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Abstract: We present a method that enables the use of nonparametric EDF-like statistics for analysing fMRI data tha
is known to be autocorrelated over time. Analysis and comparison with existing methods like the common Genera
Linear Model solution or a permutation test confirm its validity and usefulness. In addition, our method requires
considerably less computation time than a permutation or Bayesian test.

Key-Words: fMRI, nonparametric statistics, permutation tests, GLM

1 Introduction fMRI signal properties, is still ongoing.
The tools used to analyse and explore an fMRI data set

During the past few decades, neurosciences have @n be divided into two main categories: model-based and
joyed an ever-growing scientific interest. This could beodel-free ones. The best known representative of the
explained by man’s unrelenting urge to explore the umodel-based tools is the General Linear Model (GLM).
known, but there is also the invention and availability & GLM represents every effect, which is assumed to be
new and more powerful techniques and computers. Tgresent in the recorded fMRI signal, by a single regressor
former have provided new scanners to record the brainwvhich, in addition, is convolved with a so-called haemo-
vivo, the latter made it possible to perform sophisticateginamic response function (HRF) to model the haemody-
statistical analyses at acceptable speeds. One of the seamic delay of the brain [2, 3]. An fMRI signal is thus
ning techniques most frequently usedMagnetic Reso- represented by a linear combination of these regressors.
nance ImagingMRI). The MRI scanner has the advanfhe obtained GLM is solved using ordinary least squares
tage that the anatomy and physiology can be visualig€l.S); the obtained regression coefficients are then com-
non-invasively,i.e., without the use of noxious contrasbined into a single statisticélvalue, which expresses the
agents or harmful radiations. The tefomctional MRI responsiveness of the corresponding brain region with re-
(fMRI) is employed whenever the functioning of orgarspect to the given stimuli. Ordinary Least Squares (OLS)
is investigated by taking multiple successive scans oi&used to solve this GLM.
time. In this paper we focus on model-free methods and pro-

The MRI signals are corrupted by a large number pfse an extension for existing nonparametric statistics in
noise sources.g, physiological ones, mechanical onegyrder to make them applicable to fMRI data. Indeed,
and those inherent to the fMRI principle. A consequen®dRI data has a significant serial correlatiahat, when
'S that activati_on of a brain regio-n causes o.r?Iy al-2% S?(‘:J_"j‘fMRI data is autocorrelatetioth over time and over space. To
nal change with respect to the higher cognitive tasks “SH?&em between both, the temporal autocorrelation is referred to as
3T scanners [1]. Therefore, the development of powerlidliatcorretation-white-the term(spatial) autocorrelatioris reserved
analysis tools, which are able to cope with the speciftandicate the spatial aspect.
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it is not properly taken into account, prohibits a valid However, the application of nonparametric tests to
(nonparametric) statistical analysis. The novel approddiRI data is complicated by the presence of serial cor-
we propose performs equally well in comparison to thelations. As reported by [9], the outcome of any (non-
well-known permutation test. Our method has a serigo@rametric) statistical test is invalid when these serial cor-
advantage over.g, permutation test-based methods oelations are not taken into account. In case of the GLM-
Bayesian methods since it requires a negligible amounbafed test, the GLM’s residue is analysed to obtain a cor-
computer time to apply (a couple of minutes versus seection factor that enables a veracious analysis[11, 12]. In
eral hours). case a nonparametric test is employed, no GLM is used,
This article’s structure is as follows: first, we discugyeventing us to extract a correction factor. Therefore,
the reasons behind our choice for nonparametric statistiesintroduce in this paper a novel method that allows us
for analysing fMRI data sets. Second, we propose thtedake the (serial) autocorrelations into account and that
nonparametric statistical tests: their definition, why serialapplicable to rank-order based nonparametric tests like
correlations prohibit a valid analysis of fMRI signals ughe Kolmogorov-Smirnov test(S), the Mann-Whitney
ing these nonparametric statistics, and how we solved thie-sample testNi\W), and the Crar@r-von Mises two-
problem. Next, we discuss two methods to account fsample testGvM).
this serial correlation, and compare these methods to the
results obtained with the permutation test. For the qua®- Nonparametric Test Statistics for
titative comparisons we use synthetic and real fMRI data Apalysing fMRI Data
sets. Finally, we conclude this article with a discussion
and some general remarks. For the analysis of fMRI data, we selected rank tests that
are based on aempirical distribution function(EDF).
These rank tests are known to be the most powerful non-
parametric ones [13]. Another argument to opt for this
kind of tests becomes clear when we discuss the serial
t%%rrelation problem. Amongst this category we count the

