
Comparing DNA Sequences By Dynamic Programming In
Sequential And Parallel Computer Environments

ERIC N.D. NGUYEN^’, DON N. NGUYEN^”, DUC T. NGUYEN’’’^^, AND

SIROJ TUNGKAHOTARA’’’

^Biology Department
Virginia Commonwealth University

Richmond, VA 23284
(USA)

^^Correspondent Author
’’’Civil & Environmental Engineering Department

Old Dominion University
1319 ECSB

Norfolk, VA 23529
(USA)

nguyenen@vcu.edu^’, nguyendn3@vcu.edu^’’,
dnguyen@odu.edu”’^^,stung001@odu.edu’’’

Abstract: - Comparing two sequences by using dynamic programming algorithms is studied. Both
serial and (multiple processor) parallel computer algorithms are discussed. Numerical
performance of the developed software is validated through small to large-scale applications.
Results (based upon comparing 2 large sequences with 40,000 and 36,000 character length,
respectively, and using 2-24 parallel processors) indicate that the developed software is reliable
and highly efficient.

Key-words: Sequences, alignments, DNA, dynamic programming, parallel algorithms, Fortran-
90, molecular biology, MPI

1 Introduction
Due to large-scale data manipulation required
in the general areas of computational biology
[1-6], and especially with the availability of
modern, inexpensive high-performance
computers (which have multiple processors)
[7], larger problems' sizes in molecular
biology can now be more efficiently analyzed,
and to speed-up the solution process.
 In this paper, the problem of comparing
two DNA sequences using the basic version
of dynamic programming algorithm is
specifically considered. To facilitate the
discussions, consider the following 2 DNA
sequences:

 GACGGATTAG and GATCGGAATAG.

The similarity between these 2 sequences
can be even more obvious when they are
aligned on top of each other, as following:

 It should be noted here that the lengths of
the above 2 sequences are NOT the same. For
this reason, a space (indicated by a dash) is
inserted in (1), to assure these 2 sequences to
have the same length. Thus, one defines an
alignment as the insertion of space(s) in
arbitrary location(s) along the sequences so
that they will end up with the same size. The
augmented sequences can then be placed on
top of each other, creating a one-to-one
correspondence between characters and/or
spaces among these sequences. However, one

GA- C GGAT T AG
GAT C GGAAT AG

(1)

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp146-153)

requires that no space in one sequence be
aligned with a space in the other.
 Our main objective here is to describe
efficient serial and parallel algorithms that
will take 2 sequences and determine the best
alignment, as it has been done in (1). To
achieve this goal, one needs to assign a
"scoring" system, as following:
 Each column of the alignments (between
the 2 sequences) will receive a "certain value"
depending on its contents, and the "total
score" will be the sum of the values assigned
to its columns. If one adopts the policies that
"+1" is assigned to a column which has 2
"identical" characters, "-1" is assigned to a
"mismatch" case, and "-2" is assigned to a
column which has a "blank space" (indicated
by a symbol "dash"), then the best alignment
will be the one with a maximum total score.
This maximum score will be called the
"similarity" between the 2 sequences, and will
be denoted as similar(s,t), for sequences s and
t. In practical cases, there may be several
alignments with the same maximum score.
 For the alignment shown in (1), there is 1
column with a "blank space", 1 column with a
mismatch character, and 9 columns with
identical characters. Thus, a total score can
be computed as:
 1 * (-2) + 1 * (-1) + 9 * (+1) = 6 (refer to
the Highest Total Score, shown in the authors'
computer output (Table 1), which is also
matched with the results in Ref.[1]).
 The particular choice of scores "+1, -1, -2"
has often been used in practice. It is based
upon rewarding for "matching characters"
case, and penalizing for "mismatching
characters", or "a column with a blank space"
cases.
 With the above paragraphs as
backgrounds, the objective of this study is to
re-visit an efficient Dynamic Programming
algorithm for computing the similarity
between 2 given sequences, and to propose a
parallel computation procedure to improve its
speed for solving even larger-scale problems.
Basic reviews of the "serial" version of the
dynamic programming algorithm is
summarized in Section 2. Parallel
computational procedures for the Dynamic
Programming algorithm are explained in

Section 3. Validation for the "serial" computer
software is conducted in Section 4. Finally,
conclusions are drawn in Section 5. For
readers' convenience, the entire serial
(FORTRAN-90) source code, including
Input/Output data files are listed in the
Appendix.

