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Abstract:- We give a highly efficient, accurate and unconditionally stable algorithm to solve the partial
differential equation for simulating the action potentialpropagation through cardiac tissue. In the new
algorithm, we discretize the space domain by combining a compact finite difference scheme with an
alternating direction implicit (ADI) scheme, which has fourth-order accuracy for interior mesh points,
and second-order accuracy for boundary mesh points. In our computer simulation, we test the new
method on a two dimensional Luo-Rudy phase I action potential model. For a fixed mesh gridN , the
compact finite difference ADI method yields50% more accuracy than the Crank-Nicolson ADI method.
Furthermore, it costs almost the same amount of time as the Crank-Nicolson ADI method. On the other
hand, if we want to obtain the same accuracy, it only costs49% ∼ 65% of computational time if we use
our compact finite difference ADI method instead of the Crank-Nicolson ADI method.

Key-Words:- Compact finite difference method, ADI, Cardiac tissue models, Computer simulation, Spi-
ral wave

1 Introduction
Cardiac tissue conduction models and computer simu-
lation study have made the realization of the heart from
qualitative analysis to quantitative analysis. These could
be invaluable in the research of the foundation of car-
diac arrhythmia and in the development of drugs for the
treatment of various diseases caused by cardiac elec-
tric disorders. Until now there are two major classes of
models of cardiac tissue: ionic models (Luo and Rudy
1994, Nobleet al 1998) and FitzHugh-Nagumo mod-
els (FHN) (FitzHugh 1961, Aliev and Panfilov 1996,
Fenton and Karma 1998). No matter which model we
use for computer simulation study, we need to solve
a system of stiff, coupled ordinary differential equa-
tions (ODE’s) and a partial differential equation (PDE)
with non-flux boundary conditions. A lot of techniques
have be developed for solving these ODE’s, such as the
Runge-Kutta method (Noble 1962, McAllister Beeler
et al 1975, and Reuter 1977) and an adaptive time step
method (Luo and Rudy 1991). As we know, for high
dimensional problems, for example in the three dimen-

sional case, the computational time is inversely propor-
tional to the third degree of the space steph and to the
first degree of the time step∆t. In other words, the
total computational efficiency depends heavily on the
numerical schemes for discretizing the space. In previ-
ous work [6, 11, 13, 10, 4, 7, 12], the authors used first-
order accurate methods: explicit Ruler scheme, or im-
plicit Ruler scheme, or second-order Crank-Nicolson
method to discretize the space, and then apply the al-
ternating directional implicit (ADI) to reduce the high
dimensional problem to one dimension and solve them.
In this paper, we will give a compact finite difference
ADI scheme, which has fourth-order accuracy for inte-
rior mesh points, and second-order accuracy for bound-
ary mesh points, but use no more operations than the
corresponding Crank-Nicolson ADI method. This sch-
eme is unconditionally stable when combined with the
first-order backward-time or second-order centered-time
approximations. In our numerical experiments, we em-
ploy the compact finite difference method ADI method
combined with centered-time approximations for a sim-
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ple two dimensional PDE with non-flux boundary con-
ditions, and it turns out that for a fixed mesh gridN ,
the compact finite difference ADI method yields50%
more accuracy than the Crank-Nicolson ADI method.
Moreover it costs almost the same amount of time as
the Crank-Nicolson ADI method. On the other hand, if
we want to obtain the same accuracy, it saves a lot of
time if we use compact finite difference ADI method
instead of the Crank-Nicolson ADI method. Next we
take the Luo-Rudy phase I model as an illustration to
show how to use the fourth-order compact finite differ-
ence ADI scheme for two dimensional cardiac tissue
conduction models. Our computer simulation confirms
that the compact finite difference centered-time ADI
scheme is a highly accurate, efficient and uncondition-
ally stable method for cardiac tissue conduction mod-
els.

