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Abstract: - We develop a method to find protein coding genes based on a 3D graphical representation of DNA 
sequence. The method is simple and robust. We illustrate it on the yeast genome and it may be extended to find 
genes in prokaryotic genomes or eukaryotic genomes with less introns. Three-fold cross-validation tests have 
demonstrated that the accuracy of the algorithm is better than 96%. Based on this, it is found that the total 
number of protein coding genes in the yeast genome is 5891～5920. Among the ORFs annotated in the MIPS 
database, those recognized as non-coding by the present algorithm are listed in this paper in detail. 
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1   Introduction 
One of the most critical steps of genome annotation is 
the process of predicting genes that code for proteins. 
Generally, there are two algorithmic concepts 
appropriate to recognize genes [1]: 1) A sequence can 
be classified as a gene, if it shows significant 
similarity to a sequence, which was annotated as 
coding and deposited in a database. 2) A statistical 
analysis of a sequence may indicate its coding 
potential. This concept is based on the fact that the 
distributions of nucleotides in coding and non-coding 
sequences differ statistically significantly [2, 3].   
   The budding yeast Saccharomyces cerevisiae is an 
important model organism for the Human Genome 
Project. As the first sequenced genome of a 
eukaryotic organism, S. cerevisiae, much work has 
been done on this aspect. The number of protein 
coding genes in the yeast genome was estimated to be 
5800-6000 [4-6], however, some researchers believe 
that the number should be less than 4800[7] or 
5579[8]. But the prediction of protein coding genes is 
still far from being a trivial problem. 
   In this paper we present a simple gene-finding 
algorithm based on the 3D graphical representation 
of DNA sequence proposed in [9]. The algorithm 
utilizes an angle discriminant method to separate the 
object (ORFs) into two classes of positives (genes) 
and negatives (non coding ORFs). This simple 
gene-finding algorithm can perform quickly and it 
may be complementary with other existing methods. 
 

2   Databases and methods  
 
 
2.1 The database 
In this paper, all the S .cerevisiae genome DNA 
sequences are taken from http://pedant.gsf.de/ of the 
Munich Information Center for Protein Sequences 
(MIPS) released on October 10, 2001. In the MIPS 
database, all the ORFs are classified into six classes, 
which correspond to known proteins, strong 
similarity to known proteins, similarity or weak 
similarity to known proteins, similarity to unknown 
proteins, no similarity and questionable ORFs, 
respectively. The 1st, 2nd, 3rd, 4th, 5th and 6th classes 
include 3410 (18), 229, 820(2), 1003, 516, and 
471(8) entries, respectively, where the figures in the 
parentheses indicate the numbers of ORFs in the 
mitochondrial genome. The mitochondrial ORFs are 
excluded here since the mitochondrial genetic code 
differs from the universal genetic code. So in each of 
the six classes, 3392, 229, 818,1003, 516, and 463 
ORFs are contained, respectively. 
 
2.2   The 3D graphical representation of DNA 
sequence 
The three-dimensional graphical representation of 
DNA sequences provides a visual inspection of DNA 
data. Several researchers have proposed different 
graphical representations of DNA sequence 
[9,14-16]. 

Our gene-finding algorithm base on the3D 
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graphical representation of DNA sequence outlined 
recently in [9]. We present it briefly as follows. We 
assign A (adenine), G (guanine), T (thymine), and C 
(cytosine) to –x, +x, -y, and +y, respectively, while 
the corresponding curve extend along with z-axes. In 
detail, let nbbbbB L321=  be an arbitrary DNA 
sequence. Then we have a map 1Φ , which maps B  
into a plot set. Explicitly, 
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Connecting adjacent points, we obtain a 3-D curve. In 
addition, we have another two maps 32 ,ΦΦ , where  
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So, for one DNA sequence there are three curves that 
represent it. 

