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Abstract:-- The mammalian erythrocyte after extruding primitive marginal bands and nucleus, attains a kiting biconcave form 
with high surface/ volume and low inertia, deforms readily to enter tight confines, regains its form even though the 
endoplasm is purely viscous, by means of tensile elasticity of the cytoskeleton and probably by pressure and tension.    
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1. Introduction 
The mammalian red blood cell has a biconcave, disk-
like shape and lacks a nucleus and associated  
organelles.  Early phylogenetic studies on erythrocytes 
(see Scott, 1966) were provocative but problematic. 
How did the unique mammalian characters arise?  The 
fossil record reveals no record of soft organ structures, 
or  blood cells.  This imperfect record was always 
enigmatic, failing to reveal clear transition (especially 
physiological).  Amphibians and reptiles that exist 
today, as well as the lungfishes and modern birds, are 
disparate branches of the phylogenetic tree. The best 
evidence available is ontogenetic (i.e., erythropoiesis), 
but ontogeny is not always predictable of a phylogeny. 
A biomathematical analysis of hematological 
structures  explains evolution up to mammalian grade 
and some paradoxes of cell structure and function.  
 
2. Problem Formulation 
Physical and mathematical analyses are defined when 
possible. Several new hypotheses are presented.  Some 
definitions are: 
tn = total number of triangles in ring n. 
en = total edges forming triangles in ring n. 
Tn = t1 + . . . + tn = total triangles in Hexagon n. 
En = e1  + .  . . + en  = total edges within Hexagon n. 
sn = total number of squares in ring n. 
dn = total edges forming squares in n. 
Sn = s1 + . . . + sn = total squares within Square n. 
Dn = d1  + . . . + dn  = edges  for squares in Square n. 
 
3.  Problem Solution 
3.1. Ontogeny. Ontogenetic evidence, the best 
available, predicts evolution from erythropoiesis of 
mammals and non-mammalian vertebrates. 
Erythroblasts develop to reticulocytes and finally 
mature as erythrocytes that enter the blood circulation. 
Non-mammal cells become “biscuit-shaped ellipsoids”, 
rather flattened, swollen centrally by the presence of 
an internal discrete (i.e., relatively solid) nucleus fixed 

in place by supporting ties of vimentin.  Other 
organelles such as mitochondria are present during the 
time that ATP energy is turned toward the production 
of hemoglobin molecules (Hb) for gas transport.  
Marginal bands (tubulin) encircle the erythrocytes. 

The spherical “erythroblast” becomes an 
ellipsoidal erythrocyte in non-mammals, shaped to 
squeeze through apertures invading the early-forming 
or established blood circulation.  The cell becomes 
almost bilateral, indicative of forward or backward 
movement.  These cells move through large blood 
vessels in flowing blood plasma, and eventually 
through capillaries sometimes thinner than the 
diameter of the erythrocyte.  Erythrocytes are flexible, 
containing oxyhemoglobin or hemoglobin, and bend 
from strains (Bull and Breton-Gorius, 1995).  
 In mammalian cells, the nucleus and other 
organelles are “extruded” after Hb production ends. 
Occasionally in other vertebrates, rarely in 
invertebrates (Scott, 1966), and especially in some 
poorly respiring salamanders, the nucleus is  extruded.  
In mammals the anucleate cell is the “definitive” 
mature erythrocyte in circulation. The erythrocyte 
completes underpinning the phospholipid membrane 
with a spectrin cytoskeleton (Palek, 1995, and others).   

