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Abstract: This paper is concerned with the analysis of the generation of oligodendrocytes from
oligodendrocyte-type 2 astrocytes progenitor cells in tissue culture using longitudinal observations
on clonal growth. Our approach is based on a multi-type age-dependent branching process, and
the statisical analyses are conducted using a simulated pseudo maximum likelihood estimator. We
evaluate the performance of our method in a simulation study, and apply it to experimental data
on the growth of clones of oligodendrocytes.
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1. Introduction
The quantitative analysis of the processes of di-
vision and differentiation of cultured progenitor
cells, where cell proliferation is observed at the
clonal level, has been extensively investigated
in past studies [1-10]. Despite the fact that
the events of interest are not directly observable
under these experimental conditions which pro-
vide only counts of progenitor cells and differ-
entiated cells, these references have shown that
important characterisitcs of cell kinetics can be
accurately estimated from such observed data.
The various methods proposed in these publi-
cations were based on the theory of multi-type
age-dependent branching processes, and the au-
thors used computer-intensive techniques to con-
duct the desired statistical analyses. The pro-
posed methodologies were succesfully applied to
analyze the generation of oligodendrocytes from
their oligodendrocytes type-2 astrocytes (subse-
quently abbreviated as O-2A) progenitor cells
cultured in vitro, and several characteristics
of the processes of division, differentiation and
death of this cell system have been quantified.

These analyses were all performed on clonal
data yielded by experiments where the composi-
tion of every clone was examined only once be-
fore being discarded. This type of data will be
subsequently referred to as independent clonal
data in contrast to longitudinal clonal data.

The present paper focuses on a different situa-
tion where each clone is examined at multiple
time points, thus providing longitudinal mea-
surements on clonal growth. These data pro-
vide more information on the processes under-
lying the generation of cellular clones, allowing
potentially for the construction of more complex
and more realistic mathematical models of cell
proliferation. The goal of the present paper is to
apply our methodology to analyze longitudinal
clonal data on oligodendrocyte generation from
O-2A progenitor cells cultured in vitro. We con-
sider modeling the growth of clones composed of
these cells using the multi-type age-dependent
branching process proposed in [8]. This process
is an extension of a multi-type Bellman-Harris
branching process which allows for dissimilar dis-
tributions for the time to division and the time
to differentiation of O-2A progenitor cells. In or-
der to fit this model to longitudinal clonal data,
we suggest using the simulated pseudo maximum
likelihood approach proposed in [8,9,10] for age-
dependent branching processes observed at dis-
crete time points. This article is illustrated us-
ing an experimental data set on the generation
of oligodendrocytes from cultured O-2A progen-
itor cells. The properties of our method for lon-
gitudinal clonal data are next investigated in a
simulation study.

2. A Model of O-2A Proliferation
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We consider the multi-type branching process
proposed in [8]) to represent the proliferation of
O-2A progenitor cells and their ultimate trans-
formation into oligodendrocytes. The model is
based on the following assumptions:
(1) The process begins with a single progenitor
cell cultured at time t = 0. At the end of the kth
mitotic cycle, every progenitor cell either gives
rise to two progenitor cells with probability pk,
or it differentiates into one oligodendrocyte with
probability 1−pk. The division probability pk is
a decreasing function of the mitotic cycle num-
ber k ∈ {1, 2, ...}, where k = 1 corresponds to
the first cycle (division) after plating. We as-
sume the following form of dependence of pk on
k:

pk = a+ bck, k ≥ 1.

(2) Since progenitor cells appear to have a very
high survival rate, the model assumes that O-2A
progenitor cells do not die during the time of the
experiment. The death of oligodendrocytes nor-
mally begins on day 7 which is beyond the range
of our data. Therefore, we assume that oligoden-
drocytes neither divide nor die.
(3) The time to division of any O-2A progenitor
cell follows a gamma distribution with mean m1

and variance σ21.
(4) The time to differentiation of any O-2A pro-
genitor cell follows a gamma distribution with
mean m2 and variance σ22.
(5) Progenitor cells do not migrate out of the
field of observation.
(6) The usual independence assumptions regard-
ing the evolution of age-dependent branching
processes are adopted.

The set of (unknown) parameters of the
model is the vector θ = (a, b, c,m1, σ

2
1,m2, σ

2
2)
′.

