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Abstract

For the exact enumeration of various types of constrained secondary structures, this pa-
per presents some recursion formulas and derives some properties which are based on the
recursion relation about S(n) given by Waterman in [7]. And a classification of secondary
structure by complexity is discussed. Furthermore, we obtain some relations on RNA sec-
ondary structures of a given order.
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1. Introduction

Determining the shape a single-stranded RNA takes in solution is an important problem
in molecular biology [10]. The primary structure of a single-stranded RNA is the sequence of
nucleotides or bases making up the molecule. After the RNA primary structure was known [8],
second structure has received much attention [9].

For an abstract single-stranded RNA, a combinatorial analysis is given to enumerate the
number of RNA structures with certain properties [1,3]. Here we will focus on enumeration
problems, which are related to the secondary structure of RNA. In these enumeration studies,
the specific identities of the bases are ignored, in effect all possible base pairs are allowed.
This sort of studies has a long history which started from the investigations of Waterman
[2,4,5,6,7,11].

This paper introduces some basic definitions in section 2. To give the exact enumeration
of various types of constrained secondary structures, in section 3 we present some recursion
formulas and derive some properties which are based on the definition about S(n) given by
Waterman in [5]. And in section 4 a classification of secondary structure by complexity is
discussed. Furthermore, some relations on RNA secondary structures of a given order are
obtained.
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2. The basic definition

Definition 1(Waterman [6]) Let R = r1r2 · · · rn, ri ∈ {A, C,G, U}, i = 1, 2, · · · , n, be the RNA
sequence. The secondary structure is a vertex-labelled graph on n vertices with an adjacency
matrix A = (rij) fulfilling : (1) ri,i+1 = 1, 1 ≤ i ≤ n − 1; (2) If ri,k = 1, k 6= i − 1, i + 1, ri

pairs with rk; (3) For each i there is at most a single k 6= i− 1, i + 1 such that ri,k = 1; (4) If
ri,j = rk,l = 1 and i < k < j, then i < l < j.

We will call an edge (i, j), |i− k| 6= 1 a bond or a base pair. A vertex i connected only to
i− 1 and i + 1 will be called unpaired. A vertex i is said to be interior to the base pair (k, l)
if k < i < l. If, in addition, there is no base pair (p, q) such that k < p < i < q < l, we will say
that i is immediately interior to the base pair (k, l).

Definition 2 A stack consists of subsequent base pairs (p−k, q+k), (p−k+1, q+k−1), · · · , (p, q)
such that neither (p− k − 1, q + k + 1) nor (p + 1, q − 1) is a base pair. k + 1 is the length of
the stack. (p− k, q + k) is the terminal base pair of the stack.

Definition 3 A bonding loop consists of a terminal base pair and unpaired vertices. The
number of unpaired vertices is the length of the bonding loop.

Definition 4 A stack [(p, q), · · · (p+ k, q− k)] is called terminal if p− 1 = 0 or q +1 = n+1 or
if the two vertices p− 1 and q +1 are not interior to any base pair. The sub-structure enclosed
by the terminal base pair (p, q) of a terminal stack will be called a component of the secondary
structure. We will say that a structure on n vertices has a terminal base pair if (1, n) is a base
pair.

Definition 5 A external vertex is an unpaired vertex which dose not belong to a loop. A
collection of adjacent external vertices is called an external element. If it contains the vertex 1
or n it is a free end, otherwise it is called joint.

Definition 6 A internal vertex is an unpaired vertex which is interior to a base pair.

From the combinatorial point of view, it makes perfect sense to consider the general problem
with a minimum number m(m > 0) of unpaired vertices in each bonding loop. We now present
the recursion formulas for the exact enumeration of various types of constrained secondary
structures as well as their structural elements.

3. Recurrence relations

For a secondary structure on n digits, if we add a digit n+1, then n+1 either is a free end
or is paired with k. We will use the above procedure to discuss the following problems.

Lemma 1 [5]. Let ordered set [n] := {1, 2, · · · , n} and Sn be the number of structures on [n]
which have a minimum number m(m > 1) of unpaired vertices in each bonding loop. Sn satisfies
the recurrence relation: Sn = Sn +

∑m
j=1 Sn−1−j +

∑n−m−1
j=m+1 SjSn−2−j , with the boundary values

S0 = S1 = · · · = Sm−1 = 0, Sm = 1, Sn = 0 for n < 0.

