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1   Introduction 
Due to large-scale data manipulation required 
in the general areas of computational biology 
[1-6], and especially with the availability of 
modern, inexpensive high-performance 
computers (which have multiple processors) 
[7], larger problems' sizes in molecular 
biology can now be more efficiently analyzed, 
and to speed-up the solution process. 
     In this paper, the problem of comparing 
two DNA sequences using the basic version 
of dynamic programming algorithm is 
specifically considered. To facilitate the 
discussions, consider the following 2 DNA 
sequences: 
 
     GACGGATTAG and GATCGGAATAG.  

The similarity between these 2 sequences 
can be even more obvious when they are 
aligned on top of each other, as following: 

 
 

     It should be noted here that the lengths of 
the above 2 sequences are NOT the same. For 
this reason, a space (indicated by a dash) is 
inserted in (1), to assure these 2 sequences to 
have the same length. Thus, one defines an 
alignment as the insertion of space(s) in 
arbitrary location(s) along the sequences so 
that they will end up with the same size. The 
augmented sequences can then be placed on 
top of each other, creating a one-to-one 
correspondence between characters and/or 
spaces among these sequences. However, one 

GA- C GGAT T AG
GAT C GGAAT AG

(1)
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requires that no space in one sequence be 
aligned with a space in the other. 
     Our main objective here is to describe 
efficient serial and parallel algorithms that 
will take 2 sequences and determine the best 
alignment, as it has been done in (1). To 
achieve this goal, one needs to assign a 
"scoring" system, as following: 
     Each column of the alignments (between 
the 2 sequences) will receive a "certain value" 
depending on its contents, and the "total 
score" will be the sum of the values assigned 
to its columns. If one adopts the policies that 
"+1" is assigned to a column which has 2 
"identical" characters, "-1" is assigned to a 
"mismatch" case, and "-2" is assigned to a 
column which has a "blank space" (indicated 
by a symbol "dash"), then the best alignment 
will be the one with a maximum total score. 
This maximum score will be called the 
"similarity" between the 2 sequences, and will 
be denoted as similar(s,t), for sequences s and 
t. In practical cases, there may be several 
alignments with the same maximum score. 
     For the alignment shown in (1), there is 1 
column with a "blank space", 1 column with a 
mismatch character, and 9 columns with 
identical characters.  Thus, a total score can 
be computed as: 
     1 * (-2) + 1 * (-1) + 9 * (+1) = 6 (refer to 
the Highest Total Score, shown in the authors' 
computer output (Table 1), which is also 
matched with the results in Ref.[1]). 
     The particular choice of scores "+1, -1, -2" 
has often been used in practice. It is based 
upon rewarding for "matching characters" 
case, and penalizing for "mismatching 
characters", or "a column with a blank space" 
cases. 
     With the above paragraphs as 
backgrounds, the objective of this study is to 
re-visit an efficient Dynamic Programming 
algorithm for computing the similarity 
between 2 given sequences, and to propose a 
parallel computation procedure to improve its 
speed for solving even larger-scale problems. 
Basic reviews of the "serial" version of the 
dynamic programming algorithm is 
summarized in Section 2. Parallel 
computational procedures for the Dynamic 
Programming algorithm are explained in 

Section 3. Validation for the "serial" computer 
software is conducted in Section 4. Finally, 
conclusions are drawn in Section 5. For 
readers' convenience, the entire serial 
(FORTRAN-90) source code, including 
Input/Output data files are listed in the 
Appendix. 
 