The nucleated erythrocyte gave rise to the 
biconcave anucleate disk, and is illustrated by the 
ontogeny of primitive mammals such as marsupials 
(Cohen et al., 1990).  The yolk sac “primitive” blood 
cells were larger, nucleated, elliptical but discoid, and 
thickened centrally by the nuclear bulge. There was a 
marginal band and a surface spectrin network.  Three 
days later over 90% of the cells in the circulation were 
anucleate definitive erythrocytes.  The anucleate 
amphibian Batrachoseps had erythrocytes similar to 
those of the marsupial “neonates”.  In “primitive” yolk 
sac erythroblasts of several mammals, the ontogenetic 
appearance of marginal bands was discovered (Van 
Deurs and Behnke, 1973).  
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Hemoglobin differs in adults from that in yolk sac 
“primitives”, but mouse primitives eventually produce 
adult Hb.  There are at least two normal adult and 
several  embryonic hemoglobins (e.g., Brotherton et 
al., 1979).  
 In mammals, the abortion of the nucleus occurs in 
the reticulocyte. The remaining cell membrane (with 
cytoskeleton) contains  endoplasm, hemoglobin (Hb) 
and a few enzymes. These “mature” erythrocytes (and 
a few reticulocytes) invade the circulatory system in 
great numbers (mostly from bone marrow).  
Enucleation is difficult to explain as adaptation. 
Apparently the nuclear loss diminishes the volume, 
increasing the surface to volume ratio. Enucleation 
helps make the cell biconcave.  Another speculation 
suggests that a nucleus costs ATP energy and drains 
off HbO2 for no useful purpose.   

The sequence of loss of mitochondria, marginal 
bands, vimentin and nucleus, in that order, would 
suggest phylogeny.  Enucleation is preceded  by loss 
of the constraining marginal bands (= tubulin).  
Usually the human’s nucleus and filaments (= 
vimentin) are lost when traversing the wall of a 
marrow sinus, sometimes later and sometimes before, 
and this is caused by contortions of the cell.  The 
nucleus envelops itself in membrane materials and 
some Hb and pulls away from the remainder of the cell. 
Mitochondria were reduced in size and number earlier 
(Bull and Breton-Gorius, 1995).  Loss of the bands 
facilitates subsequent enucleation, but the advanced 
camel enucleates and keeps its bands, although camel 
cells assume an elliptical shape. Generally, the 
mammal erythrocyte becomes dimpled.   
3.2.  Motion.  Erythrocytes have such a relatively low 
volume (hence little mass) that low inertia, related to 
their low Reynolds number, practically freezes them 
into the surrounding plasma.  When the plasma flows 
fast, the biconcave mammalian red cells, some stacked 
in roulettes, are carried past. 
 Ellipsoids are not fusiform enough to eliminate a 
change in momentum from eddies.  Either end can 
move forward in a current or tube. The ellipsoidal non-
mammal cell, or camel cell, is streamlined enough to 
diminish friction from the current and capillary wall.  

Alexander (1951: 36) showed that a streamlined 
body has only 0.05 to 0.1 of the drag on a sphere of 
equal volume (traveling at the same velocity in the 
same fluid).  Or, the streamlined form could carry 
more volume moving with the same drag.   
 A disk form has even more drag than a sphere, 
hence the mammal’s biconcave disk is no adaptation 

for streamline advantage.  In consideration of 
Reynolds number for small cells, I note that the disk or 
sphere suffers the most drag.  Voila, the disk-like 
mammal red cell can transform itself into a perfectly 
streamlined fluid-like projectile, even tapered behind, 
for entering tight places.   