recorded data can be validly analysed using Gaussi %andeM_statlsncal tests [13]. ThMW tesF d_oes not
statistics or not. Since nonparametric tests are the oRfond 1o this category, but the way its statistical values
kind of statistical tests that are guaranteed to be valid 18 qbtamed IS yery S|m|Iar_. Bjefore we dIS'CUS.S each testin
exact whenever the nature of the distribution is unkno ﬁtaﬂ we explain how statistical information is extracted

[4], we explore the application of nonparametric statis{r-om fMRI data.

cal tests, and thus model-free analyses. o _
There is a fair amount of literature discussing the ap-1 EDF Statistical Tests and fMRI (Multi-

plication of nonparametric statistical tests to neuroimag- ~ €ondition) Experimental Designs

ing data, mainly with respect to the significance assegssgitionally, OLS solvers are applied to GLMs to esti-

ment, and to a lesser extent for the detection of activatign. .. e regression coefficients. The regression coeffi-
As significance assessment one can choose for a permylgsis each representing the average activity level of a
tion test [4, 5], the False Discovery Rate (FDR) [6, 7], §f4in spot with respect to a given stimulus, are then com-
Bayesian techniques [8]. These methods are indepeng@it § yith the regression error into one statistical value

from the underlying distribution of the obtained statistjp o ey yresses the relative responsivity of that brain spot.
cal significance values, and are therefore applicable to {jgg procedure is fully described ia,g, [11].
statistical values obtained with both parametric and nony,p, respect to nonparametric, ;tatistics where no

parametric tests. As a nonparametric alternative for tnl%%ression coefficients are available, we compare the

detection of activation, the Kolmogorov-Smirnov test Orcorded values themselves. The here proposed method is
Wilcoxon-based variaRtis often used [9, 10]).

2 Topics of Attention in Performing Sta-
tistical Analyses of fMRI Data

A topic of discussion concerns the question whether

names. Other frequently used names aréMbhan-Whitney Uest and
PThe Mann-Whitney test does appear in literature under differeheWilcoxon rank suntest.
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suitable for any nonparametric (rank-order) test that céhe difference between theévM andKS test is that the
test for a difference between two samples that possibblculation of the statistical values is based ordgdl for
contain an unequal number of data points. To explain tie CvM test (3), while it is simplysug(|dk|) for the KS
method, assume a study usidifferent stimuli, labelled test. The difference in definition causes also a difference
A throughF, and where we want to test the responsivithe range of the statistical valug®; 1) for the KStest,
ness of a brain region in favour of stiméjB, andD over and|0, ) for theCvM test.

stimuluskE (contrast =A+ B+ D — E). For this purpose Three assumptions must be satisfied when applying
we putin samplg X; } all data points recorded under stimthe KSICvM and MW tests [13]: the measurement scale
uli A,B andD, while {Y;} contains those recorded undeshould be ordinal, the random variables should be contin-
stimulusg. The fact that one sample can contain thre@us and the data points should be exchangeable. Only,
times as many data points as the other is correctly dehé third assumption does not hold for fMRI time series
with by the respective statistical tests. A balancing of teince serial correlations are present. Consequently, the

samples is thus obsolete. significance thresholds calculated theoretically for those
EDF statistical tests are not valid since they are derived
3.2 Mann-Whitney Two-Sample Test under the assumption of white noise. In the next section

we first discuss the concept of serial correlations, where

This test checks for a difference in locatior,, the me- ager we propose our solution to correctly analyse corre-
dian. As such, it is the nonparametric counterpart of thg.q yata using rank order tests.

