows:

ut = γ1 (fα(u) + εs(u, v)) + d1∇2u (1)

vt = γ2 (gα(v) + y(w) + εs(u, v)) + d2∇2v (2)

wt = γ3 (−a3w + z(v)) + d3∇2w (3)

qt = γ4 (u− a4q) + d4∇2q (4)

where all the constantsγ1, γ2, a3,... are positive; Dif-
fusive transport of external signals and also transport
of proteins between the segments of the same cell is
included to the system. Coefficientsd1, d2, d3 andd4
are the rate of diffusion related to each component.
ε > 0 is a small (perturbation) parameter which repre-
sents the interactions between the external positive sig-
nal(RA) and the inhibitory signal(Notch).α ∈ (0, 1)
is a (bifurcation) parameter which is related to the con-
centration of RA and the level of activated Notch uti-
lized in the experiment.
As mentioned above, Delta and Notch interact in a
negative feedback loop. Here, we takey andz to be
in the same form as they are proposed in previous arti-
cles(e.g. Collier et al., 1996).y, z : [0,∞) → [0,∞]

y(x) =
xk

c2 + xk
(5)

z(x) =
1

1 + c3xh
(6)

wherec2, c3 > 0 andk, h ≥ 1 with the boundary con-
ditions zero Delta activity and zero RA activity. The
parameter values we use here to generate the illustra-
tions arek = h = 2.
Functionsfα andgα represent the kinetics of RA and
Notch signals in the absence of feedback loops. It
is known that RA induces neuronal differentiation in
many types of cells (see Napoli, 1996 for example). It
is also known that Notch signals can antagonize neu-
rite outgrowth in neuroblastoma cells (Franklin et al.,
1999). These are two important factors which are re-
flected in our model in the following sense:

The level of activated Notch utilized in the experiment
is proportional to the parameterα, while concentration
of RA is proportional to1

α . We take the functionsfα

andgα in the following forms:

fα(x) =
1
α
− a1x (7)

gα(x) =
a2

(α− 1)
(x− α)2 (8)

where 1
α is the concentration of RA added to the

system in each experiment anda1 is the rate of
removal.
An interaction between Notch and RA signaling path-
ways is considered as a perturbation to the system.
In order to investigate the effects of this interaction
on the system , we introduce functionss ands in the
following forms:
s(u, v) = −c1v ands(u, v) = l2u wheres represents
that RA catalyzes production of more Notch ands
represents that Notch suppresses production of RA.

3. Linear Stability Analysis of the
System
We begin our study of the pattern-forming potential of
our model by analyzing the stability of the homoge-
neous steady states. We set the coefficients of our sys-
tem of equations (1)-(4) to:a1 = a2 = l2 = c1 = 1;
c2 = 10α, c3 = 100α. It is not difficult to see that
the system admits a steady state for a suitable choice
of α. By linearizing the system about the steady state
(uε, vε, wε, qε) in a usual way (Murray, 2003), we get
the following stability matrix:

Aε =




γ1fu −εγ1 0 0
εγ2 γ2gv γ2yw 0
0 γ3zv −γ3a3 0
γ4 0 0 −a4γ4




where Aε is the coefficient matrix associated with
the linearized system near the steady state. Here we
present the necessary and sufficient conditions for Tur-
ing instability of the steady state for the caseε = 0,
while for ε > 0, a perturbation analysis is required
which can be another case of study. The necessary
conditions for Turing instability are presented in in-
equalities (9) and (10):

P0 : γ2gv0 − a3γ3 < 0 (9)
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Q0 : a3gv0 + yw0zv0 < 0 (10)

By taking zero flux boundary conditions and given ini-
tial condition for equations (1)-(4), we obtain the suf-
ficient conditions (whenε = 0):

∣∣∣Aε − λI − k2D
∣∣∣ = 0 (11)

T0 : dcγ2gv0 − γ3a3 > 0 (12)

−γ2γ3Q0 <
T 2

0

4dc
(13)

where D is the diagonal matrix of diffusion coeffi-
cients, k corresponds to wave number anddc = d3

d2

is the diffusion ratio.
Fig. 1 shows the effect of varyingε on the Turing
instabilities asε → 0 the range of pattern forma-
tion increases. Fig. 2 is the Plot of the largest of
the eigenvaluesλ(k2). For several values of param-
eterα. the system admits Turing-type patterns when
0.37 < α < 0.58
For a system consisting of two cells with periodic
boundary conditions andε = 0, by equations (2) and
(3) in our model we get:

v̇1 = γ2(gα(v1) + y(w2)), ẇ1 = γ3(−a3w1 + z(v1),
(14)

v̇2 = γ2(gα(v2) + y(w1), ẇ2 = γ3(−a3w2 + z(v2)),
(15)

where the subscripts correspond to cells 1 and 2. Let:

Z(x) =
1
a3

z(x) (16)

G(x) = α +
√

(1− α)y(x) (17)

thenv1 andv2 are the fixed points of the composition
function GZGZ. And the system of two cells is un-
stable if we have(GZGZ)′(v1) > 1. (18)
Since GZ is monotonic decreasing, there exists
x0ε[0, GZ(0)] such thatx0 = GZ(x0) and x0 is
the unique fixed point ofGZ. Hence, the steady
states of the two-cell system must have unique com-
ponents(v1, w1, v2, d2) = (x0, z(x0), x0, z(x0)). if
(ZG)′(x0) < −1, then there must be at least one pe-
riod 2 solution of map.It can be seen that(ZG)′(x0) <
−1 is equivalent to instability condition(18). There-
fore in a Two-cell system existence of an unstable ho-
mogeneous steady state corresponds to a pair of het-
erogeneous steady states. Consequently, one of the
cells can differentiate to a neuron and the other cell
remains undifferentiated.
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Figure 1.Plot of Turing instabilities for different values of
ε > 0. As ε → 0 the pattern formation may happen in a
wider range ofα.
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Figure 2.Plot of the largest of the eigenvalues
λ(k2).the system admits Turing-type patterns when
0.37 < α < 0.58.’k’ corresponds to wave number