2   Brief Reviews of Dynamic 
Programming Algorithms [1-6] 
 
One possible (but highly inefficient) approach 
for computing the similarity between 2 
sequences would be to generate all possible 
alignments, the total score for each case is 
computed, and the best score is selected. 
However, the number of possible alignments 
between 2 sequences can be exponential 
(especially for the cases where the lengths of 
the 2 sequences are not only long, but also 
significantly different), which makes this 
"brute force" approach to be impractical! 
     In the following section, a more efficient 
way for computing the similarity between 2 
sequences is briefly reviewed. This algorithm 
is called "dynamic programming", which 
basically solves an instance of a problem 
using the already computed solutions for 
smaller instances. Given 2 sequences s and t, 
the solution can be built up by determining all 
similarities between arbitrary prefixes of the 2 
given sequences. One starts with shorter 
prefixes and used previously computed results 
to solve the problem with larger prefixes. 
     Let m, and n represents the sizes of 2 
sequences s, and t, respectively. There are 
(m+1), and (n+1) possible prefixes of s, and t, 
respectively, including the empty string. 
Therefore, one may arrange the calculation in 
a 2-dimensional matrix (m+1) x (n+1) array, 
where the entry (i,j) represents the similarity 
between s(1 ... i), and t(1 ... j) 
     Eq.(4) shows a 2-dimensional array 
[M] corresponding to the 2 given 
sequences:  
s = AAAC, and t = AGC                        (2) 
     In this specific example, since the 2 
sequences "s" and "t" have 4, and 3-character 
length, respectively, hence, there are only 4 
possible ways for aligning these 2 sequences: 
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(3)

A A A C  A A A C A A A C  A A A C
- A G C  A - G C A G - C  A G C -
     Using the same scoring convention as used 
in Section 1, the final scores corresponding to 
the above possible alignments are -1, -1, -1, 
and -3, respectively. Thus, the highest total 
score in this particular example is -1 (please 
see the value of M(4,3), shown in Eq. 4). 
     One places the sequences "s", and "t" 
along the rows, and columns of matrix [M], 
respectively. This arrangement will indicate 
the prefixes more clearly. It is noted that the 
0-th row (and column) of [M] are initialized 
with multiples of the "blank space" penalty (-
2 is used here). This is because there is only 
one alignment possible if one of the sequences 
is empty. In this case, one just adds as many 
spaces as there are characters in the other 
sequence. The score of this alignment is -2k, 
where k is the length of the nonempty 
sequence. Thus, initializing the values for the 
0-th row (and column) of [M] is a trivial task. 
     To compute the value of a general entry 
M(i,j), one just needs to look at its 3 
neighboring entries: M(i-1,j), M(i-1,j-1), and 
M(i,j-1). Thus, one can visualize that the entry 
M(i,j) is located at the bottom right corner of 
an imaginary square, with its 3 neighboring 
entries occupy at the other 3 corners this 
imaginary square! The reason for this 
observation is there are just three ways for 
obtaining an alignment between s(1...i) and 
t(1...j), and each one uses 1 of these previous 
values. The following 3 possible choices are 
listed here[1]: 
* Align s(1...i) with t(1...j-1) and match a 

space with t(j), or 
* Align s(1...i-1) with t(1...j-1) and match 

s(i) with t(j), or 
* Align s(1...i-1) with t(1...j) and match s(i) 

with a space. 
     These possibilities are exhaustive because 
we are not allowed to have 2 spaces paired in 
the last column of the alignment. Scores of the 
best alignments between smaller prefixes have 
already been stored in the array if one chooses 
an appropriate order for which the entries are 
computed. As a consequence, the similarity 
sought can be computed by the formula: 
sim[s(1…i), 
t(1…j)]= max 

{sim[s(1...i), t(1...j-1)]-2 
{sim[s(1...i-1), t(1 ... j-

1)]+p(i,j){sim[s(1...i-1),  
t(1...j)]-2 

In Eq.(3), p(i,j) = +1, if s(i) .   EQUAL. T(j), 
and 
p(i,j)=-1, if s(i) .NOT EQUAL. t(j) 

     The values of p(i,j) are written inside the 
parenthesis, shown in Eq.(4) 
 
 
 
 
    A G C 
   0 1 2 3 
       
  0 0 -2 -4 -6 
  A 1 -2 1 -1 -3 
    (+1) (-1) (-1) 
  A 2 -4 -1 0 -2 
    (+1) (-1) (-1) 
[M] =  A 3 -6 -3 -2 -1 
    (+1) (-1) (-1) 
  C 4 -8 -5 -4 -1 
    (-1) (-1) (+1) 
       

(4) 
 
Eq. (4) can be expressed as:             
M(i,j)=max { M(i,j-1) – 2 

{ M(i-1,j-1) + p(i,j)      
{ M(i-1,j) – 2  

 
     The orders of computation for entries of 
M(i,j) can be proceeded row-wise (or column-
wise), or by any other orders. The only 
requirement is that M(i-1,j), M(i-1,j-1), and 
M(i,j-1) should be already computed before 
attempting to compute M(i,j). 
 