parametrict test that checks for a difference in mean.
Given, two samples of data pointgX} and{Y;}, con-
taining Ny and N, data points respectively, a set of da
points{Z } = {X;} U{Yi} is created and a rank assigned to
the respective data points §X } and{Y;}. The statistical 341 Serial Correlations in fMRI

valueT; is obtained as shown in (2), whelke= Ny + Ny

andyN ; R? represents the sum of squaresahfN ranks. Serial correlations are characterised by two parameters:
The significance valueg are easily calculated sindg is thelag T, and the amount of (auto) correlatipnper lag

approximately a standard normal random variable [13]@s shown in (4) for a first order autoregressive model
(AR(1)). The lag parameter expresses the time over

t:é'4 Rank-Order Statistical Tests and Serial
Correlation

T _ N R(X) (1) which the value ofx at timet is influenced by another
k; one, whilep expresses the amount of influence. In gen-
T NNt eral, the actual value of a fMRI signe(t) is measured by
T, = 2 =. (2) anumber of values from the past as formulated in ¢5) (
\/% SNIR - % represents the standard deviation):

3.3 Kolmogorov-Smirnov & Cramér-von Mises Xt} = px(t-1+u®),  0<pi<1 (4)
Two-Sample Test Xt) = pxX(t—1)+...+pXt—T)+ult) (5

Using the same notatiofX } and{Y;} are represented by whereu(t) is nozrmally distributed with

their EDF: S;(x) and S;(x), respectively. The EDE(x) u(t) =0, 0y, = constantt

represents the fraction ofs that are less than or equal to Outyut—s) = O vt,Vs#0

X [13]. An EDF statistical test then verifies the hypothesis

that both samples are drawn from the same distributionMany of the current (GLM-based) fMRI analysis tools,
based on the deviations between the EDigss S (%) — adopt a two-stage pre-whitening that corrects for serial

S(xc), fork=1,..., (N + Ny) ®The calculation of the significance valg€T,), i.e., the proba-
NoN 2 bility that two empirical distributions are drawn from the same popu-
XNy

s <31(Xk) — Sz(Xk)> (3) lation distribution, is rather complex and can be found in [14, 15] or
(Nx + Ny) X {XTU{Y;} received upon request from the author.

T =
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correlations, to fulfill the requirement that the residuals wfith each other. The-values are then calculated for both
the GLM must be independent and identical distributgd*} and{X2*} using either thélW, KS, or CvM test.

(iid) [16]. This pre-whitening procedure first estimates We now need a method that combines {gax+ 1)

the autocorrelation exploring the residuals of an initigtvalues into a singl@-value for the complete fMRI time
model fit. In a second step the estimated autocorrelatiosignal. Two methods are discussed here. Given the fact
then removed from both the fMRI signal and the model. that two p-values are calculated, a simple multiple com-
well-known pre-whitening method is the Cochrane-Orcygarison correction (MCC) can be used. Another approach
method [17, 16]. We further refer to this serial correlatias quite often used in the field of experimental psychology
corrected method as the OLS-CO method. and is calledneta-analysisMeta-analyses allow combin-
ing two or more results obtained from possibly different
groups to obtain an increased level of power. In fact even
p-values obtained using different statistical tests can be
used, as long as the hypothesis tested for is identical. Be-

Contrary to the GLM that relies on the OLS(-CO), noriore we discuss the results obtained with each method, we
parametric statistical tests do not rely on a GLM and ca#xplain both methods theoretically in the next paragraphs.
not use therefore the obtained residuals to correct for the

presence of serial correlations. Therefore, we developag@@tiple Comparison Correction Method to Combipe
completely new method, at least to our knowledge, whighlues Given the idea that the differeptvalues are ob-
enables us to correct for serial autocorrelations in cagged by performing identical statistical tests, the choice
EDF-like statistical tests are used. It is based on the vafge using a multiple comparison correction (MCC) is
Tmax that represents the maximum lag one wants to c@ther obvious. Personal communication with Benjamini
rect for. From literature, it is known that fMRI signalgind Yekutieli, the authors of the already mentioned FDR,
on average do not exceed an amount of autocorrelati@nfirmed that a simple "Simes FDR test for the inter-
p = 0.4 at lag one. The autocorrelation at higher lags é&ction hypothesis” is valid to obtain a single corrected

rather negligible, although some authors do correct forpit-value. Such Simes test can be described as follows:
as well [12] using AR models of second or higher order.