 
2.3. The gene-finding algorithm 
Based on two facts (1) amino acid are encoded by 
triplets of nucleotides of DNA and (2) each 
nucleotide base does not appear with equal 
probability at each codon position, comes a 
conclusion that both the four base (A,C,G, and T) and 
the three positions are likely to be related with the 
genetic code [10,11] .The curve for the subsequence 
in an ORF with bases at positions L7,4,1 , forms a 
phase-specific curve. We call this the phase-1 curve. 
Similarly, the curves with bases at positions 2,5,8L , 
and 3,6,9L , are called the phase-2 and phase-3 
curve, respectively. For an ORF sequence, the 
phase-1, phase-2, and phase-3 curves describe the 
distributions of bases at first, second, and third codon 
positions, respectively. For each phase-specific 
subsequence, there are three maps 321 ,, ΦΦΦ , as 
for the ordinary DNA sequence. The coordinates of 
the ith  point of phase-j (j=1,2,3) curve under the 
map of kΦ (k=1,2,3) are denoted by ( k

ji
k

ji
k

ji zyx ,,, ,, ). 

We define  

1
,

1

1
,

,1
jN

N

i
ji

j z

x
v

∑
== , 1

,

1

1
,

,2
jN

N

i
ji

j z

y
v

∑
== , 

2
,

1

2
,

,3
jN

N

i
ji

j z

x
v

∑
== , 2

,

1

2
,

,4
jN

N

i
ji

j z

y
v

∑
== , 

3
,

1

3
,

,5
jN

N

i
ji

j z

x
v

∑
== , 3

,

1

3
,

,6
jN

N

i
ji

j z

y
v

∑
== , 

2222
,7 tgcav j +++= , where 

gca ,, , 
and t are the average occurrence frequencies of 
bases A, C, G, and T in the DNA subsequence 
studied. That is, N

ANa = , N
CNc = , N

GNg = , 

N
TNt = , where NA , NC , NG , and NT  are the 

occurrence numbers of bases A, C, G, and T, 
respectively, in the subsequences, and N is the total 
length of the subsequence studied. The variable jv ,7  
was found to be a useful statistical quantity for the 
analysis of DNA sequence [12]. 

So, for each phase-specific subsequence, there is 
a seven-dimensional vector ( )jjjj vvvV ,7,2,1 ,,, L= , 
which corresponds to it. We define a 21-dimensional 
vector ),,,,,( 21321 uuuuU L=  where 
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Therefore, each of the coding ORFs or non-coding 
DNA sequences is represented by a 21-dimensional 
vector. 

 According to the ergodicity principle, we 
randomly divide the 3392 genes into two unequal 
parts, in which the larger part consists of 2000 genes, 
and the smaller consists of 1392 genes. The former 
serves as a training set; whereas the latter serves as a 
test set. Both the training and test sets should be 
accompanied by the counterparts of negative 
samples. Considering that the intergenic sequence 
with length longer than 300bp, which starts with 
ATG and ends with one of the stop codons, is 
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unlikely to be ORF[8,12], we randomly select about 
7600 such intergenic sequences from the 16 yeast 
chromosomes to produce the negative samples. We 
randomly selected 2000 and 1392 intergenic 
sequences from the above 7600 sequences, which 
form the training and test sets of the negative 
samples, respectively. 

The training set of samples (ORFs) is divided into 
two parts: one includes the positive samples 
composed of true protein coding genes, the other 
includes negative samples composed of non-coding 
DNA sequences. In the positive set the i-th true 
coding ORF is described by a vector 
( 1

21,
1

2,
1

1, ,,, iii uuu L ), where 1
,siu  are the s-component 

of the vector (s=1,2, …21). Similarly, in the negative 
set the i-th non-coding DNA sequences is described 
by a vector ( 2

21,
2

3,
2

2,
2
1, ,,,, iiii uuuu L ), where 2

,siu  are 

the s-component of the vector (s=1,2,…21). Suppose 
the positive and negative sets both include M 
samples, then we denote the geometric centers of 
theirs by 1U and 2U , respectively, where 
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 A query ORF is indicated by a 21-dimensional 
vector ),,,( 2121 uuuU L= . To judge whether this 
ORF is a true protein coding gene or not, calculate the 

angle 1,UU  between U and 1U , and the angle 

2,UU  between U  and 2U , where 
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UUUU −= . A codingness index 

∆ is defined as 

 cUUUU +−=∆ 12 ,,                       (2)  

where c is a constant determined by making false 
positive rate and false negative rate identical in the 
training set. If 0>∆ , the query ORF is recognized 
as coding gene, otherwise, if 0<∆ , the ORF or 
DNA sequence is recognized as a non-coding one. 
 