 
3   Parallel Dynamic 
Programming Algorithms [1,7] 
Based upon the example shown in Eq.(4), and 
the formula given in Eq.(5), and assuming 
there are 4 processors available for parallel 
computation purposes, the step-by-step 
parallel computation procedures can be 
described for the following 8x8 matrix [M]: 
Step 1: The first row/column, or row 

#0/column #0 of matrix [M] are 
initialized 

(5)
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Step 2: The entry M(1,1) is computed by 
processor P1 

Step 3: In parallel, M(1,2), M(2,1) are 
computed by processors P2, P3 

Step 4: In parallel, M(1,3), M(2,2), M(3,1) 
are computed by P4, P1,P2 

Step 5: In parallel, M(1,4), M(2,3), M(3,2), 
M(4,1) are computed by P3, 
P4,P1,P2 

Step 6: In parallel, M(1,5), M(2,4), M(3,3), 
M(4,2), M(5,1) are computed by P3, 
P4,P1,P2,P3 

Step 7: In parallel, M(1,6), M(2,5), M(3,4), 
M(4,3), M(5,2), M(6,1) are computed 
by P4,P1,P2,P3,P4,P1 

Step 8: In parallel, M(1,7), M(2,6), M(3,5), 
M(4,4), M(5,3), M(6,2), M(7,1) are 
computed by P2,P3,P4,P1,P2,P3,P4 

Step 9: In parallel, M(2,7), M(3,6), M(4,5), 
M(5,4), M(6,3), M(7,2) are computed 
by P1,P2,P3,P4,P1,P2 

Step 10: In parallel, M(3,7), M(4,6), M(5,5), 
M(6,4), M(7,3) are computed by 
P3,P4,P1,P2,P3,.. etc .. 

 
 
     The above parallel computational steps can 
also be conveniently summarized according to 
the following table: 

 0 1 2 3 4 5 6 7
0 0 -2 -4 -6 -8 -10 -12 -14
1 -2 1.1 2.2 3.4 4.3 5.3 6.4 7.2
2 -4 2.3 3.1 4.4 5.4 6.1 7.3 8.1
3 -6 3.2 4.1 5.1 6.2 7.4 8.2 9.3
4 -8 4.2 5.2 6.3 7.1 8.3 9.4 10.4
5 -10 5.3 6.4 7.2 8.4 9.1 10.1 11.4
6 -12 6.1 7.3 8.1 9.2 10.2 11.1 12.3 
7 -14 7.4 8.2 9.3 10.3 11.2 12.4 13.1 
 
     In the above matrix table, row #0 and 
column #0 are first initialized. Each entry 
M(i,j) of the above table (where i=1-7; and 
j=1-7) consists of 2 numbers, which are 
separated by the “.” symbol. The first number 
represents the order of tasks, and the second 
number represents the processor number. 
Thus, typical entries, such as 5.3, 5.4, 5.1, 5.2 
and 5.3 indicate that task order # 5 can be 
done in parallel by processors # 3, 4, 1, 2 and 
3, respectively. This task order #5 can NOT 
be executed unless task order #4 (such as 4.3, 

4.4, 4.1, and 4.2) have already been 
completed by processors #3, 4, 1 and 2, 
respectively. 
     Carefully observing the above table has 
also revealed that for the computation of the 
total 49 entries of matrix [M] (excluding the 
initialized row #0, and column #0), processors 
P1, P2, P3 and P4 calculates 13, 13, 12 and 11 
entries, respectively. Thus, good workload 
balancing amongst processors can be expected 
from the suggested parallel strategies! 
     For practical, large-scale sequence 
comparisons, the above parallel dynamic 
programming algorithm can be further 
improved by using “block” parallel dynamic 
programming algorithm. The key idea in 
“block” parallel algorithm is to “increase” the 
amount of workloads done by each processor. 
Thus, each entry M(i,j) should be thought as a 
“block”, or as a sub_matrix rather than 
containing a single value! 
     Different patterns of allocating the number 
of processors to different “blocks” are 
possible, such as (assuming there are 3 
processors available: P0, P1, and P2) 
indicated in Figure 1: 
 