2 Compact Finite Difference ADI
Method

We describe the algorithm using the compact finite dif-
ference method and ADI scheme for two dimensional
PDE problems in this part. Suppose we want to solve
the following PDE by the compact finite difference ADI
scheme

∂V

∂t
= D(

∂2V

∂x2
+

∂2V

∂y2
), (x, y) ∈ Ω, t ∈ (0, T ]. (1)

HereV is a function ofx, y and t, andD is a given
constant. With the initial condition:

V |t=0 = ϕ0(x, y), (2)

and non-flux boundary conditions

∂V

∂x
|x=xmin,x=xmax

=
∂V

∂y
|y=ymin,y=ymax

= 0. (3)

For simplicity, we consider the case that domainΩ =
[0, d; 0, d] is a square. First discretize the domainΩ by

xi = ih, yj = jh, 0 ≤ i, j ≤ N,h =
d

N
,

and the temporal space

tk = k∆t, k = 0, 1, · · · ,M,∆t =
T

M
.

To discretize the PDE (1) along the x-axis, we can use
the second-order central difference scheme:

∂2Vi,j,t

∂x2
=

Vi−1,j,t − 2Vi,j,t + Vi+1,j,t

h2
, (4)

hereVi,j,t = V (xi, yj , t) and i = 1, 2, · · · ,N − 1.
For boundary points, we use the following first-order
schemes

∂2V0,j,t

∂x2
=

−2V0,j,t + 2V1,j,t

h2
−

2

h

∂V0,j,t

∂x
, (5)

and

∂2VN,j,t

∂x2
=

−2VN,j,t + 2VN−1,j,t

h2
+

2

h

∂VN,j,t

∂x
. (6)

While in this paper we develop a compact finite differ-
ence scheme to solve (1) with non-flux boundary con-
ditions (3). For the interior pointsi = 1, 2, · · · ,N − 1,
we use the following fourth-order accurate formula

∂2Vi−1,j,t

∂x2
+ 10

∂2Vi,j,t

∂x2
+

∂2Vi+1,j,t

∂x2

=
12Vi−1,j,t − 24Vi,j,t + 12Vi+1,j,t

h2
. (7)

This formula and all the following compact finite dif-
ference formulae can be obtained by the Taylor expan-
sion, refer to [2, 8] for details. For the mesh grid point
i = 0, we use the following second-order difference
formula

∂2V0,j,t

∂x2
+

1

2

∂2V1,j,t

∂x2

=
−3V0,j,t + 3V1,j,t

h2
−

3

h

∂V0,j,t

∂x
, (8)

for taking the advantages that we already have known
the non-flux boundary value of∂V0,j,t

∂x . For the same
reason, we deal with non-flux boundary condition by
the following difference approximations when the mesh
grid pointi = N

∂2VN,j,t

∂x2
+

1

2

∂2VN−1,j,t

∂x2

=
−3VN,j,t + 3VN−1,j,t

h2
+

3

h

∂VN,j,t

∂x
. (9)

To make life easier, letδx denote the linear difference
operator for the right side of (7), (8), and (9), i.e.,

δxVi,j,t =



























(−3V0,j,t + 3V1,j,t)

h2 , i = 0,

(−3VN,j,t + 3VN−1,j,t)

h2 , i = N,

12Vi−1,j,t − 24Vi,j,t + 12Vi+1,j,t

h2 others.

Note in the above definition of operatorδx, we already
use non-flux conditions (3) to simplify the expression.
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Let Lx denotes the linear operator for the left side of
(7), (8), and (9), namely

LxVi,j,t =











−3V0,j,t + 1
2
V1,j,t, i = 0

VN,j,t + 1

2
VN−1,j,t, i = N

12(Vi−1,j,t − 2Vi,j,t + Vi+1,j,t), others.