The technique we propose here is theoretically applicable 1. Order thep-values as follows: p; < p2 <
for any value oftyax. oo S P(tmactl)-

Without loss of generality, we assume here that only a
lag one autocorrelation correction is necessary, and that
the contrast equala — B. According to the method pre-

sented in section 3.XX; } contains those data points thath byi disad £ thi hni i ad
are recorded during stimulu and{Y;} those recorded | "¢ Obvious disadvantage of this technique is a decrease

during stimulusB. We limit this discussion here to thén sensitivity as we will see in the next sections where we

sample{X} since{Yi} can be treated analogously. wdisplay the outcome of some experiments.
divide {X} into Tmax+ 1 = 2 parts, labelledX*} and

3.4.2 Methods for Correctly Applying Nonparamet-
ric Tests

2. Vi,3j | p* = pj % (Tmax+1)/]
and g >maxpix (4)).
|

{X2*} according to the formula: Meta-Analysis to Combing@-Values Meta-analysis is
described as the analysis of analyses [18, 19]. It is the
Xil* = X statistical analysis of a large collection of analysis results
Xiz* = Xok1 (6) from individual studies for the purpose of integrating the

findings. We use here the Stouffer combined test, which

withd k= 1,..., [Nx/(Tmax+1)|. This separation makedS Very easy to interpret and to implement. With respect to
that the data points X"} (or {X2*}) have no longer OUr case, the question arises whether we can consider the

the original lag one correlation and are thus exchangeaijiéerent p-values, which we extracted from the different
partial time series, as exchangeable. We will verify this in

d|x| or floor(x) gives the largest integet x. paragraph 3.6.
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The Stouffer combined test [19] converts thealues randomly extracting time signals from the grey matter im-
into zvalues. Indeed, given the fact that evgrvalue ages. Finally, a second order polynomial detrending and
has an identical probability to occup-values are uni- unit standardisation are applied to each one of them. The
formly distributed and can therefore be transformed inest two steps are also applied to the synthetic data sets.
z-values under the null hypothesis. The obtaireglues  We used both data sets to examine both the false pos-
are summed properly (7) and transformed into a sipgleitives rate (FPR) and the sensitivity or the true positives
value. We denote thevalue derived from thei-value of rate (TPR). For the FPR scenario, a bare noise signal
every partial time series kg, withi = 1,...,(Tmax+1). is used to whichno block pulse (see further) is added
The globalz-value, denoted by, for the complete fMRI but which is examined as if a block pulse is present.
time series can then be calculated as: Therefore, the null hypothesis states that no activation is
present, and a rejection of this null hypothesis refers to
Ze= ZI _—, (7) afalsepositive. For the TPR scenario, an on-off block

9 Vimaxt1 pulse is used to which a noise signal is added and that

WhereTmax+ 1 equals the number of tests combined, th{ﬁsexamined as sgch_. The nL_JII hypothesis re.mains identi-
the number of partial time series examined. This proc,cé"ll’ but now, a rejection of this nul! hypotheS|s_ refers to a
dure is based on the sum of the normal deviates being}rilt'-e positive. The block pulse, which is used in the FPR

self a normal deviate, with the variance equal to the nuﬁ‘l,—TPR testing scenarios, Is an on-off block pu_Is_e tr_am
ber of observations summed [19]. The glopalalue,Ps with 14 blocks of 30 scans each and with a repetition time

can be derived very easily froi. between'sgccessive meqsurements equal to BR Jo
better mimic real fMRI signals, we convolved the bare
block-pulse train with an HRF (HD %s) [2].