 
 

0 -2 -4 -6 -8 -10 -12 0 -2 -4 -6 -8 -10 -12
-2 P0 P1 P0 P0 P1 P0 -2 P0 P0 P0 P0 P0 P0
-4 P2 P1 P1 P2 P1 P0 -4 P1 P1 P1 P1 P1 P1
-6 P2 P2 P0 P2 P1 P2 -6 P2 P2 P2 P2 P2 P2
-8 P0 P1 P0 P2 P0 P0 -8 P0 P0 P0 P0 P0 P0

-10 P2 P1 P0 P1 P1 P0-10 P1 P1 P1 P1 P1 P1
-12 P2 P1 P2 P2 P1 P2-12 P2 P2 P2 P2 P2 P2

(a) (b) 
Fig. 1: Different Patterns for Allocating 

Processors to Matrices [p], [M] 
     If one carefully observes the above 2 
possible choices of patterns, then the 
following conclusions can be made: 
(a) Both the above choices (shown in Figures 

1a, and 1b) do offer good “work 
balancing” amongst processors. For 
example, each processor will execute the 
same amount of (12) block sub-matrices. 

(b) The 2nd choice (shown in Figure 1b) has 
a “more simple” pattern; hence parallel 
code implementation should be easier. 
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(c) Furthermore, the 1-st choice (see Figure 
1a) requires BOTH the “last row” and 
“last column” of a completed block to be 
sent to adjacent processors.  However, the 
2nd choice (see Figure 1b) only requires 
the “last row” to be sent (downward) to its 
neighboring processor. The “last column” 
needs NOT be sent (rightward) to its next 
block, since this column is also owned by 
the same processor! 

     The parallel “block computation” 
procedures discussed in this section will, not 
only save computational time, but also solve 
much larger problems since large (integer) 
matrices [p], and [M] will be distributed and 
stored in different processors. 
 
 

4 Numerical Applications 
 
Example 1: A Small-Scale Problem 
 
     In this example, the lengths of the 2 
sequences {s}, and {t} are 10, and 11 
(characters), respectively. 
     Based upon the discussions presented in 
the previous sections, the serial FORTRAN-
90 computer program has been developed by 
the authors, and is listed in the Appendix. 
User's input data for this FORTRAN-90 code 
is quite simple, and only contains the 
following information (using Eq. 1, as an 
example of a small-scale problem): 
 
 
===> Number of lines (each line can have a 
maximum of 80 characters) required to input 
the first sequence {s}. In this particular 
example (see Eq. 1), one has:       1           
===> Input sequence {s}. In this particular 
example (see Eq. 1), one has: 
GACGGATTAG 
===> Number of lines (each line can have a 
maximum of 80 characters) required to input 
the second sequence {t}. In this particular 
example (see Eq. 1), one has: 1           
===> Input sequence {t}. In this particular 
example (see Eq. 1), one has: 
GATCGGAATAG 

     The computer output obtained from the 
authors' developed FORTRAN-90 code is 
given in Table 1: 
 
Table 1: Computer Output for a Small-Scale 

Example  
=================================

Authors = Eric+Don+Duc Nguyen, Version 
Date: 10-22-05 

================================= 
# lines for sequences {s} =  1 
sequence {s} =  
GACGGATTAG 
# lines for sequences {t} =  1 
sequence {t} =  
GATCGGAATAG  
lengths of sequences {s} and {t} =  10 11 
Highest Total Score =  6 
================================= 
     The above results (see Highest Total 
Score) does match with the ones given in Ref. 
[1] 
 
Example 2: A Medium-Scale Problem 
 
     In this example, the lengths of the 2 
sequences {s}, and {t} are 798, and 720 
(characters), respectively. 
     The computer output obtained from the 
authors' developed FORTRAN-90 code is 
given in Table 2: 
Table 2: Computer Output for a Larger-Scale 

