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Abstract:We present a method that enables the use of nonparametric EDF-like statistics for analysing fMRI data that
is known to be autocorrelated over time. Analysis and comparison with existing methods like the common General
Linear Model solution or a permutation test confirm its validity and usefulness. In addition, our method requires
considerably less computation time than a permutation or Bayesian test.
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1 Introduction

During the past few decades, neurosciences have en-
joyed an ever-growing scientific interest. This could be
explained by man’s unrelenting urge to explore the un-
known, but there is also the invention and availability of
new and more powerful techniques and computers. The
former have provided new scanners to record the brainin
vivo, the latter made it possible to perform sophisticated
statistical analyses at acceptable speeds. One of the scan-
ning techniques most frequently used isMagnetic Reso-
nance Imaging(MRI). The MRI scanner has the advan-
tage that the anatomy and physiology can be visualised
non-invasively,i.e., without the use of noxious contrast
agents or harmful radiations. The termfunctional MRI
(fMRI) is employed whenever the functioning of organs
is investigated by taking multiple successive scans over
time.

The MRI signals are corrupted by a large number of
noise sources,e.g., physiological ones, mechanical ones,
and those inherent to the fMRI principle. A consequence
is that activation of a brain region causes only a 1-2% sig-
nal change with respect to the higher cognitive tasks using
3T scanners [1]. Therefore, the development of powerful
analysis tools, which are able to cope with the specific

fMRI signal properties, is still ongoing.
The tools used to analyse and explore an fMRI data set

can be divided into two main categories: model-based and
model-free ones. The best known representative of the
model-based tools is the General Linear Model (GLM).
A GLM represents every effect, which is assumed to be
present in the recorded fMRI signal, by a single regressor
which, in addition, is convolved with a so-called haemo-
dynamic response function (HRF) to model the haemody-
namic delay of the brain [2, 3]. An fMRI signal is thus
represented by a linear combination of these regressors.
The obtained GLM is solved using ordinary least squares
(OLS); the obtained regression coefficients are then com-
bined into a single statisticalt-value, which expresses the
responsiveness of the corresponding brain region with re-
spect to the given stimuli. Ordinary Least Squares (OLS)
is used to solve this GLM.

In this paper we focus on model-free methods and pro-
pose an extension for existing nonparametric statistics in
order to make them applicable to fMRI data. Indeed,
fMRI data has a significant serial correlationa that, when

afMRI data is autocorrelatedboth over time and over space. To
discern between both, the temporal autocorrelation is referred to as
serial correlation, while the term(spatial) autocorrelationis reserved
to indicate the spatial aspect.
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it is not properly taken into account, prohibits a valid
(nonparametric) statistical analysis. The novel approach
we propose performs equally well in comparison to the
well-known permutation test. Our method has a serious
advantage over,e.g., permutation test-based methods or
Bayesian methods since it requires a negligible amount of
computer time to apply (a couple of minutes versus sev-
eral hours).

This article’s structure is as follows: first, we discuss
the reasons behind our choice for nonparametric statistics
for analysing fMRI data sets. Second, we propose three
nonparametric statistical tests: their definition, why serial
correlations prohibit a valid analysis of fMRI signals us-
ing these nonparametric statistics, and how we solved this
problem. Next, we discuss two methods to account for
this serial correlation, and compare these methods to the
results obtained with the permutation test. For the quan-
titative comparisons we use synthetic and real fMRI data
sets. Finally, we conclude this article with a discussion
and some general remarks.

2 Topics of Attention in Performing Sta-
tistical Analyses of fMRI Data

A topic of discussion concerns the question whether the
recorded data can be validly analysed using Gaussian
statistics or not. Since nonparametric tests are the only
kind of statistical tests that are guaranteed to be valid and
exact whenever the nature of the distribution is unknown
[4], we explore the application of nonparametric statisti-
cal tests, and thus model-free analyses.