With respect to the nonparametric statistical tests where
We start this paragraph with a discussion of the used dateGLM is used to analyse the signals, we have opted for
sets, where after we briefly discuss the permutation testvery simple approach to cope with this HRF: we left
this test, together with a GLM-based test, is used to cothe transitional scans out from the analysis, the first
pare our results with. [HD/TR] data point8 of every block are skipped. Ex-

Two kinds of data sets are used: a synthetic one, whidriments have shown that leaving out these transitional
is constructed using Gaussian noise that is autocorrelateans increases the power and performance of the statisti-
using an AR(1) model that very well resembles the auttal tests (results not shown).
correlation structure of real fMRI dat@{= 0.4), and a  Besides the OLS-CO test, we compare our novel ap-
hybrid one that is constructed using fMRI null data, whighroach also with the permutation test. The permutation
consists of fMRI signals that are recorded while the vakst used here is the one introduced for fMRI by [4]. It al-
unteer in the scanner was at rest and not subject to fys to express the statistical significance using the data
stimulus. FMRI-like signals are then obtained by addingelf as a null distribution and is therefore a better point
a synthetic block pulse to both kinds of noise signals. of reference than the OLStest that is known to be too

Synthetic data sets have the advantage that their preptimistic [20]. The test permutes the labels (conditions)
erties are exactly known, while hybrid data sets better ceither than the measurements themselves. This guaran-
respond with the real world situation. The hybrid data sees that the serial correlation structure is preserved within
we use here is extracted from the fMRI images made p@ach permuted time series. To obtain a reliable null dis-
licly available by the Brain Mapping Unit (University oftribution we opted to dravi,000 permutations for each
Cambridge, UK). In order to extract noise signals frofvRI signal. We calculate for every permuted time series
these images, we first pre-processed them: realignmeet statistical value, being it either the OLS4lue, the
using SPM99 software (Statistical Parameter Mapping, KS, or theT, value. The statistical significance value
London, UK), followed by a grey matter segmentatiofp) is then defined as the ratio of statistical values smaller
using the FSL brain extraction tool (FMRIB Software Li-
brary, Oxford, UK). Noise signals are then generated by®[x] or ceil(x) gives the smallest integer x, with x € R.

Tmaxt1 Z

3.5 Material and Methods for Validation
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than the one of the original time series. conclude that the OLSfest fails the nominal size of re-
jections (.01) as was to be expected. The OLS-C(akt
3.6 Validation and Comparison already better controls the FPR than the QLi8ét. The

. . o FPR values for the uncorrected nonparametric statistical
To obtain reliable results, we based every statistical valgis deviate in a severe way from the nominal size. This
(or values and conclusions thereof derived) IHO000 s iy agreement with the statement that the number of false
time series or iterations. This allows us to use the Sfﬁ)‘sitives (for theK Stest) is higher than that of thetest

tistically common threshold 08.01, since this nominal (9] our simulations confirm this and extend this finding
o guarantees that, at least theoretically, 100 cases sheylghe M andCvM (not shown) tests.

pass the test which is a significant amount to be detectegll_ bett trol the FPR for th i test
properly. First, we discuss the TPR & FPR results ob- 0 better controt the or th€ honparametric 1ests

tained for the synthetic data set, next we discuss i NOW examine the results obtained using either of the
curves for the hybrid data set ' correction schemes: the first column of Fig. 2 displays the

results obtained with the FDR scheme, while the second
column shows the results obtained with the meta-analysis
scheme. We restricted these figures to the curves for
For the sake of clarity, we first present in Fig. 1 the TFRe OLSt, OLS-COt, andMW statistical tests to avoid
curves for all statistical tests, and their corresponding pehclear figure’s We notice that the FPR is clearly de-
mutation tests. At first glance, Fig. 1 indicates that ti#éeased independent of the correction scheme used. Com-
MW- andCvM-tests have more power than tK&test. paring both schemes with each other, we see that only the
Since theMW turned out to be the most powerful, and t6DR scheme guarantees that the nominal iz@], is
avoid unclear figures we display in the subsequent figufglieved. The meta-analysis scheme clearly fails to con-
the MW test as only nonparametric test. Based on di@l the FPR correctly for reasonable values of the lag pa-
simulations we can also state that analog conclusions @&@eter. Other simulations (not shown here) confirm this
valid for theCvM andK Stests. We included th@vMtest conclusion also for th&S- andCvM-test, and also show

in our examination since we noticed overall that@ev that, with respect to both the FPR and TPR values, the
test outperforms thK Stest (Fig. 2). MW andCvM perform almost similar.