The small volumes tend to be constant even in 
twisted, deformed, and other prolated forms. Although 
not so prolated, the biconcave mammalian “sphere” 
[the biconcave shape would be a sphere if the 
opposing dimples were everted] keeps a surface 
appropriate for a sphere, but dimpling shows 
diminished volume.  This results in a huge surface to 
volume ratio.  There are two obvious advantages of the 
high ratios.  The gas exchange function is enhanced, 
and the low inertia of low volume limits movement 
independent of the viscous plasma. The two fluid-like 
substances, cells and plasma, move as one. The 
biconcave shape is pushed along, no matter what its 
orientation in the flow.     
3.3. Surface area. In all erythrocytes, the extremely 
thin, fluid-like cell membrane and the purely viscous 
endoplasm are constrained by a flexible, slightly 
contractile cytoskeleton comprised of tiny equilateral 
triangles of spectrin molecules. This geodesic form is 
not only porous, but has a fluidity of form, which 
geodesic structures can have. The microtubule bands 
circumscribe and augment the non-mammal’s spectrin 
cytoskeleton.  Their absence in mammals permits the 
endoplasm and membrane to assume radial symmetry.    
 The cytoskeleton and membrane act as a lasting 
envelope resisting permanent invagination from strain 
forces, which the purely viscous endoplasm could not 
do, and in mammals prevent everting of the curved 
extensive surface within each dimple.  Other factors  
combine to create or maintain the mammal’s 
biconcave form. (A) The porous framework allows 
strains to shape the viscous endoplasm, yet its limited 
elasticity can reform the biconcave shape rapidly.  (B) 
Can this be effected in part by the phospholipid 
membrane? The entire membrane is comprised of tiny 
columns within a curved surface, and any differential 
created would seemingly reform as vertical columns 
standing together (Canham, 1970).  (C) The fluid-like 
cell membrane is perhaps somewhat contractile 
physically as a fluid drop having cohesion inside and 
surface tension pulling the surface.  (D) The bending 
energy is minimal for such a “giving” surface.   
 The biconcave shape of a visco-elastic spheroid 
may result from minimal bending energy expended 
(Canham, 1970; Korpman et al.1976, 1977), if the 
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material is two dimensionally isotropic on the surface, 
the material of the surface is easily deformed by 
tangential forces but resists even small forces of 
dilation, and the response to the ambient force 
increases with deformation.  

The most feasible explanation for energy used is 
that a favorable surface to volume ratio of the red cell 
allows its surplus to reform the shape.  Shear, a 
differential effect on the red cell by streams of fluid, is 
also friction from the surrounding blood vessel or 
impacts with other blood cells.  The nature of whole 
blood when compared to other thick fluids, shows that 
shear deforms cells and causes loss of viscosity. The 
deformed cells become irregular ellipsoids.  Strain, 
superficial tensile and bending strain, uses energy, a 
reaction against substances pushing against the cell.   
 Red cells are not like rubber bands; when a rubber 
band is stretched in the direction of tension it narrows 
the band; it also gets thinner. The red cell skeleton is 
only two molecules thick. It cannot get thinner.   
Compression across the width must equal extension.  
Mechanics seem uniform over the surface. Therefore, 
the cell surface must be altered in all directions 
simultaneously by applied tension.   
 If the shaping comes from bending resistance, the 
cell must have lost volume. This likely followed 
extrusion of internal organelles. In no way does this 
minimization explain why the cytoskeleton is evolved 
from triangles (i.e., hexagons), and why even primitive 
animals have spectrin triangles.  
3.4. Geometry of triangles.  For paving a surface with 
triangles arranged in hexagons, the well-known 
progression (below) allows one to determine the ratio 
of edges to the triangles, and to determine a rate of 
formation. Let n = 1, 2, 3, to denote any “ring” of 
triangles.  The value n = 1 corresponds to the first ring 
of triangles joined to form a regular hexagon (see Fig. 
1).  The value n = 2 corresponds to the second ring 
added outside the n = 1 ring.  When n = 1, six triangles 
comprise 12 edges that form the first hexagon (hex 1).  
Secondly, add two triangles (using only three edges) at 
each of the outside vertices of hex 1.  Up to this point,  

 
Figure 1.Rings of hexagons from triangles (n = 1-3).   

the n = 1 ring contains six triangles and 12 edges, and 
the n =2 ring contains 6 + (6 x 2) = 18 triangles and (6 
x 2) + (6 x 3) = 30 edges.  The outside edges of the N 
= 2 ring form a larger hexagon (hex 2).  When n = 3, 
add three triangles on each side of the hex 2, using 
only 5 edges, and  add two triangles at each vertex of 
hex 2 using three edges.  Therefore t3 = 6(3 + 2) = 30 
and e3 = 6(5 + 3) = 48.  For  n 1, 2, 3    
  tn Tn   en  En            18   24   30    42 