Then we can write (7), (8), and (9) into the following
symbolical uniform

Lx
∂2Vi,j,t

∂x2
= δxVi,j,t, i = 0, 1, · · · ,N. (10)

By using the same way to deal with the variabley, we
obtain

Ly
∂2Vi,j,t

∂y2
= δyVi,j,t, j = 0, 1, · · · ,N. (11)

The meanings for operatorsδy andLy are obvious. Ap-
plying the two formulae (10) and (11) on (1), we obtain

∂V (x, y, t)

∂t
= D(

δxVi,j,t

Lx
+

δyVi,j,t

Ly
), (12)

or

LyLx
∂V (x, y, t)

∂t
= D(Lyδx + Lxδy)Vi,j,t. (13)

For the equation (13), we may use the first-order ex-
plicit forward-time scheme or implicit backward-time
scheme to approximate the partial derivative∂V

∂t in (13).
Here we employ the second-order centered-time ap-
proximation and show how to solve it by the ADI scheme.
Adding the term∆t2D2

4
δxδy(V

k+1
i,j − V k

i,j) to the left
side of equation (13) after we discretize the time space,
then we rearrange it into the following form:

(Ly −
∆tD

2
δy)(Lx −

∆tD

2
δx)V k+1

i,j

= (Ly +
∆tD

2
δy)(Lx +

∆tD

2
δx)V k

i,j , (14)

hereV k
i,j stands forV (xi, yj, tk). To solve (14) effi-

ciently and accurately, we introduce an intermediate
variableV ∗, and apply the ADI-like scheme [9] or the
so called approximate-factorization-implicit (AFI) met-
hod [3], yielding

(Ly −
∆tD

2
δy)V

∗

i,j

= (Ly +
∆tD

2
δy)(Lx +

∆tD

2
δx)V k

i,j, (15)

(Lx −
∆tD

2
δx)V k+1

i,j = V ∗

i,j, (16)

where0 ≤ i, j ≤ N , and0 ≤ k ≤ M − 1. By using
the definitions for the operatorsδx, δy, Lx, andLy in
equation (7), (8) and (9), we rewrite the coefficients
of the left side of equations (15) and (16) into a same
matrix form and the nonzero elements are given by

A =

















1 + 3
2
λ 1

2
− 3

2
λ

1 − 6λ 10 + 12λ 1 − 6λ
.. . . . . . . .

1 − 6λ 10 + 12λ 1 − 6λ
1
2
− 3

2
λ 1 + 3

2
λ

















,

hereλ = D∆t
h2 . If we assume the values ofV k are

known, we can easily compute the values forV ∗ by
the formula (15) and then compute forV k+1 by the for-
mula (16) taking the advantages thatA is a tri-diagonal
matrix. One thing we must point out is that we don’t
know the non-flux boundary values∂V ∗

∂y |y=ymin
and

∂V ∗

∂y |y=ymax
when we use the formula (15). There are a

lot of ways to deal with this problem, the simplest way
is just to impose an additional condition∂V ∗

∂y |y=ymin
=

∂V ∗

∂y |y=ymax
= 0.

The compact finite difference ADI scheme has the
fourth-order accuracy for interior points and second or-
der accuracy for boundary points. If it is combined
with the first-order backward-time or second-order cen-
tered time approximations for the PDE (1), the implicit
scheme is unconditionally stable.

2.1 Numerical Experiments

To show the accurate order of our compact finite dif-
ference ADI schemes, we first test a simple two di-
mensional example: choose parametersD = 1,Ω =
[0, 1; 0, 1] in the PDE (1), and give the initial condition
by

ϕ0(x, y) = 10 cos (πx) cos (πy). (17)

For this example, we easily know the exact solution is

V (x, y, t) = 10e−2π2t cos (πx) cos (πy). (18)

Let T = 0.01, and the fixed temporal step∆t = 10−5.
The maximum absolute error is defined as the maxi-
mum value of the absolute difference between the ex-
act solutions and approximation solutions at all parti-
tion points. We compare the maximum absolute errors
and computational times obtained by the compact fi-
nite difference ADI method with those obtained by the
Crank-Nicolson ADI method when we vary the mesh
grid N in Fig. 1. From the Fig. 1 (a), we can see that
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Figure 1: Comparing max absolute errors and times.