There is a fair amount of literature discussing the ap-
plication of nonparametric statistical tests to neuroimag-
ing data, mainly with respect to the significance assess-
ment, and to a lesser extent for the detection of activation.
As significance assessment one can choose for a permuta-
tion test [4, 5], the False Discovery Rate (FDR) [6, 7], or
Bayesian techniques [8]. These methods are independent
from the underlying distribution of the obtained statisti-
cal significance values, and are therefore applicable to the
statistical values obtained with both parametric and non-
parametric tests. As a nonparametric alternative for the
detection of activation, the Kolmogorov-Smirnov test or a
Wilcoxon-based variantb is often used [9, 10]).

bThe Mann-Whitney test does appear in literature under different

However, the application of nonparametric tests to
fMRI data is complicated by the presence of serial cor-
relations. As reported by [9], the outcome of any (non-
parametric) statistical test is invalid when these serial cor-
relations are not taken into account. In case of the GLM-
based test, the GLM’s residue is analysed to obtain a cor-
rection factor that enables a veracious analysis [11, 12]. In
case a nonparametric test is employed, no GLM is used,
preventing us to extract a correction factor. Therefore,
we introduce in this paper a novel method that allows us
to take the (serial) autocorrelations into account and that
is applicable to rank-order based nonparametric tests like
the Kolmogorov-Smirnov test (KS), the Mann-Whitney
two-sample test (MW), and the Craḿer-von Mises two-
sample test (CvM).

3 Nonparametric Test Statistics for
Analysing fMRI Data

For the analysis of fMRI data, we selected rank tests that
are based on anempirical distribution function(EDF).
These rank tests are known to be the most powerful non-
parametric ones [13]. Another argument to opt for this
kind of tests becomes clear when we discuss the serial
correlation problem. Amongst this category we count the
KSandCvM statistical tests [13]. TheMW test does not
belong to this category, but the way its statistical values
are obtained is very similar. Before we discuss each test in
detail we explain how statistical information is extracted
from fMRI data.

3.1 EDF Statistical Tests and fMRI (Multi-
Condition) Experimental Designs

Traditionally, OLS solvers are applied to GLMs to esti-
mate the regression coefficients. The regression coeffi-
cients, each representing the average activity level of a
brain spot with respect to a given stimulus, are then com-
bined with the regression error into one statistical value
that expresses the relative responsivity of that brain spot.
This procedure is fully described in,e.g., [11].

With respect to nonparametric statistics where no
regression coefficients are available, we compare the
recorded values themselves. The here proposed method is

names. Other frequently used names are theMann-Whitney Utest and
theWilcoxon rank sumtest.
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suitable for any nonparametric (rank-order) test that can
test for a difference between two samples that possibly
contain an unequal number of data points. To explain the
method, assume a study using6 different stimuli, labelled
A throughF , and where we want to test the responsive-
ness of a brain region in favour of stimuliA,B, andD over
stimulusE (contrast =A+ B+ D−E). For this purpose
we put in sample{Xi} all data points recorded under stim-
uli A,B andD, while {Yi} contains those recorded under
stimulusE. The fact that one sample can contain three
times as many data points as the other is correctly dealt
with by the respective statistical tests. A balancing of the
samples is thus obsolete.

3.2 Mann-Whitney Two-Sample Test

This test checks for a difference in location,i.c., the me-
dian. As such, it is the nonparametric counterpart of the
parametrict test that checks for a difference in mean.
Given, two samples of data points,{Xi} and{Yi}, con-
taining Nx andNy data points respectively, a set of data
points{Zi}= {Xi}S{Yi} is created and a rank assigned to
the respective data points of{Xi} and{Yi}. The statistical
valueT1 is obtained as shown in (2), whereN = Nx +Ny

and∑N
i=1R2

i represents the sum of squares ofall N ranks.
The significance valuesp are easily calculated sinceT1 is
approximately a standard normal random variable [13].

T =
Nx

∑
k=1

R(Xk) (1)

T1 =
T−Nx

N+1
2√

NxNy

N(N−1) ∑N
i=1R2

i − NxNy(N+1)2

4(N−1)

. (2)

3.3 Kolmogorov-Smirnov & Cramér-von Mises
Two-Sample Test

Using the same notation,{Xi} and{Yi} are represented by
their EDF:S1(x) andS2(x), respectively. The EDFS(x)
represents the fraction ofXis that are less than or equal to
x [13]. An EDF statistical test then verifies the hypothesis
that both samples are drawn from the same distribution,
based on the deviations between the EDFs:dk = S1(xk)−
S2(xk), for k = 1, . . . ,(Nx +Ny).