6 6 12 12      30   54   48  90 
The values of tn increase by 12 and of en increase by 18.  
The sequences of numbers t1 , t2 , . . . and e1 , e2, . . . 
are each arithmetic sequences, and it follows for each 
n ≥  that Tn and  En  can be determined:  
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identity.  Similarly, En  = 3n (3n + 1) = 9 n2 + 3n. Then, 
the ratio of edges to triangles obtained by (en -  en -1) / 
(tn - tn-1)  = 3/2  for n > 1, and it follows that 
 en / tn  = 6(3n – 1)/ 6(2n – 1) 

  = 3/2 + 1/ 2(2n – 1) 
 En / Tn = 3n (3n + 1)/ 6 n2 = 3/2 + 1/2n   
for n ≥  1.  Either of the ratios is approximately 1.5 
when n is large.  Similarly, we find the ratio of edges 
to squares and larger squares to their component tiny 
squares (see definitions above) as follows: 
 sn = 4 (2n – 1) and dn  = 4(4n -1) 
 Sn = 4n2 and Dn =  4n(2n  + 1) = 8n2 + 4n 
 (dn - dn -1)/ (sn - sn – 1) = 2 
 dn / sn  = 2 + 1/ (2n – 1)  
 and  Dn / Sn  = 2 + 1/ n.   
Therefore, En / area of Hexagon n = 2 3   as n →  ∞  
and  Dn / area of Square n = 2 + 1/ n as n →  ∞. 
The ratio of Dn / Sn = 2 + 1/ n  →    2 as n →  ∞.  The 
total number of edges is double the number of tiny 
squares.  En / Tn = 3/2 + 1/2n →  3/2 as n →  ∞. 
The number of spectrin edges in triangles greatly 
outnumber those of hypothetical squares,  
 Tn / Sn  = 6n2 / 4 n2  =  1.5. 
Note that the area of an equilateral triangle with side 
length one is 3 / 4 and a tiny square with side one has 
an area of one.  The number of edges of triangles per 
unit of enclosed area when forming hexagons has a 
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limit ≈  3.46, while the number of squares has a limit 
of 2.  For this reason, no economy of spectrin is gained 
by use of triangles, but the polygons are smaller, and 
of course more stable than a small square.   
 In geodesic construction (of domes and spheroids) 
a basic rule states that triangles provide stability, and 
cubic patterns are unstable.  It is said, “tie a diagonal 
strut across each small square”.    A curved surface 
may be formed of flat polygons, if they are great in 
number and tiny enough to fit together.  Triangle 
construction with smaller polygons allows the 
cytoskeleton to better conform to the inner curvaceous 
surface of the membrane (in all the vertebrates), and in 
the living cell allows bending and provides tensile 
strength in all directions against any strains during the 
cell’s travels. The biconcave cytoskeleton has an even 
freer flux allowing deformability.   
 A sphere can not bend nor invaginate without 
expanding the surface and changing shape or volume.  
The fluid-like non-mammal cell does bend, and also 
deforms, even with the handicap of a central nucleus. 
The mammal’s biconcave disk is more adaptable in 
kiting in the blood flow or in “oozing” through tight 
places. It assumes shapes in capillaries called 
parachutes, bullets and slippers (Fung, 1981).  
3.5. Curvature, triangles, spectrin. The problem with 
elaboration of a polygonal structure onto or 
underpinning an inner curved surface of a spheroid is 
somewhat analogous to creating a “3-frequency” 
geodesic hemisphere (or spheroid) with equilateral 
triangles of sheet metal covering a wooden framework 
(Cartwright, 1974).  A coefficient of curvature for the 
chord factor is 0.4124, and an edge of the equilateral 
triangle has height of the triangle/ sin 60o .  The radius 
r of the framework is,  r = edge length/ 0.4214.                                   
 The noodle-like, equal-sized lengths of spectrins 
in the polygons of the cytoskeleton of vertebrate red 
cells are comprised of homologous triple-helical 
segments, so that an alpha spectrin lies besides a beta 
spectrin, and the ends meet either at an actin anchor 
post, or “head to head” with another pair of spectrin 
chains.  Thus, each edge of the triangle is made up of 
alpha and beta chains linked with other alpha and beta 
chains at a dimer interaction midway between the actin 
corners of a triangle.  Since the skeleton is “laminated” 
onto the undersurface of the fluid-like phospholipid 
cell membrane, the protein lengths seem to be the 
source of what tensile strength there is at any edge of 
any triangle (i.e., of hexagons or pentagons).  The 
actin posts seem to anchor the ends of the spectrin 
segments, although one might presume that the 