 
3 Results and discussions 
 
3.1 Criteria for the evaluation of the 

algorithm 
For the evaluation of the performance of the 
algorithm, we have to discuss the definitions of 
sensitivity, specificity and selectivity. Denoted by TP 
the number of coding ORFs that have been correctly 
predicted as coding, and FN the number of coding 
ORFs that have been predicted as non-coding. Let TN 
denote the number of non-coding sequences that have 
been predicted as non-coding and FP denote the 
number of non-coding sequences that have been 
predicted as coding. Then we can define the 
following term:  

FPTP
TP)s(S

FNTP
TP)s(S

FPTN
TN)s(

l

n

+
=

+
=

+
=

electivity

ensitivity

pecificityS p

   

That is, nS  is the proportion of coding ORFs that 
have been correctly predicted as coding, pS  is the 
proportion of non-coding sequences that have been 
correctly predicted as non-coding, and lS  is the 
fraction of correctly predicted positive cases among 
all cases predicted as positive. 

The accuracy is defined as the average of nS  and 

pS . The definition of accuracy is the same as in 

[8,12,13]:  2)( pn SSAC +=  
Table 1. The accuracy of the algorithm for three 

different test sets 

 
3.2 Self-consistency and cross-validation 
tests 
To test the new algorithm, the resubstitution and 
cross-validation tests are performed. In the version of 
MIPS database, released on October 10, 2001, the 
ORFs were classified into six classes, in which the 
first class consists of 3410 entries corresponding to 
the known proteins. Excluding the protein coding 
genes from the mitochondria, 3392 protein genes of 
the first class residing at the 16 yeast chromosomes 
remain. The mitochondrial genes are excluded from 
the present study because the mitochondrial genetic 
code differs from the universal genetic code. 
   Using the sequences in the training set, the average 
vectors 21,UU  and the parameter c are determined. 
Using these quantities, the accuracy of gene-finding 

Test set 1 2 3 
Sensitivity(%) 0.974119 0.974108 0.976276 
Specificity(%) 0.957585 0.950395 0.961179 
Accuracy(%) 0.965852 0.9622515 0.968728 
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algorithm in the training and test sets is calculated, 
which reflects the self-consistency and extrapolating 
effectiveness of the algorithm. The division of 3392 
ORFs into two parts (2000 and 1392) is randomly. 
Repeating the above random division procedure three 
times, we have performed three resubstitution and 
cross-validation tests. In each case, the constant c is 
determined by making the false positive rate and 
false negative rate identical in the resubstitution test. 
The results of the cross-validation test is always 
greater than 96%, which is higher than that reported 
in [8,12] and is comparable to that obtained in [13], 
however, this method is much faster than the method 
utilized in [13]. In table 1, the sensitivity, specificity 
and accuracy of each test are listed. 
 
3.3 Apply the algorithm to recognize yeast 
genes 
After performing the resubstitution and 
cross-validation tests, the 2000 and 1392 positive 
samples (true genes) are then merged. The 3392 
negative samples are selected randomly from the 
7600 intergenic sequences mentioned above. These 
3392 positive and 3392 negative samples form a new 
training set. The vectors 21,UU , and the parameter c 
are obtained.  

=1U (0.174627, 0.081876, 0.037818, -0.054932, 
0.276077, 0.119695, 0.136808, 0.130326, -0.133519, 

 0.209294, -0.054551, 0.282182, 0.075775, 
-0.078968, 0.087635, -0.131975, 0.097351, 
-0.122259, 0.271437, -0.034624, -0.009716), 

=2U (0.141616, -0.144077, 0.141884, -0.143808, 
0.275982, -0.002193, -0.000269, 0.146585, 
-0.138505, 0.144128, -0.140963, 0.275980, 
0.005623, 0.002458, 0.145024, -0.127824, 0.136119, 
-0.136730, 0.274484, 0.008294, 0.008905), 
c=0.068875 