T2 =
NxNy

(Nx +Ny)2 ∑
xk∈{Xi}∪{Yi}

(
S1(xk)−S2(xk)

)2
(3)

The difference between theCvM andKS test is that the
calculation of the statistical values is based on alldks for
theCvM test (3), while it is simplysup(|dk|) for the KS
test. The difference in definition causes also a difference
in the range of the statistical values:[0,1] for theKS test,
and[0,∞) for theCvM testc.

Three assumptions must be satisfied when applying
the KS/CvM andMW tests [13]: the measurement scale
should be ordinal, the random variables should be contin-
uous and the data points should be exchangeable. Only,
the third assumption does not hold for fMRI time series
since serial correlations are present. Consequently, the
significance thresholds calculated theoretically for those
EDF statistical tests are not valid since they are derived
under the assumption of white noise. In the next section
we first discuss the concept of serial correlations, where
after we propose our solution to correctly analyse corre-
lated data using rank order tests.

3.4 Rank-Order Statistical Tests and Serial
Correlation

3.4.1 Serial Correlations in fMRI

Serial correlations are characterised by two parameters:
the lag τ, and the amount of (auto) correlationρ per lag
as shown in (4) for a first order autoregressive model
(AR(1)). The lag parameterτ expresses the time over
which the value ofx at time t is influenced by another
one, whileρ expresses the amount of influence. In gen-
eral, the actual value of a fMRI signalx(t) is measured by
a number of values from the past as formulated in (5) (σ
represents the standard deviation):

x(t) = ρ1x(t−1)+u(t), 0 6 ρi 6 1 (4)

x(t) = ρ1x(t−1)+ . . .+ρτx(t− τ)+u(t) (5)

whereu(t) is normally distributed with

ū(t) = 0, σ2
u(t) = constant∀t

σu(t)u(t−s) = 0 ∀t,∀s 6= 0

Many of the current (GLM-based) fMRI analysis tools,
adopt a two-stage pre-whitening that corrects for serial

cThe calculation of the significance valuep(T2), i.e., the proba-
bility that two empirical distributions are drawn from the same popu-
lation distribution, is rather complex and can be found in [14, 15] or
received upon request from the author.
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correlations, to fulfill the requirement that the residuals of
the GLM must be independent and identical distributed
(iid) [16]. This pre-whitening procedure first estimates
the autocorrelation exploring the residuals of an initial
model fit. In a second step the estimated autocorrelation is
then removed from both the fMRI signal and the model. A
well-known pre-whitening method is the Cochrane-Orcutt
method [17, 16]. We further refer to this serial correlation
corrected method as the OLS-CO method.

3.4.2 Methods for Correctly Applying Nonparamet-
ric Tests

Contrary to the GLM that relies on the OLS(-CO), non-
parametric statistical tests do not rely on a GLM and can-
not use therefore the obtained residuals to correct for the
presence of serial correlations. Therefore, we developed a
completely new method, at least to our knowledge, which
enables us to correct for serial autocorrelations in case
EDF-like statistical tests are used. It is based on the value
τmax that represents the maximum lag one wants to cor-
rect for. From literature, it is known that fMRI signals
on average do not exceed an amount of autocorrelation
ρ = 0.4 at lag one. The autocorrelation at higher lags is
rather negligible, although some authors do correct for it
as well [12] using AR models of second or higher order.
The technique we propose here is theoretically applicable
for any value ofτmax.