2 Brief Reviews of Dynamic
Programming Algorithms [1-6]

One possible (but highly inefficient) approach
for computing the similarity between 2
sequences would be to generate all possible
alignments, the total score for each case is
computed, and the best score is selected.
However, the number of possible alignments
between 2 sequences can be exponential
(especially for the cases where the lengths of
the 2 sequences are not only long, but also
significantly different), which makes this
"brute force" approach to be impractical!
 In the following section, a more efficient
way for computing the similarity between 2
sequences is briefly reviewed. This algorithm
is called "dynamic programming", which
basically solves an instance of a problem
using the already computed solutions for
smaller instances. Given 2 sequences s and t,
the solution can be built up by determining all
similarities between arbitrary prefixes of the 2
given sequences. One starts with shorter
prefixes and used previously computed results
to solve the problem with larger prefixes.
 Let m, and n represents the sizes of 2
sequences s, and t, respectively. There are
(m+1), and (n+1) possible prefixes of s, and t,
respectively, including the empty string.
Therefore, one may arrange the calculation in
a 2-dimensional matrix (m+1) x (n+1) array,
where the entry (i,j) represents the similarity
between s(1 ... i), and t(1 ... j)
 Eq.(4) shows a 2-dimensional array
[M] corresponding to the 2 given
sequences:
s = AAAC, and t = AGC (2)
 In this specific example, since the 2
sequences "s" and "t" have 4, and 3-character
length, respectively, hence, there are only 4
possible ways for aligning these 2 sequences:

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp146-153)

(3)

A A A C A A A C A A A C A A A C
- A G C A - G C A G - C A G C -
 Using the same scoring convention as used
in Section 1, the final scores corresponding to
the above possible alignments are -1, -1, -1,
and -3, respectively. Thus, the highest total
score in this particular example is -1 (please
see the value of M(4,3), shown in Eq. 4).
 One places the sequences "s", and "t"
along the rows, and columns of matrix [M],
respectively. This arrangement will indicate
the prefixes more clearly. It is noted that the
0-th row (and column) of [M] are initialized
with multiples of the "blank space" penalty (-
2 is used here). This is because there is only
one alignment possible if one of the sequences
is empty. In this case, one just adds as many
spaces as there are characters in the other
sequence. The score of this alignment is -2k,
where k is the length of the nonempty
sequence. Thus, initializing the values for the
0-th row (and column) of [M] is a trivial task.
 To compute the value of a general entry
M(i,j), one just needs to look at its 3
neighboring entries: M(i-1,j), M(i-1,j-1), and
M(i,j-1). Thus, one can visualize that the entry
M(i,j) is located at the bottom right corner of
an imaginary square, with its 3 neighboring
entries occupy at the other 3 corners this
imaginary square! The reason for this
observation is there are just three ways for
obtaining an alignment between s(1...i) and
t(1...j), and each one uses 1 of these previous
values. The following 3 possible choices are
listed here[1]:
* Align s(1...i) with t(1...j-1) and match a

space with t(j), or
* Align s(1...i-1) with t(1...j-1) and match

s(i) with t(j), or
* Align s(1...i-1) with t(1...j) and match s(i)

with a space.
 These possibilities are exhaustive because
we are not allowed to have 2 spaces paired in
the last column of the alignment. Scores of the
best alignments between smaller prefixes have
already been stored in the array if one chooses
an appropriate order for which the entries are
computed. As a consequence, the similarity
sought can be computed by the formula:
sim[s(1…i),
t(1…j)]= max

{sim[s(1...i), t(1...j-1)]-2
{sim[s(1...i-1), t(1 ... j-

1)]+p(i,j){sim[s(1...i-1),
t(1...j)]-2

In Eq.(3), p(i,j) = +1, if s(i) . EQUAL. T(j),
and
p(i,j)=-1, if s(i) .NOT EQUAL. t(j)

 The values of p(i,j) are written inside the
parenthesis, shown in Eq.(4)

 A G C
 0 1 2 3

 0 0 -2 -4 -6
 A 1 -2 1 -1 -3
 (+1) (-1) (-1)
 A 2 -4 -1 0 -2
 (+1) (-1) (-1)
[M] = A 3 -6 -3 -2 -1
 (+1) (-1) (-1)
 C 4 -8 -5 -4 -1
 (-1) (-1) (+1)

(4)

Eq. (4) can be expressed as:
M(i,j)=max { M(i,j-1) – 2

{ M(i-1,j-1) + p(i,j)
{ M(i-1,j) – 2

 The orders of computation for entries of
M(i,j) can be proceeded row-wise (or column-
wise), or by any other orders. The only
requirement is that M(i-1,j), M(i-1,j-1), and
M(i,j-1) should be already computed before
attempting to compute M(i,j).