We then apply the vectors 21,UU , and c listed 
above to recognizing genes in the ORFs of the 2nd-6th 
classes in the MIPS database. For each ORF calculate 
the vector ),,,( 2121 uuuU L= , where 211, uu L  are 

defined in Eq. (1). Based on the vectors U , 21,UU , 
and the parameter c, calculate the codingness index 
∆  using Eq. (2). If ∆ >0, the query ORF is 
recognized as a coding gene, if ∆ <0, the ORF or 
DNA sequence is recognized as a non-coding one. 
According to the MIPS database, there are 229, 
818,1003, 516, and 463 entries of the 2nd-6th classes 
in the yeast genome. Consequently, there are 7, 49, 
118, 113, 300 entries in the five classes that are 
recognized as non-coding ORFs. The detailed results 
are listed in Table 2-6. 

 

 
Table 2. The 7 ORFs of the 2nd class (strong similarity to known protein) in the MIPS database, which 

are recognized as non-coding 
ybr210w ymr040w yel004w ylr046c yar061w yll051c ypl141c 

 
Table 3. The 49 ORFs of the 3rd class (similarity or weak similarity to known protein) in the MIPS 

database, which are recognized as non-coding 
ydl199c yfl040w yhr130c yil040w yjr136c ylr064w ylr311c 
ymr088c yor053w yor286w ybl089w ybr293w ydr249c yer097w 
yfr057w ygl160w yhr181w yjl091c yjl193w ylr365w ymr221c 
ymr306w ynl109w yol163w yol079w ycr001w ydl206w ydr119w 
ydr307w ydr413c yel045c yer113c yll005c ylr050c ylr184w 
ymr245w yol107w yor350c ykl037w yal066w ydr319c ygr101w 
ykr030w ylr283w ydr115w ydr366c ygl104c ygr284c yil025c 

 
Table 4. The 118 ORFs of the  4th  class (similarity to unknown protein) in the MIPS database, which 

are recognized as non-coding 
yar060c ybr099c ybr147w ycr038w-a ydl240c-a ydr210w yer079c-a 
yer140w ygl263w yhl034w-a yhl045w yil090w yir040c yjr162c 
ykl225w ylr149c-a ylr161w ylr414c yml007c-a ymr010w ynl156c 
ynr077c yol048c ybl049w ycl002c ycl065w ydr504c yfr012w 
ygl041c ygr016w yhr017w ykl106c-a ymr013w-a ymr119w yol002c 
yol159c-a yor044w yor365c ypl264c ypr016w-a yar068w ybr103c-a 
ydl027c ydr084c ydr438w ydr492w yfl015c yfl062w yfl068w 
ygl010w ygl084c ygr293c yhl041w yhr069c-a ykl219w ykr051w 
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yll065w ylr023c yml047c yml132w ymr326c ynl326c yol003c 
yol162w ypr071w yal018c yal047w-a ybl029c-a ybl108w ybr004c 
ybr168w ybr300c ycr097w-a ydl185c-a ydl248w ydr525w-a yel053w-a 
yhl042w yhr212c yil174w yjl097w ykl223w ylr156w ynl067w-a 
ypr074w-a ybl109w ybr191w-a ybr302c ycr102w-a ydl054c ydl114w-a 

ydl159w-a ydr126w ydr367w yel033w yel067c ygl260w ygr149w 
ygr295c yhl044w yhr214w-a yil029c yil089w yil175w yir030w-a 
yir044c yjl052c-a yjr013w yjr044c yjr161c ykl165c-a ylr036c 
ylr159w ynl336w yol047c yol101c yor314w-a ypl165c  