Example 
================================= 

Authors = Eric+Don+Duc Nguyen, Version 
Date: 10-22-05 

================================= 
# lines for sequences {s} =  10  
sequence {s} = 
AGTACCTTGGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG 
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTTTTT 
AGTACCTTGGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG 
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTACGT 
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ACGTAACCGTTATTTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTTTTT 
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTACGT 
AGTACCTTGGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG 
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTTTCC 
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTTTAC 
AACCTTGGTTTAAAACGTAAGGGGCTT
TACCGTTCAGTCATGGCATTCAGGTAC
GTTAACTGGGGCCATATATACGCG 
# lines for sequences {t} =  9 
sequence {t} =  
ACGTAACCGTTACGAACCGGTTCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTACGT 
AACGTTGGCCGTTTTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTTTTT 
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTACGT 
AACGTACGTGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG 
CCGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTATGCAAAAC
CGTTAAAACCTCACGTTTTTCCGGTT 
AGTACCTTGGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG 
AGTACCTTGGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG 
AAACCGCCGTTACGTTAGGTACCTTAC
TTTACGGGGTTAACCCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTACGT 
CGGTTTCGTAACCGTTATTTTAGGTAC
CTTACTTTGACTTACCTTGCTTAAAACC
GTTAAAACCTCGTACGTACGTTTTT 
 lengths of sequences {s} and {t} =  798 720 
 Highest Total Score =  138 
============================== 
 

 Example 3: Large-Scale Parallel Computation  
 
 In this example, the length of the 2 sequences {s}, 
and {t} are 40000, and 36000 (characters), 
respectively. For this large-scale problem, if serial 
computation was done in a single processor 
environment, one needs to generate 2 large integer 
matrices P(I,j), and M(I,j), where i=0,1,2…,40000 
and j=0,1,2…,36000. Since each integer number 
(or word) requires 4 bytes, one needs to have 
approximately 11.5 GBytes (= 11.5*10**9 Bytes) 
RAM to store the above 2 integer matrices entirely 
in the core memory. For many distributed 
computer clusters (such as the BERNOULLI 
cluster, available at Old Dominion University), 
one only has approximately 1.7 GBytes RAM per 
processor (excluding the memory reserved for 
system processes). Thus, one needs to use at least 
7 processors in order to execute the developed 
parallel MPI-FORTRAN90 code in an “incore” 
fashion. However, in a parallel, distributed 
computer cluster environment, each of the large 
integer matrices P(I,j), and M(I,j) will be 
distributed over different processors. Thus, each 
processor will need to store only “portions” of the 
above 2 large matrices. Using the “parallel block” 
algorithms developed in Section 3 of this paper, 
the wall-clock time for solving this large-scale 
problem is reported in Table 3. It should be noted 
here that the wall-clock time is rather large when 6 
or less processors are employed, due to the fact 
that the entire matrices P(I,j), and M(I,j) will 
NOTfit in the core memory, cache missed will 
occur, and out-of-core I/O is required. However, 
when 7 (or more) processors are employed, the 
wall-clock time is dramatically reduced. In fact, 
when 24 parallel processors are used, it took only 
10.88 seconds to solve this large-scale problem. 
 
Table 3: Wall-Clock Time for Parallel Computing 
 
==================================== 
# Processors:  2       4         6       7       10        24 
Time (sec)   6622  2931   343  43.93  25.45   10.88 
 
5   Conclusions 
In this paper, Dynamic Programming 
Algorithms for efficient comparison and 
computation of the highest total score for 
aligning 2 sequences (with either equal, or 
different lengths) is reviewed. A simple, and 
efficient serial FORTRAN-90 code is 
developed, and listed in the Appendix. Due to 
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page limitation, parallel MPI/FORTRAN_90 
source code is NOT listed here. Interested 
readers should contact the 3-rd author for 
obtaining the parallel version of the source 
code. 
     Both small, and medium-scale examples 
are used to validate the developed code (using 
the Old Dominion University SUN computer 
platform). For truly large-scale problems, 
such as the one discussed in Example 3, 
implementing the developed “parallel block” 
procedures (see Section 3 of this paper) have 
resulted in substantial time saving, as 
illustrated in Table 3. 
 