spectrin length spaces the network or lattice at 
functionally important set distances between patterned 
actin connections.  In any case, the skeleton maintains 
structural integrity and even a limited elasticity when 
the membrane and contents are experimentally 
removed by hemolysis, leaving a “ghost skeleton”.  
 Another way to “measure” the edge is by the  
arrangement of amino acids.  Spectrin consists of two 
chains composed of homologous 106-amino acid 
repetitive segments, with alpha having 20 segments 
and 2 non-homologous ones, and Beta having 17 
homologous segments and termini binding sites.  The 
two chains associate with two other chains midway 
between the two corners of the triangle.  There are 
other ankyrin biding sites, one in the 15th segment,and 
another where spectin binds with actin and the 4.1 
protein.  Thus, tetramers form the struts (alpha-
beta+alpha-beta).  

The development of the mesh network will allow 
the cytoskeleton, once it is formed, to help maintain 
the curvaceous shape of the overlying membrane, as if 
it were nailed to a plastic tarp.  In the mammal cell 
with its inflection (latitudes) circling all around the 
dimple on either surface of the cell, the construction by 
small triangles project tensile vectors radiating in 
various directions, allowing the spheroid structure to 
deform. The triangles cannot stretch much. Neither can 
the plate-like hexagons stretch or contract. Bulging of 
the endoplasm or invagination is not constrained much 
by the tiny polygons, because there is so much surface 
for so little volume. The inner contents can move 
about, and even the dimple on the surface can move as 
a wavelike ripple of the surface.  Dimpling of equal 
sized hexagons was demonstrated by Bull with his 
polyethylene model. In a normal erythrocyte, or in the 
crude model, the hexagons cannot evert, the cytosol 
cannot expand upward or into the dimpled center, and 
the cytoskeletal structure absorbs forces uniformly.  
3.6.  Equations for Biconcave Shape. Fung (1981) 
reviews early equations. The Cassini equation consists 
of all points (x,y) for which the product of the 
distances between (x,y) to both of the foci (o) equals b2.   
 [(x – a)2   + y 2] [(x + a)2  + y2 ] = b4                                         
This describes a circle with radius b and center at (0,0).  
If a and b are constants, two foci are in the xy plane 
located at (-a, 0) and (a, 0). A Cassini oval that 
resembles the profile of a mammalian red blood cell is 
shown in Fig. (2), and for this particular shape, 
arbitrary values are a = 1, b = 1.1.  Shown within is a 
right triangle showing b and a, and a distance to the 
periphery at b(21/2).  The distance a is the distance 
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from a focus to the center of the oval. To determine 
the volume and surface area of a form shaped like a 
mammalian red blood cell we obtain a solid of 
revolution with volume V and surface area (S).  