 
Table 5. The 113 ORFs of the 5th class (no similarity) in the MIPS database, which are recognized as 

non-coding. 
yar047c ycl056c ydr042c ydr524w-a yel010w yfl021c-a yfr042w 
ygr168c ylr111w ymr151w ynl324w yor248w ypr170w-a yar053w 
ybl048w ybr056w-a ycl058c ycr085w ydl196w ydr015c ydr102c 
ydr274c ydr396w yel014c yel059w yer135c ygl188c yhr139c-a 
yjl077c yjl215c ykr032w yll030c ylr112w yml084w yml122c 
ymr057c ymr320w yor029w yor072w yor314w yor364w ypr012w 
ybl071c ybr144c ydr278c ydr344c ydr535c yer066c-a yer172c-a 
ygr290w yhl037c yhr095w yir020c-b yjl028w yjr157w ykr073c 
ylr122c ylr366w ylr400w yml090w ymr003w ymr141c ynl143c 
ynl211c yol160w ypl056c ypr014c yal064w ybr027c ybr292c 
ycr022c ydr024w ydr179w-a ydr350c yer091c-a ygr026w ygr291c 
yil012w yir020c yjl136w-a ykl158w ylr124w ylr264c-a ymr254c 
ynl146w ynl174w ynl303w yor152c ypl200w ypr153w yar030c 
yar070c ycl021w-a ycr025c ydr029w yfl019c yfr035c ygl006w-a 
yhl005c yjr023c ykl044w yll059c ylr381w ylr404w ymr187c 
ynl150w ynl179c yor015w yor268c yor392w ypl041c ypr064w 
ypr170c       
 
Table 6. The 296 ORFs of the 6th class (questionable ORFs) in the MIPS database, which are 

recognized as non-coding. 
ybl012c ybl073w ybr090c ybr124w ybr266c ycr018c-a ycr087w 
ydl026w ydl062w ydr034c-a ydr112w ydr154c ydr203w ydr269c 
ydr355c ydr431w ydr467c ydr526c yer138w-a yer181c yfl032w 
ygl024w ygl118c ygl168w ygl204c ygr039w ygr069w ygr122c-a 
ygr176w yhl006w-a yhr125w yil020c-a yil066w-a yjl086c yjl150w 
yjr018w ykl030w ykl136w ylr101c ylr198c ylr322w ylr428c 
yml009c-a yml047w-a ymr075c-a ymr316c-a ynl205c ynl276c yor041c 
yor121c yor170w yor225w yor282w ypl034w ypl114w ypr053c 
ypr177c q0143 yal056c-a ybl053w ybl077w ybl107w-a ybr224w 
ycl023c ycr041w ydl009c ydl032w ydl068w ydl172c ydr034w-b 
ydr114c ydr157w ydr360w yer076w-a yer107w-a yer145c-a yfr036w-a 
ygl074c ygl132w ygl177w ygr011w ygr045c ygr073c ygr137w 
ygr182c ygr259c yhl019w-a yil029w-a yil068w-a yir023c-a yjl022w 
yjr087w ykl036c ykl115c ykl147c ykl202w yll020c ylr123c 
ylr202c ylr252w ylr282c ylr358c ylr434c yml116w-a ymr086c-a 
ymr158w-b ymr290w-a ynl089c ynl170w ynl226w yol013w-b yol099c 
yor135c yor199w yor235w yor300w yor345c ypl035c ypl205c 
ypr038w ypr092w ypr136c yjr038c ypr150w yal026c-a yal059c-a 
ybl062w ybr051w ybr109w-a ybr226c ycl041c ydl151c ydl187c 
ydr048c ydr133c ydr220c ydr290w ydr401w ydr442w ydr509w 
yel009c-a yer084w-a yer148w-a yfl012w-a yfr052c-a ygl042c ygl088w 
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ygl149w ygl182c ygl217c ygr018c ygr107w ygr139w ygr265w 
yhl030w-a yhr063w-a yhr145c yil030w-a yil071w-a yil163c yjl032w 
yjl120w yjl202c ykl053w ykl118w ylr261c ylr294c ylr334c 
ylr444c yml012c-a ymr119w-a ymr172c-a ynl013c ynl105w ynl171c 
ynl228w yol035c yol106w yor082c yor200w yor309c ypl044c 
ypl238c ypr039w ypr099c ypr142c ypr087w ypr050c yal031w-a 
ybl065w ybl094c ybr064w ybr178w ydl016c ydl152w ydl221w 
ydr053w ydr136c ydr230w ydr445c yel018c-a yer046w-a yer133w-a 
yfl013w-a yfr056c ygl152c ygl193c ygl218w ygr114c ygr151c 
yhl046w-a yil047c-a yil100c-a yjl009w yjl135w yjl175w yjr128w 
ykl076c ykr033c ylr169w ylr230w ylr269c ylr302c ylr458w 
yml094c-a ymr046w-a ymr304c-a ynl028w ynl114c ynl235c ynr005c 
yol037c yol134c yor102w yor146w yor263c ypl073c ypr077c 
ypr146c q0092 yal034c-b ybl070c ybr089w ybr116c ycr064c 
ydl050c ydl094c ydl158c ydr008c ydr149c ydr199w ydr241w 
ydr426c ydr455c ydr521w yel075w-a yer067c-a yer087c-a yer137w-a 
yer165c-a ygl109w ygl165c ygr025w ygr064w ygr115c ygr228w 
yhl002c-a yhr028w-a yhr071c-a yil060w yil115w-a yir017w-a yjl015c 
yjl142c yjr071w ykl083w ykl131w ylr171w ylr232w ylr317w 
ylr339c ymr052c-a ymr153c-a ymr193c-a ymr306c-a ynl120c ynl198c 
ynl266w ynr025c yol150c yor169c yor277c yor331c ypl102c 
ypl185w ypl261c      