Theorem 1. Let Nn(b) denote the number of secondary structures with b stacks, and Zn(b)
denote the number of secondary structures with b stacks given that the 3′ and 5′ ends are paired,
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then

Nn+1(b) = Nn(b) +
m+2∑

k=1

Zn−k+2(b) +
n−m∑

k=m+3

b∑

l=0

Nk−1(b− l)Zn−k+2(l), n ≥ m + 1;

Nn(0) = 1, Nn(b) = 0, b > 0, n ≤ m + 1. (1)

Proof. Now we consider the sequence [1, n+1], and there are two cases to be considered: n+1
either is a free base or is paired with k, where 1 ≤ k ≤ n−1. If n+1 is unpaired, there are Nn(b)
secondary structures with b stacks. Otherwise, three subcases are introduced: if 1 ≤ k ≤ m+2,
the number of satisfied structures is Zn−k+2(b) in [k, n+1],; if m+2 < k ≤ n−m, the number
is

∑b
l=0 Zn−k+2Nk−1(b − l); if n −m < k ≤ n − 1, the structure is unsatisfied. This complete

the proof.

The auxiliary variable Zn(b) satisfies the recurrence

Zn(b) = Zn−2(b) + Nn−2(b− 1)− Zn−2(b− 1), Z0(b) = Z1(b) = 0, Zn(0) = 0, n ≥ 0. (2)

We can consider the sequence [1, n]. Of course, 1 is paired with n. If 2 is paired with n − 1,
the number is Zn−2(b); otherwise, there are Nn−2(b − 1) − Zn−2(b − 1) structures. And it is
clear that Zn(1) = [n−m

2 ], n ≥ m + 1. (3)

Corollary 1. Nn(1) = 1
4 [16n(n− 1)(2n− 1)− [n

2 ]] , n ≥ m + 1.

Proof. By Theorem 1, let b = 1,m = 1, we can get the following relation

Nn+1(1) = Nn(1) +
n−1∑

k=m

Zk+2(1), (4)

According to (1)(2)(3)(4), we obtain
where

Nn+1(1)−Nn(1) =
{

1
4(n2 − 1), if n is odd;

1
4n2, if n is even.

Furthermore, we can get Nn(1) = 1
4 [16n(n− 1)(2n− 1)− [n2 ]], n ≥ 2.

The proofs of the following Theorems are all similar to Theorem 1.

Theorem 2. Let Jn(b) denote the number of structures on n vertices with exactly b compo-
nents,then

Jn+1(b) = Jn(b) +
n−m∑

k=b(m+2)−(m+1)

Sn−kJk−1(b− 1), n ≥ b(m + 2);

Jb(m+2)(b) = 1, if n ≤ b(m + 2)− 1, then Jn(b) = 0, for b > 0, Jn(0) = 1.
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Theorem 3. Let An(b) be the number of structures with exactly b hairpins, then it satisfies
the recurrence

An+1(b) = An(b) +
m+2∑

k=1

An−k(b) +
n−m∑

k=m+3

b∑

l=0

An−k(l)Ak−1(b− l), n ≥ m + 1;

An(b) = δ0,b, n ≤ m + 1, An(0) = 1 for all n, An(b) = 0, b > 0 for n ≤ m + 1.

Corollary 2. An(1) = Jn(1) = 2n−m−1 − 1 , n ≥ m + 1.

Proof. By Theorem 3, let b = 1, then An+1(1) satisfies the recurrences, An+1(1) =
∑

Ak(1) +
n − m, i.e., An+1(1) = 2An(1) + 1. The result is clear. For the same analysis, we know
An(1) = Jn(1). This complete the proof.

Theorem 4. Let Vn denote the total number of internal vertices, and let Un be the total number
of unpaired bases, then

Vn+1 = Vn +
m∑

k=1

Un−k +
n−m∑

k=m+1

[Sn−kVk−1 + Sk−1Un−k], n ≥ m + 1;Vn = 0, n ≤ m + 1, V0 = 0.

Theorem 5. Let Un+1 denote the total number of unpaired bases, then

Un+1 = Un + Sn +
m∑

k=1

[(k − 1)Sn−k + Un−k] +
n−m∑

k=m+1

[Sn−kUk−1 + Sk−1Un−k], n ≥ m + 1;

Un = n, n ≤ m + 1, U0 = 0.

By Definition 5 and 6, the total number of external vertices is denoted by En. It is clear
that Vn + En = Un. For sake of completeness, we state the relation for En,

En+1 = En + Sn +
m∑

k=1

(k − 1)Sn−k +
n−m∑

k=m+1

Sn−kEk−1, n ≥ m + 1;

En = n, n ≤ m + 1, E0 = 0.

Theorem 6. Let Pn+1 denote the total number of base pairs, then

Pn+1 = Pn +
m∑

k=1

[Pn−k + Sn−k] +
n−m∑

k=m+1

[Sn−kPk−1 + Sk−1(Pn−k + Sn−k)], n ≥ m + 1;

Pn = 0, n ≤ m + 1.