3 Parallel Dynamic
Programming Algorithms [1,7]
Based upon the example shown in Eq.(4), and
the formula given in Eq.(5), and assuming
there are 4 processors available for parallel
computation purposes, the step-by-step
parallel computation procedures can be
described for the following 8x8 matrix [M]:
Step 1: The first row/column, or row

#0/column #0 of matrix [M] are
initialized

(5)

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp146-153)

Step 2: The entry M(1,1) is computed by
processor P1

Step 3: In parallel, M(1,2), M(2,1) are
computed by processors P2, P3

Step 4: In parallel, M(1,3), M(2,2), M(3,1)
are computed by P4, P1,P2

Step 5: In parallel, M(1,4), M(2,3), M(3,2),
M(4,1) are computed by P3,
P4,P1,P2

Step 6: In parallel, M(1,5), M(2,4), M(3,3),
M(4,2), M(5,1) are computed by P3,
P4,P1,P2,P3

Step 7: In parallel, M(1,6), M(2,5), M(3,4),
M(4,3), M(5,2), M(6,1) are computed
by P4,P1,P2,P3,P4,P1

Step 8: In parallel, M(1,7), M(2,6), M(3,5),
M(4,4), M(5,3), M(6,2), M(7,1) are
computed by P2,P3,P4,P1,P2,P3,P4

Step 9: In parallel, M(2,7), M(3,6), M(4,5),
M(5,4), M(6,3), M(7,2) are computed
by P1,P2,P3,P4,P1,P2

Step 10: In parallel, M(3,7), M(4,6), M(5,5),
M(6,4), M(7,3) are computed by
P3,P4,P1,P2,P3,.. etc ..

 The above parallel computational steps can
also be conveniently summarized according to
the following table:

 0 1 2 3 4 5 6 7
0 0 -2 -4 -6 -8 -10 -12 -14
1 -2 1.1 2.2 3.4 4.3 5.3 6.4 7.2
2 -4 2.3 3.1 4.4 5.4 6.1 7.3 8.1
3 -6 3.2 4.1 5.1 6.2 7.4 8.2 9.3
4 -8 4.2 5.2 6.3 7.1 8.3 9.4 10.4
5 -10 5.3 6.4 7.2 8.4 9.1 10.1 11.4
6 -12 6.1 7.3 8.1 9.2 10.2 11.1 12.3
7 -14 7.4 8.2 9.3 10.3 11.2 12.4 13.1

 In the above matrix table, row #0 and
column #0 are first initialized. Each entry
M(i,j) of the above table (where i=1-7; and
j=1-7) consists of 2 numbers, which are
separated by the “.” symbol. The first number
represents the order of tasks, and the second
number represents the processor number.
Thus, typical entries, such as 5.3, 5.4, 5.1, 5.2
and 5.3 indicate that task order # 5 can be
done in parallel by processors # 3, 4, 1, 2 and
3, respectively. This task order #5 can NOT
be executed unless task order #4 (such as 4.3,

4.4, 4.1, and 4.2) have already been
completed by processors #3, 4, 1 and 2,
respectively.
 Carefully observing the above table has
also revealed that for the computation of the
total 49 entries of matrix [M] (excluding the
initialized row #0, and column #0), processors
P1, P2, P3 and P4 calculates 13, 13, 12 and 11
entries, respectively. Thus, good workload
balancing amongst processors can be expected
from the suggested parallel strategies!
 For practical, large-scale sequence
comparisons, the above parallel dynamic
programming algorithm can be further
improved by using “block” parallel dynamic
programming algorithm. The key idea in
“block” parallel algorithm is to “increase” the
amount of workloads done by each processor.
Thus, each entry M(i,j) should be thought as a
“block”, or as a sub_matrix rather than
containing a single value!
 Different patterns of allocating the number
of processors to different “blocks” are
possible, such as (assuming there are 3
processors available: P0, P1, and P2)
indicated in Figure 1:

0 -2 -4 -6 -8 -10 -12 0 -2 -4 -6 -8 -10 -12
-2 P0 P1 P0 P0 P1 P0 -2 P0 P0 P0 P0 P0 P0
-4 P2 P1 P1 P2 P1 P0 -4 P1 P1 P1 P1 P1 P1
-6 P2 P2 P0 P2 P1 P2 -6 P2 P2 P2 P2 P2 P2
-8 P0 P1 P0 P2 P0 P0 -8 P0 P0 P0 P0 P0 P0

-10 P2 P1 P0 P1 P1 P0-10 P1 P1 P1 P1 P1 P1
-12 P2 P1 P2 P2 P1 P2-12 P2 P2 P2 P2 P2 P2

(a) (b)
Fig. 1: Different Patterns for Allocating

Processors to Matrices [p], [M]
 If one carefully observes the above 2
possible choices of patterns, then the
following conclusions can be made:
(a) Both the above choices (shown in Figures

1a, and 1b) do offer good “work
balancing” amongst processors. For
example, each processor will execute the
same amount of (12) block sub-matrices.

(b) The 2nd choice (shown in Figure 1b) has
a “more simple” pattern; hence parallel
code implementation should be easier.

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp146-153)

(c) Furthermore, the 1-st choice (see Figure
1a) requires BOTH the “last row” and
“last column” of a completed block to be
sent to adjacent processors. However, the
2nd choice (see Figure 1b) only requires
the “last row” to be sent (downward) to its
neighboring processor. The “last column”
needs NOT be sent (rightward) to its next
block, since this column is also owned by
the same processor!

 The parallel “block computation”
procedures discussed in this section will, not
only save computational time, but also solve
much larger problems since large (integer)
matrices [p], and [M] will be distributed and
stored in different processors.

4 Numerical Applications

Example 1: A Small-Scale Problem

 In this example, the lengths of the 2
sequences {s}, and {t} are 10, and 11
(characters), respectively.
 Based upon the discussions presented in
the previous sections, the serial FORTRAN-
90 computer program has been developed by
the authors, and is listed in the Appendix.
User's input data for this FORTRAN-90 code
is quite simple, and only contains the
following information (using Eq. 1, as an
example of a small-scale problem):

===> Number of lines (each line can have a
maximum of 80 characters) required to input
the first sequence {s}. In this particular
example (see Eq. 1), one has: 1
===> Input sequence {s}. In this particular
example (see Eq. 1), one has:
GACGGATTAG
===> Number of lines (each line can have a
maximum of 80 characters) required to input
the second sequence {t}. In this particular
example (see Eq. 1), one has: 1
===> Input sequence {t}. In this particular
example (see Eq. 1), one has:
GATCGGAATAG

 The computer output obtained from the
authors' developed FORTRAN-90 code is
given in Table 1:

Table 1: Computer Output for a Small-Scale

Example
=================================

Authors = Eric+Don+Duc Nguyen, Version
Date: 10-22-05

=================================
lines for sequences {s} = 1
sequence {s} =
GACGGATTAG
lines for sequences {t} = 1
sequence {t} =
GATCGGAATAG
lengths of sequences {s} and {t} = 10 11
Highest Total Score = 6
=================================
 The above results (see Highest Total
Score) does match with the ones given in Ref.
[1]

Example 2: A Medium-Scale Problem

 In this example, the lengths of the 2
sequences {s}, and {t} are 798, and 720
(characters), respectively.
 The computer output obtained from the
authors' developed FORTRAN-90 code is
given in Table 2:
Table 2: Computer Output for a Larger-Scale

Example
=================================

Authors = Eric+Don+Duc Nguyen, Version
Date: 10-22-05

=================================
lines for sequences {s} = 10
sequence {s} =
AGTACCTTGGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTTTTT
AGTACCTTGGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTACGT

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp146-153)

ACGTAACCGTTATTTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTTTTT
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTACGT
AGTACCTTGGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTTTCC
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTTTAC
AACCTTGGTTTAAAACGTAAGGGGCTT
TACCGTTCAGTCATGGCATTCAGGTAC
GTTAACTGGGGCCATATATACGCG
lines for sequences {t} = 9
sequence {t} =
ACGTAACCGTTACGAACCGGTTCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTACGT
AACGTTGGCCGTTTTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTTTTT
ACGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTACGT
AACGTACGTGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG
CCGTAACCGTTACGTTAGGTACCTTAC
TTTACGGGGACTTACCTTATGCAAAAC
CGTTAAAACCTCACGTTTTTCCGGTT
AGTACCTTGGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG
AGTACCTTGGTTTAAAACGTAAGGGGC
TTTACCGTTCAGTCATGGCATTCAGGT
ACGTTAACTGGGGCCATATATACGCG
AAACCGCCGTTACGTTAGGTACCTTAC
TTTACGGGGTTAACCCTTGCTTAAAAC
CGTTAAAACCTCGTACGTACGTACGT
CGGTTTCGTAACCGTTATTTTAGGTAC
CTTACTTTGACTTACCTTGCTTAAAACC
GTTAAAACCTCGTACGTACGTTTTT
 lengths of sequences {s} and {t} = 798 720
 Highest Total Score = 138
==============================

 Example 3: Large-Scale Parallel Computation

 In this example, the length of the 2 sequences {s},
and {t} are 40000, and 36000 (characters),
respectively. For this large-scale problem, if serial
computation was done in a single processor
environment, one needs to generate 2 large integer
matrices P(I,j), and M(I,j), where i=0,1,2…,40000
and j=0,1,2…,36000. Since each integer number
(or word) requires 4 bytes, one needs to have
approximately 11.5 GBytes (= 11.5*10**9 Bytes)
RAM to store the above 2 integer matrices entirely
in the core memory. For many distributed
computer clusters (such as the BERNOULLI
cluster, available at Old Dominion University),
one only has approximately 1.7 GBytes RAM per
processor (excluding the memory reserved for
system processes). Thus, one needs to use at least
7 processors in order to execute the developed
parallel MPI-FORTRAN90 code in an “incore”
fashion. However, in a parallel, distributed
computer cluster environment, each of the large
integer matrices P(I,j), and M(I,j) will be
distributed over different processors. Thus, each
processor will need to store only “portions” of the
above 2 large matrices. Using the “parallel block”
algorithms developed in Section 3 of this paper,
the wall-clock time for solving this large-scale
problem is reported in Table 3. It should be noted
here that the wall-clock time is rather large when 6
or less processors are employed, due to the fact
that the entire matrices P(I,j), and M(I,j) will
NOTfit in the core memory, cache missed will
occur, and out-of-core I/O is required. However,
when 7 (or more) processors are employed, the
wall-clock time is dramatically reduced. In fact,
when 24 parallel processors are used, it took only
10.88 seconds to solve this large-scale problem.

Table 3: Wall-Clock Time for Parallel Computing

====================================
Processors: 2 4 6 7 10 24
Time (sec) 6622 2931 343 43.93 25.45 10.88

5 Conclusions
In this paper, Dynamic Programming
Algorithms for efficient comparison and
computation of the highest total score for
aligning 2 sequences (with either equal, or
different lengths) is reviewed. A simple, and
efficient serial FORTRAN-90 code is
developed, and listed in the Appendix. Due to

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp146-153)

page limitation, parallel MPI/FORTRAN_90
source code is NOT listed here. Interested
readers should contact the 3-rd author for
obtaining the parallel version of the source
code.
 Both small, and medium-scale examples
are used to validate the developed code (using
the Old Dominion University SUN computer
platform). For truly large-scale problems,
such as the one discussed in Example 3,
implementing the developed “parallel block”
procedures (see Section 3 of this paper) have
resulted in substantial time saving, as
illustrated in Table 3.

Appendix. FORTRAN Source Code, I/O
Data Files
c
c program biology (comparing 2 DNA

sequences)
c
c...authors: Eric Nguyen, Don Nguyen and

Duc Nguyen
c...version: October 22, 2005
c...stored at: cd ~/cee/mail/*hanh*/
c...status: Same answers as Setubal's book

Examples 1 & 2 (pp. 50-51)
c... Correct answers for Duc's

medium-scale Example 3
c... Correct answers for Duc's large-

scale Example 4
c
 implicit real*4(a-h,o-z)
 integer g
parameter (maxlines=100, maxsize=80)
integer m(8000, 8000)
integer p(8000, 8000)
character*80 ipline ! note: 80 = maxsize
character*8000 s ! 8000 = maxlines*maxsize
character*8000 t ! 8000= maxlines*maxsize
c input 2 DNA sequences {s} = {AAAC},

and {t} = {AGC}
open (unit=5, file='biology.dat', status='old',

form='formatted')
c......
write(6,*)'========================'
write(6,*)'Authors =Eric+Don+Duc Nguyen,