 
 
Of the entries in above lists, statistically, FN (in list 

7) are actually coding. Unfortunately, we cannot 
identify them at present due to the limited recognition 
accuracy achieved. 

Based on the above result and the sensitivity and 
specificity, the four quantities TP, TN, FP, and FN can 
be calculated. Take the 5th class ORFs as an example. 
The total number of the 5th class ORFs is 516, in which 
113 ones are recognized as non-coding. Assume that 
both the sensitivity and specificity are equal to 96%. We 
have a system of linear equations as follows: 

 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

516=FP+TN+FN+TP
113=FN+TN 

0.96=FP)+TN/(TN 
0.96=FN)+TP/(TP 

 

 
solving the above set of equations, we find TP≈399, 
TN≈96, FP≈4, and FN≈17.Therefore, the number 
of real coding ORFs of the 5th class equals to 
TP+FN=399+17=416. Similar calculations for the 
others are performed. Note that for the 2nd  class, the 
above system has negative solutions: TP ≈ 222, 
TN≈ -2, FP≈0, FN≈9. In this case, we prefer FN=7, 
TN=0. The results are listed in table 7. 

 
 
 
 
 

Table 7 The numbers of predicted coding 
and non-coding ORFs of the 2nd-6th classes 

  2 3 4 5 6 
Total 

number 
of ORFs 

229 818 1003 516 463 

TP 222 769 882 399 155 
TN 0 16 81 96 289 
FP 0 0 3 4 12 
FN 7 33 37 17 7 

TP+FN 229 802 919 416 162 
TN+FP 0 18 84 100 302 

 
We estimate the number of protein coding genes in 

the 16 yeast chromosomes. The total number should 
be equal to 5920, the sum of the number of the 1st 
class and the number of those in the 2nd-6th classes 
recognized by the present method. Note that the 
accuracy is actually greater than 96%, so, this figure 
should be considered as an upper bound of the 
number of genes in the yeast genome. Assume that 
both the sensitivity and specificity are equal to 97%. 
We also have a system of linear equations. According 
to the solutions to these system of equations, we can 
estimate a lower bound of the number of genes in the 
yeast genome, which is 5891. The above estimate is 
based on error analysis, i.e. we have considered the 
false negative and false positive events in the 
prediction for each class. So it should be statistically 
reliable. 
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4   Conclusion 
 
In this paper, a novel gene recognizing method based 
on a 3D graphical representation of DNA sequence is 
proposed. As a satisfied result, the successful rates by 
both self-consistency and cross-validation tests very 
high and the total number of genes estimated here is 
5891～5920, coincident with 5800-6000, which is 
widely accepted. As should be pointed out, to extend 
the method to more complicated structures, we have 
not excluded intron-containing genes. The present 
work is based on an assumption that the unknown 
genes have the same statistical properties as the 
known genes. This might not be so in some special 
cases, for example, for some low-expressed genes. In 
this case, the results should be referred to with 
caution. 
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