4.Numerical results and Bifurcations
The Turing bifurcation is the basic idea for genera-
tion of spatial patterns which can be found in most
of the mathematical models for biological pattern
formation. The bifurcation we are interested in here
is a different one. We are concerned with strength
of feedback loops. The balance between positive
and negative feedback becomes unstable when a
feedback gets stronger and eventually the symmetry
breaks (Andersen and Bi, 2000). Mathematically, this
event corresponds to a bifurcation where changing a
parameter in the system leads to a possible qualitative
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change in the stability of the steady states or they
bifurcate at a certain point.
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Figure 3.Bifurcation diagram forε = 0. T= Stable steady
states with Turing instabilities, U= Unstable Steady States ,
Turing instabilities occur in the presence of Unstable steady
states which in a two-cell system corresponds to pattern for-
mation
In a one dimensional Delta-Notch system where we
have a line of cells, it has been shown that the homoge-
neous steady state becomes unstable when the negative
feedback is sufficiently strong (Collier, 1996). Conse-
quently, the steady state bifurcates into a pair of inho-
mogeneous steady states such that one(cell) has high
Notch activity and low Delta activity (the undifferenti-
ated cell), while the other has high Delta activity (sym-
metry breaks and the cell becomes a neuron). The
fact that Notch signals antagonize neurite outgrowth
and RA signals promote neuronal differentiation can
be used in our model in the following sense: When ac-
tivated Notch is utilized we have a negative external
signal in our system which weakens the strength of the
negative (Delta-Notch) feedback loop. Also, a higher
concentration of RA in each cell results in stronger
positive feedback within our system. Equations (1)-
(4) can be written in the formdX

dt = F (α, ε, X)
whereX = (u, v, w, q) and ε ≥ 0 is the perturba-
tion parameter andα ∈ (0, 1) is the bifurcation pa-
rameter. Steady states of the system are presented by
X(α, ε) where all components ofX(α, ε) must be pos-
itive. By solvingF (α, 0, X) = 0 one can observe that
the unperturbed system(ε = 0)admits a saddle-node
bifurcation, where numerical results reveal thatα =
0.3625 is the saddle-node bifurcation value. The pair
of saddle and node steady states exists for the values

of α ∈ (0.3625, 0.589) where surprisingly the node
steady state satisfies all conditions for Turing instabil-
ity.
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Figure 4.Bifurcation diagram forε > 0. T= Stable steady
states with Turing instabilities, U/S= Unstable/Stable
Steady States ,Again Turing instabilities occur in the
presence of Unstable steady states
In the framework of Turing theory there is a high
potential of pattern formation and consequently
neuronal differentiation for the cells having the
values close to the components of the node steady
state.Numerical results show that in the node steady
states the level of Notch activity is high while the
level of RA concentration is very low. When the
system is perturbed(ε > 0) we get the same results,
but in a shorter range forα (for exampleε = 0.05
α ∈ (0.48, 0.60)). This suggests that for(ε > 0) small
enough the perturbed system could be topologically
equivalent to the unperturbed system. However, this
is not the focus of this article. Figures 3 and 4 show
the bifurcation diagram for perturbed and unperturbed
systems. In the region where saddle steady states
exist , the two-cell analysis suggests that there is
a high potential of pattern formation and neuronal
differentiation.Forε > 0 Turing instabilities occur in
the same region with a shorter range ofα
Adding RA with a lower (higher) concentration and
using a higher (lower) level of activated Notch in
experiments are subject to an increase (decrease) in
the value ofα in our model. In factfα → ∞ as
α → 0shows that the positive feedback function gets
ultimately strong andgα → −∞ asα → 1 shows that
the negative feedback function gets ultimately weak.
Figure 5 shows the effects of RA and / or activated
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Notch on the morphology of N2a cells , where one
can see an increase to the concentration of RA results
more differentiated cells ( formation of more Axons
),while utilizing a high level of activated Notch results
most of the cells undifferentiated ( Axon formation
only in few cells)

Figure 5. the effects of RA and / or activated Notch on
the morphology of N2a cells Top left: In presence of RA
(10−2) Top right: In presence of Notch 1 ICD Bottom left:
In presence of RA (10−4) and Notch 1 ICD Bottom right:
In presence of RA (10−2) and Notch ICD

5. Conclusions
The proposed model is another example of including
a network of signaling pathways into the Turing
mechanism. We speculate that small perturbations
of interaction between signaling pathways doesn’t
have a qualitative change to Truing instabilities.
Experimental results confirm that high concentrations
of RA with low levels of activated Notch lead to
neuronal differentiation (axon formation) where in
theory this is corresponding to existence of Turing
instabilities and heterogeneous steady states.It is felt
that one particular merit of the work presented here is
that it shows the possible existing connection between
feedback mechanism and Turing mechanism.Previous
work has shown that pattern formation can occur when
the homogeneous steady state is unstable (Collier,
1996).We find that Turing instabilities occur in a range
where there exist unstable steady states. This suggests

that feedback mechanism and Turing mechanism
provide similar results for pattern formation.
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