We define the 2-dimensional stochastic process
Z(t, θ) = {Z1(t, θ), Z2(t, θ)}′ where Z1(t, θ) and
Z2(t, θ) represent the number of O-2A progenitor
cells and the number of oligodendrocytes at time
t in a clone generated by the branching process
defined above.

3. Statistical Inference

3.1 Longitudinal Clonal Data Longitudinal
clonal experiments consist in plating O-2A pro-

genitor cells in a growth medium at a sufficiently
low density so they generate separate clusters
of cells. such clusters will be referred to as cell
clones in what follows. The experimentalist ex-
amines the composition of each resulting clone
at several points in time to obtain the number of
O-2A progenitor cells and the number of oligo-
dendrocytes. Thus, the observations can be rep-
resented as a set of vectors Yi = (Yi1, ..., Yimi)

′,
1 ≤ i ≤ n, where Yij = (Yij1, Yij2) and where
Yij1 and Yij2 denote the number of O-2A pro-
genitor cells and the number of oligodendrocytes
counted at time tij in the ith clone. We write
ti = (ti1, ..., timi) for the times of observation. It
is assumed that the observations Y1, ...,Yn are
independent random vectors (r.v.) generated by
the branching process formulated in Section 2.
The true value of the vector θ is denoted by θ0.

3.2 Moment-based Estimation
Because of the complexity of our model, neither
the distribution nor the moments of the process
Z(t, θ) have known explicite analytical expres-
sions. As a result, the statistical analysis of
clonal data can only be achieved through approx-
imations of these quantities. This paper consid-
ers simulation-based approximations.

Simulated maximum likelihood estimation
was investigated in [5] in the context of indepen-
dent clonal data. In brief, the proposed method
consisted in simulating a large number of inde-
pendent clones from a computer version of the
model. The distribution function of the process
Z(t, θ) was then approximated using its empiri-
cal counterpart. However, when the composition
of some observed clones match none of the com-
position of their simulated counterparts, the re-
sulting simulated likelihood function is identical
to zero, and the simulated log-likelihood LS(θ)
is undefined. These mismatches, which were en-
countered in the independent setting [5], make
it difficult to compute the parameter estimate.
Since they are even more likely to occur asmi in-
creases, they may become a serious burden when
analyzing longitudinal clonal data using the sim-
ulated maximum likelihood approach.

Alternative methods of estimation that will
resolve the mismatching problem in the con-
text of longitudinal clonal data can be designed



from simulation-based approximations of mo-
ments of the observed quantities. The simu-
lated pseudo maximum likelihood estimator pro-
posed in [8,9,10] for discretely observed branch-
ing processes provides such an example. This
method is solely based on the mean vector and
the variance-covariance matrix of the observed
cell counts. Thus, for each i, let us introduce the
Kni × 1 vector

µi(θ) = {m(ti1, θ)
′, ...,m(tini , θ)

′}′, 1 ≤ i ≤ n

where m(tij , θ) = E{Z(tij , θ)} is a vector repre-
senting the mean numbers of cells of O-2A pro-
genitor cells and the mean number of oligoden-
drocytes counted at time tij , given the param-
eter value θ. Let Ωi(θ) denote the associated
Kni ×Kni variance-covariance matrix:

Ωi(θ) =





V (ti1, ti1, θ) ... V (ti1, tini , θ)
...

. . .
...

V (tini , ti1, θ) ... V (tini , tini , θ)



 ,

whereV(tij1 , tij2 , θ) = cov{ZZ(tij1 , θ),Z(tij2 , θ)}.
Because µi(θ) and Ωi(θ) have no explicite ana-
lytical expressions, we will resort to simulations
to approximate their values as described below.

Let Z?,s(t, θ) =
{

Z?,s1 (t, θ), Z?,s2 (t, θ)
}

, 1 ≤
s ≤ S, be S independent random vectors, each
of them representing the number of progeni-
tor cells and the number of oligodendrocytes
counted at time t in the sth clone simulated us-
ing a computer version of the assumed model,
and given the parameter vector θ. Let Y?,s

i (θ) =
{Z?,s(ti1, θ), ...,Z?,s(timi , θ)}. The random vec-
tors Y?,s

i (θ0), 1 ≤ s ≤ S, can be considered as
i.i.d. copies of the observed vectors Yi. The mean
vectors µi(θ) and the variance-covariance matri-
ces Ωi(θ) can be approximated by their empirical
estimators µSi (θ) and ΩSi (θ) defined as

µSi (θ) =
1

S

S
∑

s=1

Yi,s(θ) (1)

and

ΩSi (θ) =

1

S − 1

S
∑

s=1

{Yi,s(θ)− µSi (θ)}{Yi,s(θ)− µSi (θ)}′.