Without loss of generality, we assume here that only a
lag one autocorrelation correction is necessary, and that
the contrast equalsA−B. According to the method pre-
sented in section 3.1,{Xi} contains those data points that
are recorded during stimulusA, and{Yi} those recorded
during stimulusB. We limit this discussion here to the
sample{Xi} since{Yi} can be treated analogously. We
divide {Xi} into τmax+ 1 = 2 parts, labelled{X1∗

i } and
{X2∗

i } according to the formula:

X1∗
i = X2k

X2∗
i = X2k+1 (6)

withd k = 1, . . . ,bNX/(τmax+1)c. This separation makes
that the data points in{X1∗

i } (or {X2∗
i }) have no longer

the original lag one correlation and are thus exchangeable

dbxc or f loor(x) gives the largest integer6 x.

with each other. Thep-values are then calculated for both
{X1∗

i } and{X2∗
i } using either theMW, KS, orCvM test.

We now need a method that combines the(τmax+ 1)
p-values into a singlep-value for the complete fMRI time
signal. Two methods are discussed here. Given the fact
that two p-values are calculated, a simple multiple com-
parison correction (MCC) can be used. Another approach
is quite often used in the field of experimental psychology
and is calledmeta-analysis. Meta-analyses allow combin-
ing two or more results obtained from possibly different
groups to obtain an increased level of power. In fact even
p-values obtained using different statistical tests can be
used, as long as the hypothesis tested for is identical. Be-
fore we discuss the results obtained with each method, we
explain both methods theoretically in the next paragraphs.

Multiple Comparison Correction Method to Combinep-
Values Given the idea that the differentp-values are ob-
tained by performing identical statistical tests, the choice
for using a multiple comparison correction (MCC) is
rather obvious. Personal communication with Benjamini
and Yekutieli, the authors of the already mentioned FDR,
confirmed that a simple ”Simes FDR test for the inter-
section hypothesis” is valid to obtain a single corrected
p∗-value. Such Simes test can be described as follows:

1. Order thep-values as follows: p1 ≤ p2 ≤
. . .≤ p(τmax+1).

2. ∀i,∃ j | p∗ = p j × (τmax+1)/ j
and pj ≥max

i
(pi× ( j

i )).

The obvious disadvantage of this technique is a decrease
in sensitivity as we will see in the next sections where we
display the outcome of some experiments.

Meta-Analysis to Combinep-Values Meta-analysis is
described as the analysis of analyses [18, 19]. It is the
statistical analysis of a large collection of analysis results
from individual studies for the purpose of integrating the
findings. We use here the Stouffer combined test, which
is very easy to interpret and to implement. With respect to
our case, the question arises whether we can consider the
different p-values, which we extracted from the different
partial time series, as exchangeable. We will verify this in
paragraph 3.6.
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The Stouffer combined test [19] converts thep-values
into z-values. Indeed, given the fact that everyp-value
has an identical probability to occur,p-values are uni-
formly distributed and can therefore be transformed into
z-values under the null hypothesis. The obtainedz-values
are summed properly (7) and transformed into a singlep-
value. We denote thez-value derived from thepi-value of
every partial time series byzi , with i = 1, . . . ,(τmax+ 1).
The globalz-value, denoted byZc, for the complete fMRI
time series can then be calculated as:

Zc =
τmax+1

∑
i=1

zi√
τmax+1

, (7)

whereτmax+1 equals the number of tests combined, thus
the number of partial time series examined. This proce-
dure is based on the sum of the normal deviates being it-
self a normal deviate, with the variance equal to the num-
ber of observations summed [19]. The globalp-value,Pc,
can be derived very easily fromZc.

3.5 Material and Methods for Validation

We start this paragraph with a discussion of the used data
sets, where after we briefly discuss the permutation test:
this test, together with a GLM-based test, is used to com-
pare our results with.

Two kinds of data sets are used: a synthetic one, which
is constructed using Gaussian noise that is autocorrelated
using an AR(1) model that very well resembles the auto-
correlation structure of real fMRI data (ρ1 = 0.4), and a
hybrid one that is constructed using fMRI null data, which
consists of fMRI signals that are recorded while the vol-
unteer in the scanner was at rest and not subject to any
stimulus. FMRI-like signals are then obtained by adding
a synthetic block pulse to both kinds of noise signals.