the compact finite difference ADI method can achieve
higher accuracy than the Crank-Nicolson ADI method.
By using the following formula to estimate the accurate
orderp of different methods

p = log2(
eh

eh/2

), (19)

hereeh denotes the maximum absolute error with the
spacial steph. We know that the compact finite differ-
ence ADI method can obtainO(h3) of accuracy for the
whole space domain, while the Crank-Nicolson ADI
method isO(h2). It means that for the fixed grid mesh
N , the compact finite difference ADI method yields
50% of accuracy more than Crank-Nicolson ADI meth-
od; furthermore we spend no more operations by using
the compact finite difference ADI method than using
the Crank-Nicolson ADI method for a fixed grid mesh
N by Fig. 1 (b). From the other hand, say we want to
obtain the same accuracy, it saves a lot of time if we use
the compact finite difference ADI method. For exam-
ple, to obtain the maximum absolute errorO(10−5),
the Crank-Nicolson ADI method needs about 59 sec-
onds with the mesh gridN = 256, while the compact
finite difference ADI method takes only 2 seconds with
the mesh gridN = 64.

3 Solving Cardiac Tissue Conduction
Models

It is well known that there are two major classes of
models of cardiac tissue: ionic models and FHN mod-
els. The output data from computer simulation can be
used for further study on isopotential contour lines, spi-
ral wave tip trajectories, and pseudo-electrocardiogram.
No matter which model we use for computer simula-
tion study, we need to solve a system of stiff, coupled
ODE’s and a PDE with non-flux boundary conditions.
In this section, we take Luo-Rudy phase I model as
a demonstration to show how to use the the compact
finite difference ADI scheme for the two dimensional
cardiac tissue conduction models. It is quite straight-
forward to extend the new scheme for FHN model.
In our computer simulation, we imitate spiral waves
produced by the output of the compact finite differ-
ence ADI scheme and compare them with those gen-
erated by the Crank-Nicolson ADI scheme. The ex-
periments confirm that the compact finite difference
centered-time ADI scheme is a highly accurate, effi-
cient and unconditionally stable method for cardiac tis-
sue conduction models.

3.1 Algorithm

The PDE for cardiac conduction in homogeneous tis-
sue is described by the following reaction-diffusion-
like equation [12, 13]:

∂V

∂t
= −

Iion

C
+ D(

∂2V

∂x2
+

∂2V

∂y2
). (20)

WhereD is the diffusion coefficient related to gap junc-
tions between cells,C is membrane capacitance,V is
local membrane potential, andIion is the total ionic
current density. Non-flux boundary conditions are used
for two dimensional tissue model simulations.Iion is
a function of voltageV , gating variablesY1, Y2, · · ·,
Yp, and ion concentrationsZ1, Z2, · · ·, Zq. The gating
variablesYi hold the following system of ODE’s

∂Yi(t)

∂t
= αi(1 − Yi(t)) − βiYi(t). (21)

Whereαi and βi are rate constants and are voltage-
dependent functions. The ion concentrationsZi satisfy
the following set of ODE’s

∂Zi(t)

∂t
= fi(IZi

, V, Zi), (22)

hereIZi
is theZi related ionic current.
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The operator splitting method and compact finite
difference ADI method are used for the PDE (20), the
gating variables (21) are integrated by the algorithm of
Rush and Larsen [10], and adaptive time step meth-
ods are used to integrate (22). The algorithm has three
steps:
Step I: Take the results at time t as the initial condition
and apply the compact finite difference ADI method to
solve the following PDE

∂V

∂t
= D(

∂2V

∂x2
+

∂2V

∂y2
), (23)

with a temporal step length∆t
2

.
Step II: Use the results of step I as the initial condition
to integrate the following ODEs

∂V

∂t
= −

Iion

C
, (24)

∂Yi(t)

∂t
= αi(1 − Yi(t)) − βiYi(t), i = 1, · · · , p, (25)

∂Zi(t)

∂t
= fi(IZi

, V, Zi), i = 1, 2, · · · , q, (26)

with a temporal step length∆t.
Step III : Set the results of step II as the initial condi-
tion and solve the following PDE with a temporal step
length ∆t

2
again by the compact finite difference ADI

method

∂V

∂t
= D(

∂2V

∂x2
+

∂2V

∂y2
). (27)

3.2 Computer Simulation

Let’s implement the above algorithm for cardiac tissue
conduction of the two dimensional case. In our simu-
lation, we chooseC = 1µ F/cm2, D = 0.001cm2/ms,
cardiac tissue sheetΩ is 6cm× 6cm, andT = 500ms.