Appendix.  FORTRAN Source Code, I/O 
Data Files 
c 
c program biology (comparing 2 DNA 

sequences) 
c  
c...authors: Eric Nguyen, Don Nguyen and 

Duc Nguyen 
c...version: October 22, 2005 
c...stored at: cd ~/cee/mail/*hanh*/ 
c...status: Same answers as Setubal's book 

Examples 1 & 2 (pp. 50-51) 
c...  Correct answers for Duc's 

medium-scale Example 3 
c...  Correct answers for Duc's large-

scale Example 4 
c 
       implicit real*4(a-h,o-z) 
       integer g 
parameter (maxlines=100, maxsize=80)  
integer m(8000, 8000) 
integer p(8000, 8000) 
character*80 ipline   ! note: 80 = maxsize  
character*8000 s  ! 8000 = maxlines*maxsize 
character*8000 t  ! 8000= maxlines*maxsize 
c input 2 DNA sequences {s} = {AAAC}, 

and {t} = {AGC} 
open (unit=5, file='biology.dat', status='old', 

form='formatted') 
c...... 
write(6,*)'========================' 
write(6,*)'Authors =Eric+Don+Duc Nguyen, 

Version Date: 10-22-05' 
write(6,*)'========================' 
c... 
read (5,*) mlines 

write (6,*) '# lines for sequences {s}=‘,mlines 
c 
       write(6,*) 'sequence {s} = ' 
       nloc=0 
       do 31 ii=1,mlines 
       read(5,1) ipline 
       write(6,1) ipline 
1     format(a) 
       do 32 jj=1,maxsize 
       if ( ipline(jj:jj) .ne. ' ' ) then 
       nloc=nloc+1 
       s(nloc:nloc)=ipline(jj:jj) 
       endif 
32   continue 
31   continue 
       isizes=nloc 
c 
       read (5,*) mlinet 
write (6,*) '# lines for sequences {t} = ',mlinet 
c 
       write(6,*) 'sequence {t} = ' 
       nloc=0 
       do 41 ii=1,mlinet 
       read(5,1) ipline 
       write(6,1) ipline 
       do 42 jj=1,maxsize 
       if ( ipline(jj:jj) .ne. ' ' ) then 
       nloc=nloc+1 
       t(nloc:nloc)=ipline(jj:jj) 
       endif 
42   continue 
41   continue 
       isizet=nloc 
c 
c.... output the size ( = length ) of sequences 

{s} and {t} 
write (6,*) 'lengths of sequences {s} and  
{t} = ',isizes,isizet 
c....construct the integer matrix p(isizes,isizet) 
      do 11 i=1,isizes 
      do 12 j=1,isizet 
      if ( s(i:i) .eq. t(j:j) ) then 
      p(i,j)=+1 
      else 
      p(i,j)=-1 
      endif 
12  continue 
11  continue 
c....output p(isizes,isizet) 
c write(6,*) 'p(isizes,isizet) = ',((p(i,j), 

j=1,isizet),i=1,isizes) 
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c...construct matrix m(0...isizes, 0...isizet) 
c...initialize row #0 of m(-,-) 
     g=-2          ! g is an integer variable 
     do 14 j=0,isizet 
     m(0,j)=j*g 
14  continue 
c....initialize column #0 of m(-,-) 
     do 15 i=0,isizes 
     m(i,0)=i*g 
15  continue 
c.. now, generate other entries of m(-,-), 

based on its known 3 neighbors 
       do 21 i=1,isizes 
       do 22 j=1,isizet 
       ii=m(i,j-1)+g 
       jj=m(i-1,j-1)+p(i,j) 
       kk=m(i-1,j)+g 
       largest=max(ii,jj,kk) 
       m(i,j)=largest 
22    continue 
21    continue 
c......output m(isizes+1,isizet+1) 
c-------------------------------------------- 
c      write(6,*) 'for row #0 of array m(-,-)' 
c      write(6,*) (m(0,j),j=0,isizet) 
c-------------------------------------------- 
c      write(6,*) 'for column #0 of array m(-,-)' 
c      write(6,*) (m(i,0),i=0,isizes) 
c-------------------------------------------- 
write(6,*) 'Highest Total Score = ', 

m(isizes,isizet) 
c-------------------------------------------- 
       stop 
       end 
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