By Th5 and Th6, we can easily obtain the following relation: Un + 2Pn = nSn.

Theorem 7. Let In+1 denote the total number of components, then

In+1 = In +
m∑

k=1

Sn−k +
n−m∑

k=m+1

Sn−k[Ik−1 + Sk−1], n ≥ m + 1; In = 0, n ≤ m + 1.
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Theorem 8. Let Nn+1 denote the total number of stacks, and Zn be the total number of
secondary structures given that 3′ and 5′ ends are paired, then

Nn+1 = Nn +
m∑

k=1

Zn−k+2 +
n−m∑

k=m+1

[Sn−kNk−1 + Sk−1Zn−k+2], n ≥ m + 1; Nn = 0, n ≤ m + 1.

For the auxiliary variable, we find

Zn+2 = Nn + Sn − Sn−2, n ≥ m + 1; Zm = Zm+1 = 1, Zn = 0, n < m.

4. Secondary structures of a given order

Secondary structures are classified by a certain complexity criterion. A simple lemma is
necessary to make certain this definition.

Lemma 2 [6]. If A = (aij) is the adjacency matrix for some secondary structure and, if
A′ = (a′ij) is formed from A = (aij) by setting a′ij = a′ji = 0 for any set of choices of i and
j (i 6= j ± 1), then A′ is the adjacency matrix for another secondary structure.

Definition 7 Let A = (aij) be the adjacency matrix for a secondary structure. A sequence
A(i) of adjacency matrices of secondary structure is formed as follows:

(i) A(0) = A.

(ii) From A(i+1) from A(i) by setting a
(i+1)
kl = a

(i+1)
lk = 0 whenever a

(i)
kl = a

(i)
lk = 1, k and l

are members of some hairpin, and k 6= l ± 1.
The secondary structure for A is said to be ωth order if A(ω) is the first matrix in the

sequence {A(ω)}∞ω=0 such that the secondary structure for A(ω) has no hairpins.
Of course, the open structure has order ω = 0 and any structure without a multiloop has

order ω = 1. A bulge or interior can not change the order of secondary structure, but a
multiloop.

In [1], the number of secondary structures with c components and order ω is discussed.
Now we will give a further discussion about the constrained secondary structure with a given
order.

Let Sn(k, ω) be the number of secondary structures with k paired bases and order ω.
Furthermore, let S∗n(k, ω) be the number which yield a structures of order ω and k paired bases
when enclosed by an additional base pair.

Theorem 9. Sn(k, ω) satisfies the recursion

Sn+1(k, ω) = Sn(k, ω) +
m∑

i=1

S∗n−i(k − 1, ω) +
n−m∑

i=m+1

k−1∑

j=1

{S∗n−i(j, ω)
ω∑

i=0

Si−1(k − j − 1, l)+

Si−1(k − j − 1, ω)
ω−1∑

l=0

S∗n−i(j, l)};Sn(0, 0) = 1, Sn(0, ω) = Sn(k, 0) = 0, n ≤ m + 1.
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Adding a terminal base pair to a sequence doesn’t change the number of the structure, so
we get the relation Sn(k, ω) = S∗n(k, ω).

Theorem 10. Let S̃n(ω) be the total number of secondary structures with order ω, then S̃n(ω)
satisfy the recursion relation:

S̃n+1(ω) = S̃n(ω) +
m∑

k=1

S̃n−k(ω) +
n−m∑

k=m+1

{S̃n−k(ω)
ω∑

l=0

S̃k−1(l) + S̃k−1(ω)
ω−1∑

l=0

S̃n−k(l)};

S̃n+1(0) = 1; S̃n+1(ω) = 0 for ω ≥ 1, n ≤ m + 1.

Let Nn(b, ω) be the number of secondary structures with b stacks and order ω. The auxiliary
variable Zn(b, ω) denote the number of secondary structures with exactly b stacks and order ω
given that the 3′ and 5′ ends are paired.

Theorem 11. The numbers Nn(b, ω) satisfy the recursion:

Nn+1(b, ω) = Nn(b, ω) +
m+2∑

k=1

Zn−k+2(b, ω) +
n−m∑

k=m+3

b∑

i=0

{Nk−1(b− i, ω)
ω∑

l=0

Zn−k+2(i, l)

+ Zn−k+2(i, ω)
ω−1∑

l=0

Nk−1(b− i, l)}; Nn(0, 0) = 1, Nn(0, ω) = Nn(b, 0) = 0.

For the auxiliary variable Zn(b, ω) recursion is

Zn(b, ω) = Zn−2(b, ω) + Nn−2(b− 1, ω)− Zn−2(b− 1, ω), n ≥ m + 1.

The proof is similar with (2) in Theorem 1.
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