Synthetic data sets have the advantage that their prop-
erties are exactly known, while hybrid data sets better cor-
respond with the real world situation. The hybrid data set
we use here is extracted from the fMRI images made pub-
licly available by the Brain Mapping Unit (University of
Cambridge, UK). In order to extract noise signals from
these images, we first pre-processed them: realignment
using SPM99 software (Statistical Parameter Mapping,
London, UK), followed by a grey matter segmentation
using the FSL brain extraction tool (FMRIB Software Li-
brary, Oxford, UK). Noise signals are then generated by

randomly extracting time signals from the grey matter im-
ages. Finally, a second order polynomial detrending and
unit standardisation are applied to each one of them. The
last two steps are also applied to the synthetic data sets.

We used both data sets to examine both the false pos-
itives rate (FPR) and the sensitivity or the true positives
rate (TPR). For the FPR scenario, a bare noise signal
is used to whichno block pulse (see further) is added
but which is examined as if a block pulse is present.
Therefore, the null hypothesis states that no activation is
present, and a rejection of this null hypothesis refers to
a falsepositive. For the TPR scenario, an on-off block
pulse is used to which a noise signal is added and that
is examined as such. The null hypothesis remains identi-
cal, but now, a rejection of this null hypothesis refers to a
true positive. The block pulse, which is used in the FPR
& TPR testing scenarios, is an on-off block pulse train
with 14 blocks of 30 scans each and with a repetition time
between successive measurements equal to TR =3s. To
better mimic real fMRI signals, we convolved the bare
block-pulse train with an HRF (HD =7s) [2].

With respect to the nonparametric statistical tests where
no GLM is used to analyse the signals, we have opted for
a very simple approach to cope with this HRF: we left
the transitional scans out from the analysis,i.e. the first
dHD/TRe data pointse of every block are skipped. Ex-
periments have shown that leaving out these transitional
scans increases the power and performance of the statisti-
cal tests (results not shown).

Besides the OLS-CO test, we compare our novel ap-
proach also with the permutation test. The permutation
test used here is the one introduced for fMRI by [4]. It al-
lows to express the statistical significance using the data
itself as a null distribution and is therefore a better point
of reference than the OLS/t-test that is known to be too
optimistic [20]. The test permutes the labels (conditions)
rather than the measurements themselves. This guaran-
tees that the serial correlation structure is preserved within
each permuted time series. To obtain a reliable null dis-
tribution we opted to draw1,000 permutations for each
fMRI signal. We calculate for every permuted time series
the statistical value, being it either the OLS/t value, the
T1, KS, or theT2 value. The statistical significance value
(p) is then defined as the ratio of statistical values smaller

edxe or ceil(x) gives the smallest integer> x, with x∈ R.
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than the one of the original time series.

3.6 Validation and Comparison

To obtain reliable results, we based every statistical value
(or values and conclusions thereof derived) on10,000
time series or iterations. This allows us to use the sta-
tistically common threshold of0.01, since this nominal
α guarantees that, at least theoretically, 100 cases should
pass the test which is a significant amount to be detected
properly. First, we discuss the TPR & FPR results ob-
tained for the synthetic data set, next we discuss both
curves for the hybrid data set.

3.6.1 Results for the Synthetic Data Set

For the sake of clarity, we first present in Fig. 1 the TPR
curves for all statistical tests, and their corresponding per-
mutation tests. At first glance, Fig. 1 indicates that the
MW- andCvM-tests have more power than theKS-test.
Since theMW turned out to be the most powerful, and to
avoid unclear figures we display in the subsequent figures
the MW test as only nonparametric test. Based on our
simulations we can also state that analog conclusions are
valid for theCvM andKStests. We included theCvM test
in our examination since we noticed overall that theCvM
test outperforms theKS test (Fig. 2).
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True Positives Ratio (-o-: Permutation)

OLS
OLS-CO
CvM
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Figure 1: TPR curves for the OLS/t, MW-, KS-, andCvM-test and
their corresponding permutation tests as a function of the amount of
noise (noise-level,x-axis) using synthetic data. The curves for the per-
mutation tests have a circular marker and a line-style identical to the
line-style of the statistical test on which the permutation test is based.
A value of one on they-axis corresponds to 100% true activations.