Version Date: 10-22-05'
write(6,*)'========================'
c...
read (5,*) mlines

write (6,*) '# lines for sequences {s}=‘,mlines
c
 write(6,*) 'sequence {s} = '
 nloc=0
 do 31 ii=1,mlines
 read(5,1) ipline
 write(6,1) ipline
1 format(a)
 do 32 jj=1,maxsize
 if (ipline(jj:jj) .ne. ' ') then
 nloc=nloc+1
 s(nloc:nloc)=ipline(jj:jj)
 endif
32 continue
31 continue
 isizes=nloc
c
 read (5,*) mlinet
write (6,*) '# lines for sequences {t} = ',mlinet
c
 write(6,*) 'sequence {t} = '
 nloc=0
 do 41 ii=1,mlinet
 read(5,1) ipline
 write(6,1) ipline
 do 42 jj=1,maxsize
 if (ipline(jj:jj) .ne. ' ') then
 nloc=nloc+1
 t(nloc:nloc)=ipline(jj:jj)
 endif
42 continue
41 continue
 isizet=nloc
c
c.... output the size (= length) of sequences

{s} and {t}
write (6,*) 'lengths of sequences {s} and
{t} = ',isizes,isizet
c....construct the integer matrix p(isizes,isizet)
 do 11 i=1,isizes
 do 12 j=1,isizet
 if (s(i:i) .eq. t(j:j)) then
 p(i,j)=+1
 else
 p(i,j)=-1
 endif
12 continue
11 continue
c....output p(isizes,isizet)
c write(6,*) 'p(isizes,isizet) = ',((p(i,j),

j=1,isizet),i=1,isizes)

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp146-153)

c...construct matrix m(0...isizes, 0...isizet)
c...initialize row #0 of m(-,-)
 g=-2 ! g is an integer variable
 do 14 j=0,isizet
 m(0,j)=j*g
14 continue
c....initialize column #0 of m(-,-)
 do 15 i=0,isizes
 m(i,0)=i*g
15 continue
c.. now, generate other entries of m(-,-),

based on its known 3 neighbors
 do 21 i=1,isizes
 do 22 j=1,isizet
 ii=m(i,j-1)+g
 jj=m(i-1,j-1)+p(i,j)
 kk=m(i-1,j)+g
 largest=max(ii,jj,kk)
 m(i,j)=largest
22 continue
21 continue
c......output m(isizes+1,isizet+1)
c--
c write(6,*) 'for row #0 of array m(-,-)'
c write(6,*) (m(0,j),j=0,isizet)
c--
c write(6,*) 'for column #0 of array m(-,-)'
c write(6,*) (m(i,0),i=0,isizes)
c--
write(6,*) 'Highest Total Score = ',

m(isizes,isizet)
c--
 stop
 end

References:
[1] Joao Setubal, and Joao Meidanis,

Introduction to Computational Molecular
Biology, PWS Publishing Company, ISBN #
0-534-95262-3 (1997), pages ??-??

[2] David W. Mount, Bioinformatics: Sequence
and Genome Analysis, 2-nd Edition, Cold
Spring Harbor Laboratory Press, ISBN # 0-
87969-712-1 (2004), pages 83-93

[3} Jeff Augen, Bioinformatics in the Post-
Genomic Era: Genome, Transcriptome,
Proteome, and Information-Based Medicine,
Addison-Wesley, ISBN # 0-321-17386-4
(2005)

[4] Yi-Ping P. Chen, and Limsoon Wong
(Editors), Proceedings of the 3-rd Asia-
Pacific Bioinfomatics Conference, Imperial
College Press, ISBN # 1-86094-477-9 (2005)

[5] Jason T.L. Wang, Cathy H. Wu, and Paul P.
Wang (Editors), Computational Biology and
Genome Informatics, World Scientific
Publishing, ISBN # 981-238-257-7 (2003)

[6] Proceedings of the 2003 IEEE Bioinformatics
Conference, August 11-14'03, Stanford,
California, USA, IEEE Computer Society
Press, ISBN # 0-7695-2000-6 (2003)

[7] Duc T. Nguyen, Parallel-Vector Equation
Solvers for Finite Element Engineering
Applications, Kluwer Academic/Plenum
Publishers, ISBN # 0-306-46640-6 (2002)

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp146-153)