Considering again the FDR correction scheme and a
correction up to lag 3, the power of the nonparametric
statistical MW test approaches that of the permutation
tests. As shown in Fig. 2(a), the TPR curves for the non-
parametric and permutation tests almost coincide for this
correction. Considering the FPR values with respect to
this synthetic data set and the FDR correction scheme,
B Fig. 2(d) shows that also the FPR values nearly coincide,
ol ] TG while that of the OLS-CQis slightly larger than the nom-

inal size. Comparing the nonparametric statistical tests
* Noisodevel with the OLS-CO¥ test we can summarise that a lag 1
correction has already a better false positive control than
Figure 1. TPR curves for the OLE/ MW-, KS,, andCvM-test and the standard OL$#est, that a lag 2 correction suffices to
the_lr corrt_aspondlng p_ermu_tatlon tests_ as a function of the amount % . . -
noise (noise-levek-axis) using synthetic data. The curves for the pep- tain a false positive rate equal to that of the OLSO/
mutation tests have a circular marker and a line-style identical to #&$t, but that only a lag 3 correction returns a reasonable

line-style of the statistical test on which the permutation test is basglse positives control.
A value of one on thg-axis corresponds to 100% true activations.

3.6.1 Results for the Synthetic Data Set

True Positives Ratio (-o-: Permutation)

0.9
08
0.7
06

g o5

&

0.4

0.3

0.2

If we combine the TPR results with the FPR values for frigyres for the SandCvM statistical tests, can be received upon
the uncorrected cas& € 0 case at Fig. 2(d)), we mustequest from the author.
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True Positives Ratio (-0-: Permutation)
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Figure 2. TPR & FPR curves for the OLS(-C@)MW tests. The first two columns are the results obtained using the AR(1) synthetic data
set, the third column(€) & (f)) contains the results obtained for the hybrid data set. aggo (c) display TPR curves as a function of the
amount of noisexaxis represents the amount of noise added to the block pulse, expressed in units standard désjatqf) display the

FPR curvesy-axis,1 = 1009 for corrections in the discrete ranggax= [1,5] (x-axis). The figures in the first and third column are obtained

with the FDR scheme, while those of the second column are obtained with the meta analysis correction scheme. The lag we have corrected f
is represented by the value behind M®&/ notation in the legend. If no value is given, no correction is applied.

3.6.2 Results for the Hybrid Data Set parametric statistical test better matches the OLS(HCO)/

' ' _ _ TPR values. Second, when we compare the TPR & FPR
Using synthetic data sets the properties of which are w@lkves, we see again that a lag 3 FDR correction has a
known, we found that only the FDR scheme with a 18gtter EPR control than the OLS-Etést.

3 correction seems to have a good FPR control. We novgy investigating the autocorrelation coefficient plot,

repeat the same yalidation/comparison procedure with¢@a can define the value tf.axas the lag value for which
spect to the hybrid data set to verify whether the safi autocorrelation coefficient drops below a given thresh-
scheme and correction level still offer a good FPR contrg|g. For both the synthetic AR(1) autocorrelated Gaussian

These results are shown in the third column of Fig. 2. npjse and this hybrid data set, a correction at lag 3 seems
We can deduce the following items from these and ttigcontrol the false positive rate rather well.
previous figures: first, and in correspondence to what the-

ory predicts [13], we see that when the data is deriv§d7 Discussion and Conclusion
from a Gaussian process (Fig. 1), the classic OLS test out-

performs the nonparametric tests with respect to its powkaditionally, a General Linear Model is used to analyse
Contrary, if the data is derived from a non-Gaussian pftMRI data. However, the question arises whether such
cess, as is the case with the hybrid data sets, the namalysis is valid given the Gaussian and linear assump-