If we combine the TPR results with the FPR values for
the uncorrected case (x = 0 case at Fig. 2(d)), we must

conclude that the OLS/t test fails the nominal size of re-
jections (0.01) as was to be expected. The OLS-CO/t test
already better controls the FPR than the OLS/t test. The
FPR values for the uncorrected nonparametric statistical
tests deviate in a severe way from the nominal size. This
is in agreement with the statement that the number of false
positives (for theKS-test) is higher than that of thet-test
[9]. Our simulations confirm this and extend this finding
to theMW andCvM (not shown) tests.

To better control the FPR for the nonparametric tests
we now examine the results obtained using either of the
correction schemes: the first column of Fig. 2 displays the
results obtained with the FDR scheme, while the second
column shows the results obtained with the meta-analysis
scheme. We restricted these figures to the curves for
the OLS/t, OLS-CO/t, andMW statistical tests to avoid
unclear figuresf . We notice that the FPR is clearly de-
creased independent of the correction scheme used. Com-
paring both schemes with each other, we see that only the
FDR scheme guarantees that the nominal size,0.01, is
achieved. The meta-analysis scheme clearly fails to con-
trol the FPR correctly for reasonable values of the lag pa-
rameter. Other simulations (not shown here) confirm this
conclusion also for theKS- andCvM-test, and also show
that, with respect to both the FPR and TPR values, the
MW andCvM perform almost similar.

Considering again the FDR correction scheme and a
correction up to lag 3, the power of the nonparametric
statisticalMW test approaches that of the permutation
tests. As shown in Fig. 2(a), the TPR curves for the non-
parametric and permutation tests almost coincide for this
correction. Considering the FPR values with respect to
this synthetic data set and the FDR correction scheme,
Fig. 2(d) shows that also the FPR values nearly coincide,
while that of the OLS-CO/t is slightly larger than the nom-
inal size. Comparing the nonparametric statistical tests
with the OLS-CO/t test we can summarise that a lag 1
correction has already a better false positive control than
the standard OLS/t-test, that a lag 2 correction suffices to
obtain a false positive rate equal to that of the OLS-CO/t-
test, but that only a lag 3 correction returns a reasonable
false positives control.

fFigures for theKSandCvM statistical tests, can be received upon
request from the author.
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Figure 2: TPR & FPR curves for the OLS(-CO)/t, MW tests. The first two columns are the results obtained using the AR(1) synthetic data
set, the third column ((c) & (f)) contains the results obtained for the hybrid data set. Figs.(a) to (c) display TPR curves as a function of the
amount of noise (x-axis represents the amount of noise added to the block pulse, expressed in units standard deviation),(d) to (f) display the
FPR curves (y-axis,1≡ 100%) for corrections in the discrete rangeτmax= [1,5] (x-axis). The figures in the first and third column are obtained
with the FDR scheme, while those of the second column are obtained with the meta analysis correction scheme. The lag we have corrected for
is represented by the value behind theMW notation in the legend. If no value is given, no correction is applied.

3.6.2 Results for the Hybrid Data Set

Using synthetic data sets the properties of which are well
known, we found that only the FDR scheme with a lag
3 correction seems to have a good FPR control. We now
repeat the same validation/comparison procedure with re-
spect to the hybrid data set to verify whether the same
scheme and correction level still offer a good FPR control.
These results are shown in the third column of Fig. 2.

We can deduce the following items from these and the
previous figures: first, and in correspondence to what the-
ory predicts [13], we see that when the data is derived
from a Gaussian process (Fig. 1), the classic OLS test out-
performs the nonparametric tests with respect to its power.
Contrary, if the data is derived from a non-Gaussian pro-
cess, as is the case with the hybrid data sets, the non-

parametric statistical test better matches the OLS(-CO)/t
TPR values. Second, when we compare the TPR & FPR
curves, we see again that a lag 3 FDR correction has a
better FPR control than the OLS-Co/t test.