V = 2 ∫0
√(a2 + b2)  2πx [(√ (b4 + 4a2x2) – (x2 +  

 a2) ]1/2  dx                                  
The integral is well known to be very difficult, but by 
standard algorithms the approximate value for our 
specified values of a and b provide the value for V, 
which for the oval above ≈  6.789 units cubed.   The 
integral for surface area is also complex, as follows: 

S =   ∫0
√(a2 + b2 )   2πxb2 [b4 – a4 + 3 a2x2 + 

    x2 √ (b4 + 4a2x2)/ b4 – (x2 -  a2) (b4 + 4a2x2)]1/2     dx                                                                                                           
Similarly we obtain for the spheroid above a value for 
S ≈ 19.854 units squared.  This agrees with 
observations, but our Volume is considerably lower.   
 I emphasize that by the study of the Cassini ovals, 
the biconcave shape obtained is not to be considered 
so much the path of a moving point on an ellipsoid, 
but instead an evolutionary consequence of adjusting 
the product of two variables.  These are the distance 
from the center of the biconcave disk to a focal point 
on x at a, and the distance from that same focal point 
to the lowest point on the dimple of the upper side of 
the biconcave disk [or on the underside dimple].  
 If one reduces the inner volume, either the value a 
diminishes or the value along y diminishes.  To 
maximize the surface area of the biconcave disk, or the 
periphery of the Cassini oval, the reduced volume 
requires a dimpling, usually a double dimpling. Or it  
could be resolved by prolation to an elongate ellipsoid.  

 
Figure 2.  Cassini Oval.  See text 
. 

Cassini ovals reportedly have “empirical” values.. 
Indeed they have more utility.  Long (2004), who 
suggested the mammal cell was some kind of prolate 
form like a sphere (with poles inverted as “dimples”), 
might have added that the mammal form became 
radial by loss of the marginal bands.  Then volume and 
therefore mass were diminished by loss of the central 
nucleus. The dimpled spheroid bulges up and away 
from the two axes, or down and away for the lower 

quadrants. This may be clarified perhaps by the 
Pythagorean Theorem, by examining the right triangle 
shown in the oval above, and constructing a square on 
each of the three sides.  Inspecting only the right upper 
quadrant, i.e., the upper right triangle, the square on 
the hypotenuse (b) is huge upward and to the right, 
whereas either of the other squares is smaller. The 
important thing is, one obtains an increasingly huge 
bulging effect by shortening the minor axis.  This 
observation becomes interesting in regard to 
consideration of intracellular pressure.  
3.7.  Surface and Pressure.  Intracellular pressure of 
mammalian red blood cells needs study.    Based on 
consideration of the undersurface of the red cell 
membrane, I hypothesize there is a pressure 
differential in the cell. There may be a contraction of 
surface area of the fluid-like erythrocyte analogous to 
surface tension of a raindrop.  The contractile surface 
rounding up as a spherical cell is underpinned by a 
contractile cytoskeleton. Its triangles present a uniform 
tensile field radiating in all directions, just underlying 
the surface. The cytoskeleton is constructed like a 
tightly woven sweater (Liu and Derek, 1992).  Possible 
invaginations of the surface by strains stretch the 
triangles out as equilateral triangles, pulling in series 
along various curved vectors with concerted tension. 

I hypothesize the red blood cell as a biconcave 
disk (when un-deformed by strain) has greater pressure 
under the concave surface of the bulged 
circumferential cell surface. [Note that the convex 
outer surface, observed from the outside, is a concave 
surface facing inward into the endoplasm.]   
Endoplasm between the opposing concave dimples lies 
between two convex inner surfaces.  In line with the 
famous findings long ago of Laplace, where Pn – P1 = 
2T/r, and r is the radius of curvature, less pressure 
should lie between the dimples.  In the biconcave 
mammalian red cell, the hypothesized low pressure in 
the center would enhance the cell’s deformation, to 
bend about the middle, or to extend a firm forward 
surface into a capillary, while allowing any strain 
forces to dissipate in the purely viscous endoplasm. 