7
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tions underlying these methods. Specific pre-processingthod, 2) we remind the reader that the OLS-based tests
operations like data-smoothing [11] can help the datee rather optimistic [20]. This optimistic behaviour is
meet the required assumptions. We started investigatiogfirmed by the OL$/permutation test that has clearly
nonparametric statistical tests, to circumvent the questiess power than the OLS(-C®}est.
itself; moreover, nonparametric tests are the only kind ofAnother minor disadvantage of our method is the fact
statistical tests that are guaranteed to be valid and exadhat it is only applicable for block design fMRI studies
case the nature of the distribution is unknown [4]. and not for event-related fMRI studies. In addition, and
Permutation tests and Bayesian technigues are goodaftrary to the GLM based methods, nonparametric sta-
ternatives but require a huge amount of computing tintistical tests do not allow to model additional effects such
For this reason we examined whether classic nonparanasteye movements or cardio-respiratory movements. A
ric statistical tests can be adapted for application to fMRossible solution with respect to the nonparametric tests
data, which is known to be serial autocorrelated. We fis-to apply a statistical test that checks for any relationship
cused in this article especially on the Mann-Whitney tebgtween the selected time series and any of the effects. A
although our research confirms that the analog conalarning for the researcher can then be issued in case a
sions hold for the Kolmogorov-Smirnov and the Cém given threshold is surpassed.
von Mises test. To cope with the temporal autocorrela-Last, our approach allows also the use of statistical tests
tions, we developed and examined two possible methdioist reveal additional information about the detected acti-
to control the FPR of these nonparametric tests: one bagatibn. [10] mentioned already that application of a range
on the False Discovery Rate (FDR, a multiple compadif statistical procedures, parametric and data-driven, lin-
son correction method), the other based on meta-analysas.and nonlinear, would be most useful. Regions might
Using realistic synthetic data sets, we investigated bashow an equal average level of activity, but a different
The meta-analysis scheme, albeit promising when calistribution of the observed activation. The application
sidering the TPR values (Fig. 2(b)), clearly fails to cof e.g, the Crangr-von Mises in addition to a Mann-
trol the false positive rate sufficiently. Consequently, onWhitney test is therefore certainly a source of additional
the FDR correction scheme fulfills our needs. Since tinformation for the researcher.
time needed to perform this serial correlation correctionin conclusion, we can state that we have developed
method is within the order of seconds, our method haga anethod that enables the application of EDF-like non-
clear advantage with respect g, the permutation testparametric tests to fMRI data by accounting for the pres-
or Bayesian techniques. ence of serial correlations. Our method also enables the
Furthermore, a current path of research might rendse of statistical tests that check for a difference in dis-
the FDR technique even more promising: Yekutieli &ibution and that thus return additional information to
Benjamini (personal communication, [21]) are develophe researcher. In addition, certain pre-processing steps
ing hierarchical extensions to the basic FDR principliée data-smoothing, which tamper the data significantly,
which allows to include information gathered while inean be omitted. Finally, our method requires consider-
vestigating part of the probleni¢., the serial correlation ably less computation time (order of seconds) with re-
correction method), into the procedure that calculates agect to other nonparametric tests like the permutation or
justedp-values for the complete problem (multiple conBayesian tests.
parison correction). This path of research might return
a solution yielding a higher sensitivity while keeping thacknowledgementP.A. De Mazére is currently supported by
FPR still within bounds. a scholarship from the European Commission (NEST-2003-
With respect to the lower sensitivity of the nonpar9—12963)' M.M. Van Hulle is supported by research grants re-

: . : .___ceived from the Belgian Fund for Scientific Research — Flan-
metric tests (even the permutation test) in comparlsor.ldgdrs (G.0248.03 and G.0234.04), the Interuniversity Attrac-

the OLS-COY approach,. we Ca'n mgntlon o items 'Bon Poles Programme — Belgian Science Policy (IUAP P5/04),
defence of them: 1) using an identical HRF model f@fe Flemish Regional Ministry of Education (Belgium) (GOA
both the creation of the synthetic signals and their anapp00/11), and the European Commission (NEST-2003-012963
sis, which is in practice never the case, favours the O STREP-2002-016276).
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