By investigating the autocorrelation coefficient plot,
one can define the value ofτmaxas the lag value for which
the autocorrelation coefficient drops below a given thresh-
old. For both the synthetic AR(1) autocorrelated Gaussian
noise and this hybrid data set, a correction at lag 3 seems
to control the false positive rate rather well.

3.7 Discussion and Conclusion

Traditionally, a General Linear Model is used to analyse
fMRI data. However, the question arises whether such
analysis is valid given the Gaussian and linear assump-
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tions underlying these methods. Specific pre-processing
operations like data-smoothing [11] can help the data
meet the required assumptions. We started investigating
nonparametric statistical tests, to circumvent the question
itself; moreover, nonparametric tests are the only kind of
statistical tests that are guaranteed to be valid and exact in
case the nature of the distribution is unknown [4].

Permutation tests and Bayesian techniques are good al-
ternatives but require a huge amount of computing time.
For this reason we examined whether classic nonparamet-
ric statistical tests can be adapted for application to fMRI
data, which is known to be serial autocorrelated. We fo-
cused in this article especially on the Mann-Whitney test,
although our research confirms that the analog conclu-
sions hold for the Kolmogorov-Smirnov and the Cramér-
von Mises test. To cope with the temporal autocorrela-
tions, we developed and examined two possible methods
to control the FPR of these nonparametric tests: one based
on the False Discovery Rate (FDR, a multiple compari-
son correction method), the other based on meta-analyses.
Using realistic synthetic data sets, we investigated both.
The meta-analysis scheme, albeit promising when con-
sidering the TPR values (Fig. 2(b)), clearly fails to con-
trol the false positive rate sufficiently. Consequently, only
the FDR correction scheme fulfills our needs. Since the
time needed to perform this serial correlation correction
method is within the order of seconds, our method has a
clear advantage with respect to,e.g., the permutation test
or Bayesian techniques.

Furthermore, a current path of research might render
the FDR technique even more promising: Yekutieli &
Benjamini (personal communication, [21]) are develop-
ing hierarchical extensions to the basic FDR principle
which allows to include information gathered while in-
vestigating part of the problem (i.c., the serial correlation
correction method), into the procedure that calculates ad-
justedp-values for the complete problem (multiple com-
parison correction). This path of research might return
a solution yielding a higher sensitivity while keeping the
FPR still within bounds.

With respect to the lower sensitivity of the nonpara-
metric tests (even the permutation test) in comparison to
the OLS-CO/t approach, we can mention two items in
defence of them: 1) using an identical HRF model for
both the creation of the synthetic signals and their analy-
sis, which is in practice never the case, favours the OLS

method, 2) we remind the reader that the OLS-based tests
are rather optimistic [20]. This optimistic behaviour is
confirmed by the OLS/t permutation test that has clearly
less power than the OLS(-CO)/t-test.

Another minor disadvantage of our method is the fact
that it is only applicable for block design fMRI studies
and not for event-related fMRI studies. In addition, and
contrary to the GLM based methods, nonparametric sta-
tistical tests do not allow to model additional effects such
as eye movements or cardio-respiratory movements. A
possible solution with respect to the nonparametric tests
is to apply a statistical test that checks for any relationship
between the selected time series and any of the effects. A
warning for the researcher can then be issued in case a
given threshold is surpassed.

Last, our approach allows also the use of statistical tests
that reveal additional information about the detected acti-
vation. [10] mentioned already that application of a range
of statistical procedures, parametric and data-driven, lin-
ear and nonlinear, would be most useful. Regions might
show an equal average level of activity, but a different
distribution of the observed activation. The application
of e.g., the Craḿer-von Mises in addition to a Mann-
Whitney test is therefore certainly a source of additional
information for the researcher.

In conclusion, we can state that we have developed
a method that enables the application of EDF-like non-
parametric tests to fMRI data by accounting for the pres-
ence of serial correlations. Our method also enables the
use of statistical tests that check for a difference in dis-
tribution and that thus return additional information to
the researcher. In addition, certain pre-processing steps
like data-smoothing, which tamper the data significantly,
can be omitted. Finally, our method requires consider-
ably less computation time (order of seconds) with re-
spect to other nonparametric tests like the permutation or
Bayesian tests.
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