 
 
Figure 3. Cell Pressure. P3 > P1, P3  > P2 , P2 = low.   
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3.8. Viscosity and Hydrodynamics.  The erythrocyte 
seems a projectile, when squeezing into tight places, 
whether moving against or penetrating blood flow. 
The advanced mammalian erythrocyte is surely no 
stream-lined projectile until it deforms. Mammal cells  
transport sufficient oxygen, but that may not always 
have been the case in the ancestral camels, which 
seemed to have reverted to an ancient ellipsoidal cell.  
That primitive shape is possibly due to great viscosity 
seen in dehydrated desert camels.  They tolerate thick 
blood plasma (Schmidt-Nielsen, 1964).  

In South American camels, often living at high 
elevations,  their small cells, dense erythrocyte 
numbers, and rich Hb suggest that hypoxia may be 
involved with irregular ellipsoidal shape, although this 
was not claimed (Lewis, 1976).  The reason alpine 
camels have the small, anucleate erythrocytes may 
simply result from inheriting them from ancestral 
desert camels. Large hoofed animals living in warm, 
open country, which is important in the evolution of 
Artiodactyls, must endure water and body heat 
problems. Generally all Artiodactyls have small 
erythrocytes (Gulliver, 1875) and rich Hb (which also 
may help transport some excess body heat, see Coates, 
1975). Both plasma and cells bring inner heat from 
work and ambient sources to the body surface and to 
the lungs.    In dehydrated camels, a biconcave cell 
would be maladaptive.  
 The small cell size, low Reynolds number, and 
huge surface to volume ratio in most mammal cells 
suggest there can be little movement except that 
caused by flow of the plasma.  A fusiform shape of 
deformation is better in narrow capillaries, for 
traversing narrow slits, or working through crowded 
cell aggregations. In larger blood vessels, the red cells 
of mammals “snap back” rapidly into the biconcave 
form and move along without resisting the flow. The 
cell penetrating a narrow capillary vessel must be 
propelled against strains only by the blood pressure, 
perhaps focused from behind by bolus flow. The 
oxygen-transporting cell needs a streamlined form to 
absorb the resistance of the capillary wall. An analogy 
from Long (2004) of an ellipsoid in a cylindrical tube 
shows resemblance to his slender, elliptical weasel 
twisting about in a cylindrical burrow.  Either a weasel,  
an ellipsoidal cell, or a biconcave cell deformed into 
an ellipsoid can “ooze” through tight places. 

A visco-elastic fluid-like cell would slip through 
narrow spaces as easily as a raindrop (Schmid-
Schoebein and Gaehtens, 1981; Thurston, 1996). Any 
strain force imparted into the endoplasm of such a red 

cell is dissipated, but the endoplasm without help 
cannot re-attain its prior form (because it is purely 
viscous). The cytoskeleton, and to some extent the 
elasticity and surface tension of the membrane, can 
pop the shape back to normal.  The dimples would 
likely reappear as two, rather than one deeper pocket.  
Three shallow dimples could appear. Dimples could 
move about rather than change the volume. This 
becomes a synthesis  based upon experiments and 
deductions (Korpman, Bull, Brailsford, Canham, Palek, 
McMillan , Schmid-Schoenbine, and others).  
4.  Conclusion 
Physical effects relating to bending, low pressure 
between dimples, the effects of inertia, surface/volume 
exchange function, and the role of energy conservation 
all affect the dynamics of the erythrocyte, which in 
mammals extrudes the nucleus and loses marginal 
bands. “Visco-elastic” is weak resistance to strain and 
dissipation of strain energy. A cell assuming a shape of 
minimal bending energy does not rule out some 
contractile properties of the liquid-like membrane 
(even surface tension), but especially the tensile effect 
of a curvaceous cytoskeleton. The deformed 
erythrocyte “oozes” through small openings or tubes. 
The biconcave form of mammals avoids strains and 
rides with the current, while maintaining a high 
surface area per unit volume.  It kites along with 
rapidity and little wear.  Noting a few peculiarities 
related to high or low metabolism, or possibly for 
surviving dehydration or hypoxia, a general 
specialization of the mammalian erythrocyte seems a 
driving evolutionary force in mammalian evolution. 
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