(2)

By the Strong Law of Large Numbers, µSi (θ) and
ΩSi (θ) converge almost surely to µi(θ) and Ωi(θ)
as S → ∞. The simulated pseudo likelihood
GSn(θ) is defined as

GSn(θ) = −
n
∑

i=1

CSi (θ) (3)

where CSi (θ) represents the contribution of the
ith clone given by

CSi (θ) = {Yi − µSi (θ)}′ΩSi (θ)−1{Yi − µSi (θ)}

+ log |ΩSi (θ)|.

The simulated pseudo maximum likelihood es-
timator is a vector θ̂Sn which maximizes GSn(θ):
θ̂Sn = ArgMaxθ∈ΘG

S
n(θ). Hyrien [10] established

asymptotic properties of the simulated pseudo
maximum likelihood estimator for the traditional
multi-type Bellman-Harris branching process,
and they remain true in the present setting as
well. In brief, the estimator converges almost
surely to the pseudo maximum likelihood estima-
tor, θ̂n, as S tends to infinity, which maximizes
a pseudo likelihood Gn(θ) constructed from the
exact mean vectors and variance-covariance ma-
trices of the observed cell counts. Under certain
regularity conditions, the estimator θ̂n converges
almost surely to θ0 as n tends to infinity, and in
large samples, it is approximately normally dis-
tributed with zero mean and variance-covariance
matrix Σ(θ0) = I(θ0)

−1J(θ0)I(θ0)
−1/n, where

I(θ0) = limn→∞ Eθ0{∇2
θθ′Gn(θ0)}/n and

J(θ0) = limn→∞ Eθ0{∇θGn(θ0)∇θGn(θ0)′}/n.
These properties are also approximately satis-
fied by θ̂Sn if S is large enough.

The estimating function GSn(θ) fluctuates
randomly because the moments µi(θ) and Ωi(θ),
1 ≤ i ≤ n, are approximated by Monte Carlo
integration. In order to compute the simu-
lated pseudo maximum likelihood estimator, one
can implement the sample path approach as ad-
vocated in [8,9,10]. Further, since branching
stochastic processes are jump processes, the sim-
ulated pseudo likelihood is not continuous over
the parameter space Θ, but rather a step func-
tion. It is therefore better to use optimization
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Figure 1: Empirical and fitted mean number of O-2A progenitor cells and oligodendrocytes over time.

algorithms that do not require differentiating the
estimating function.

The variance-covariance matrix can be esti-
mated using a parametric bootstrap, and test of
nested hypotheses can be carried out using the
Monte Carlo Wald test proposed in [8].

4. An Application
In this application, the model is used to obtain
quantitative insights into the process of clonal
growth and differentiation of oligodendrocyte-
type 2 astrocyte (O-2A) progenitor cells cultured
in vitro. Experimental data were obtained from
experiments carried out on O-2A progenitor cells
isolated from the rat optic nerve. Twenty five
O-2A progenitor cells were plated in separate
flasks in a culture medium added with thyroid
hormone. The composition of each of the 25
clones was recorded at the following time points:
24, 48, 72, 96, 120 and 144 hours after the start
of the experiment. These observations represent
longitudinally observed pairs of counts of O-2A
progenitor cells and oligodendrocytes.

This model of clonal development has proven
to be in good agreement with the observed dy-
namics of O-2A progenitor cells and oligodendro-
cytes in several sets of experimental data. How-
ever, the longitudinal observation process pro-
vides much more information on the system un-

der study than the earlier used data on indepen-
dent cell counts (with each clone being scored
only once) at different time points.

We fit our model using the simulated pseudo
likelihood approach. For that purpose, we com-
puted the empirical estimators of m(t, θ) and
V (u, t, θ) with the number of simulated clones
S gradually increasing during the process of op-
timization. The ultimate parameter estimates
were obtained with S = 100, 000 simulated
clones. To maximize GSn(θ), we employed a ran-
dom search algorithm combined with the sample
path methodology. The algorithm was launched
several times to assess the obtained values as
well as to guard against the random noise aris-
ing from the simulations. The estimate of the
parameter vector θ = (a, b, c,m1, σ1,m2, σ2)

′ is
given in Table 1.