Fig. 2 (A), (B), (C), and (D) are the imitated spiral
waves produced by the output of the Crank-Nicolson
ADI scheme with the fixedT = 500 and varied spacial
steph; Fig. 2 (E), (F), (G), and (H) are the imitated
spiral waves produced by the compact finite difference
ADI scheme. It is easy to see there are notable changes
in the imitated spiral waves by the Crank-Nicolson ADI
scheme with increasing the spacial steph, while they
are quite smaller by the compact finite difference ADI
scheme. That is a sign that the new method is more
accurate.

Table 1 and Table 2 list computational times and
conduction velocity by the Crank-Nicolson ADI scheme
and compact finite difference ADI scheme respectively

 

 
  

(E) (G)(F)
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(H)

Figure 2: Spiral waves (A), (B), (C) and (D) generated
by the output of the Crank-Nicolson ADI scheme and
(E), (F), (G), and (H) by the compact finite difference
ADI scheme with the fixedT = 500 and varied spacial
steph. And the spacial steph is 0.030cm, 0.025cm,
0.020cm, and0.015cm respectively. The pattern of (A)
has a considerable deviation from that of the others.

with the fixedT = 500 and varied spacial steph. There
is an another rule to judge which method is more accu-
rate: the less the conduction velocity changes, the more
accurate is the method. From this point, the compact
finite difference ADI scheme as well prevails against
the Crank-Nicolson ADI scheme. When we look at the
computational times, it takes a little longer time for the
compact finite difference ADI scheme than the Crank-
Nicolson ADI scheme at a fixed spacial steph. The
reason is that the conduction speed of the action po-
tential obtained by the Crank-Nicolson ADI scheme is
lower than the one obtained by the compact finite dif-
ference ADI scheme. The repolarized area, as well as
the area at reset potential, is larger with lower conduc-
tion speed. When we use adaptive time step methods to
solve ODE’s, it takes shorter time to solve them. If we
want to obtain the same order of accuracy, the com-
pact finite difference ADI scheme saves much more
times. By looking at the shape of imitated spiral waves
in Fig.2, we believe (B) and (E), (C) and (F), (D) and
(G) to be the same level of accuracy. It means that
the compact finite difference ADI scheme only needs
65%, 64%, and49% of computational times used by
the Crank-Nicolson ADI scheme according to the com-
putational times in Table 1 and Table 2.
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Table 1: Computational times and conduction velocity
by the Crank-Nicolson ADI method with the fixedT =
500 and varied spacial steph:

Step Computational Conduction
length h time velocity
0.015cm 6125s 37.5cm/s
0.020cm 2943s 34.1cm/s
0.025cm 1867s 31.3cm/s
0.030cm 1126s 27.9cm/s

Table 2: Computational times and conduction velocity
by the compact finite difference ADI method with the
fixedT = 500 and varied spacial steph:

Step Computational Conduction
length h time velocity
0.015cm 6140s 40.0cm/s
0.020cm 3010s 37.6cm/s
0.025cm 1897s 35.9cm/s
0.030cm 1212s 32.0cm/s

4 Conclusions
We give a highly efficient, accurate and uncondition-
ally stable compact finite difference ADI scheme for
solving the partial differential equation in cardiac tis-
sue models of the two dimensional case. And we are
now working on extending our work to the three di-
mensional case, and we expect to save more time since
the computational time is inversely proportional to the
third degree of the space step.
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