The parameter estimates are in quite good
agreement with those previously obtained in our
past pubications. It is also interesting to note
that the mean time to differentiation still ap-
pears to be quite close to the mean time to di-
vision, but there is a marked difference between
the corresponding variances. The standard error
of the simulated pseudo maximum likelihood es-
timates reported in Table 1 was obtained by the
parametric bootstrap with 400 bootstrap sam-
ples.



Parameter m1 σ1 m2 σ2 a b c

Estimate 27.6 10.2 24.6 25.2 0.13 11.4 0.05
Std error 2.20 2.24 2.84 4.47 0.02 1.95 0.01

Table 1: Parameter estimates

Parameter m1 σ1 m2 σ2 a b c

True values 25.0 10.0 30.0 28.3 0.20 1.0 0.5

n=25 clones Average 24.5 9.4 31.4 28.2 0.18 1.10 0.5
Std. dev. 1.2 2.3 3.3 4.7 0.04 0.22 0.05

n=50 clones Average 25.1 9.9 30.1 27.4 0.19 1.05 0.49
Std. Dev. 1.3 2.6 2.7 4.5 0.02 0.15 0.05

n=150 clones Average 24.9 9.9 30.1 28.1 0.20 1.00 0.50
Std. Dev. 0.6 1.1 1.8 3.1 0.02 0.08 0.03

Table 2: Results of the simulation study

Figure 1 presents the mean numbers of O-
2A progenitor cells and oligodendrocytes and the
corresponding model-based estimates. As is seen
from the figure, the model captures the pattern
of the mean number of cells, but the fit is not
very good around day 4 for the mean number of
O-2A progenitor cells. This lack of fit indicates
that our model can be further improved based on
longitudinal clonal data to gain a better under-
standing of the generation of oligodendrocytes
from cultured O-2A progenitor cells.

5. A simulation Study
We conducted a simulation study to investigate
finite sample properties of the simulated pseudo
maximum likelihood estimator in the context of
the proposed model. The estimates of model pa-
rameters reported in Table 1 were used to gen-
erate several data sets in accordance with the
following experimental design: for each data set,
a total number of n independent clones were sim-
ulated and the numbers of progenitor cells and
oligodendrocytes in each of these n clones were
counted each day from day 1 to day 6, in ex-
actly the same way as they were counted in the
biological experiment. To assess the quality of
the estimation procedure, we used 100 replicates

for the following sample sizes: n = 25, 50 and
100. The moments of the observed numbers of
cells were estimated from S = 25, 000 simulated
clones. The results reported in Table 2 show
that the simulated pseudo maximum likelihood
estimation procedure combined with the sample
path method and random search performs fairly
well even with small samples.

6. Discussion
The present paper considered an application of
a previously proposed branching stochastic pro-
cess to the analysis of longitudinal clonal data on
the generation of oligodendrocytes from cultured
O-2A progenitor cells. Because of potential mis-
matches encountered with the simulated maxi-
mum likelihood approach, the simulated pseudo
maximum likelihood estimator remains a method
of choice in the considered setting. Our simula-
tion study indicated that this estimator can be
expected to perform well in finite samples of lon-
gitudinal clonal data, even with a relatively low
number of replicates (say 25 clones).

Furthermore, we applied our method to a
new data set yielded by a longitudinal clonal ex-
periment where each cellular clone was observed
at 6 different points in time. The branching



stochastic process considered here was found to
provide a good fit to independent clonal data in
Hyrien et al (2005a), and this model suggested
that the time to division and the time to differ-
entiation of O-2A progenitor cells followed dis-
similar distribution functions. The new analysis
of longitudinal data reported in the present pa-
per supported the latter conclusion, but it also
indicated that this model may not be as appro-
priate to describe longitudinal clonal data (since
the resulting fit was not as good) as it was when
fitted to independent clonal data. In order to
improve our statistical analyses, the model could
be further developed. Many such improvements
could be considered, including for example the
so-called clonal inheritance assumption. At the
moment, it is however unclear by looking at
clonal data which part of the model needs to be
modified, and time-lapse experiments currently
underway will be helpful in this regards. We be-
lieve that longitudinal clonal data are informa-
tive enough to sustain further modeling efforts.
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