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Abstract: This paper presents a new technique for extracting authentic heart and lung sounds for anesthesia di-
agnosis when auscultated sounds contain interference and noise corruption. By reconfiguring signal transmission
channels during different phases of breath and heart cycles, this technique is capable of identifying channel dy-
namics in real time, removing noise effectively, and separating heart and lung sounds.
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1 Introduction

Continuous monitoring of heart and lung sounds is of
essential importance in medical diagnosis in patients
with lung or heart diseases, and in detection of criti-
cal conditions in operating rooms. To obtain quantita-
tive and reliable diagnosis and detection, it is critically
important that cardiac and respiratory auscultation re-
tains sounds of high clarity. However, heart and lung
sounds intervene each other in auscultation, corrupt-
ing sound qualities and causing difficulties in diagno-
sis. For example, the main frequency components of
heart sounds are in the range of 50-100 Hz, which of-
ten produce an intrusive interference that masks the
clinical interpretation of lung sounds over the low fre-
quency band. It is highly desirable, especially in com-
puterized heart/lung sound analysis, to separate the
overlapped heart and lung sounds before using them
for diagnosis. Much effort has been made in reducing
heart/lung sound interference, see, e.g., [1, 2, 3, 4].

The issue becomes further complicated when aus-
cultation must be performed in operating rooms or
other clinical environment. Unlike acoustic labs in
which noise levels can be artificially controlled and re-
duced, operating rooms are very noisy due to surgical
devices, ventilation machines, conversations, alarms,
etc. The unpredictable and broadband natures of such
noises make operating rooms a very difficult acoustic
environment. More technically, lung and heart sounds
have frequency bands which overlap significantly with
noise frequencies. As a result, high fidelity micro-

phones and traditional noise filtering or cancellation
techniques cannot help in obtaining authentic sound
signals.

This paper presents a new technique for extract-
ing authentic heart and lung sounds for anesthesia di-
agnosis when auscultated sounds contain interference
and noise corruption. By reconfiguring signal trans-
mission channels during different phases of breath and
heart cycles, this technique is capable of identifying
channel dynamics in real time, removing noise effec-
tively, and separating heart and lung sounds.

2 Data Collection

Our sound acquisition system consists of one lung
sound sensor and one heart sound sensor, and one
noise reference sensor. These sensors can be spe-
cial microphones, electronic stethoscopes, or small
accelerometers. In our experiments, three electronic
stethoscopes are used simultaneously to measure lung
sound, heart sound, and reference noise. Heart and
lung sound sensors are placed on the corresponding
chest areas, respectively. In order to obtain noise
measurements that represent lumped impact of dis-
tributed and multi-source noises on the heart/lung sen-
sors, the noise reference sensor is placed in vicinity of
the heart/lung sound sensors. The signals from these
sensors are fed into an analog/digital data acquisition
system from the National Instruments, Inc., which in-
terfaces with a laptop computer running on a signal

Proceedings of the 2006 WSEAS International Conference on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20, 2006 (pp63-68)



processing system programmed on a Labview plat-
form [7, 8]. Figure 1 illustrates the key elements of
this system.
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Figure 1: Sound Data Acquisition Systems

Respiratory and heart sounds were collected
through a sophisticated Human Patient Simulator
(HPS), manufactured by METI, Inc. Noises are gen-
erated by conversations, music, and instrumentation.
Noise levels are controlled by music volumes and con-
versation loudness. To further evaluate noise impact,
a variety of noises with different characteristics (such
as waveforms, frequency centers, and bandwidths)
are added to measured signals before signal process-
ing. These noises are either collected from operating
rooms or generated by computer. The HPS allows us
to create difficult medical scenarios to evaluate and
improve our system.

3 Sound Channels

The lung sensor may receive some heart sound in-
terference when collecting lung sound; and the heart
sound sensor may receive some lung sound interfer-
ence when collecting heart sound. The noise refer-
ence sensor, which is placed in vicinity to the lung
and heart sensors, such as one shoulder, receives most
environment noises from all sources just like the lung
and heart sensors, but does not receive much lung
or heart sounds. Although noise sources are funda-
mentally distributed, location proximity among the
heart, lung and reference sensors allows us to repre-
sent noises from many sources approximately by a
lumped noise near the reference sensor. The system
may be schematically represented by a three-input-
three-output system that is depicted in Figure 2.

Although Figure 2 is a good representation of the
physical environment of sound data, for signal pro-
cessing, it can be simplified. Observe that the ac-
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Figure 2: Sound Channels

tual sound sources, including lung sound source, heart
sound source, and noises, are not known. The goal
of noise cancellation and signal separation is to obtain
noise-free and interference-free lung sound l and heart
sound h.

If we view the measurement yn from the refer-
ence noise sensor as a virtual noise source, we re-
place distributed noise sources n (which are impossi-
ble to describe accurately and separately) in a lumped
noise source yn as shown in Figure 3. The problem of
noise channel identification is now reduced to identi-
fication of the virtual noise channel Gnl and Gnh. In
terms of the system in Figure 2, Gnl = G−1

7 G5 and
Gnh = G−1

7 G6.

Similarly, we can view the noise-free and
interference-free signal l from the lung sound as a vir-
tual lung source, and the noise-free and interference-
free signal h may be viewed as a virtual heart source.
This representation is illustrated in Figure 3. In terms
of Figure 2, the virtual channels Ghl = G−1

4 G2 and
Glh = G−1

1 G3.
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Figure 3: Virtual Configuration
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4 Noise Cancellation and Signal Sep-
aration

4.1 Basic Methodology

Mathematically, the configuration in Figure 3 is rep-
resented by

yl = l + Ghlh + Gnlyn (1)

yh = h + Glhl + Gnhyn. (2)

The goal of signal processing is to obtain l and h from
sensor measurements yl, yh, and yn.

1. Noise Cancellation:
Note that the noise-free lung and heart sound sig-
nals are ŷl and ŷh in Figure 3. If the channel
transfer functions Gnl and Gnh are known, then
they can be derived from sensor measurements
as

ŷl = yl − Gnlyn,

ŷh = yh − Gnhyn.

2. Signal Separation:
Furthermore, if the channel transfer functions
Ghl and Glh are known, then the noise-free and
interference-free signals l and h can be calcu-
lated from

ŷl = l + Ghlh, ŷh = h + Glhl.

Or

l =
ŷl − Ghlŷh

1 − GhlGlh

, h =
ŷh − Glhŷl

1 − GlhGhl

.

The main challenge is to obtain estimates of the
transfer functions of channel Gnl, Gnh, Ghl, and
Glh. In general, since the inputs l and h cannot be
measured, such identification problems must be per-
formed by using output observations yl and yh only.
These are called “blind identification” in the control
field. Usually, blind identification is hard to perform,
relies more on signal statistical separation, and is less
accurate then regular identification problems [9].

4.2 Cyclic System Reconfiguration and
Channel Identification

In this paper, we introduce an approach of cyclic re-
configuration to reduce this blind identification prob-
lem into a number of regular identification problems.
Our approach is based on a fundamental feature of
breath and heart sounds: (1) Breathing cycles undergo

the stages of inhale, exhale, and transitional pause; (2)
Cardiac cycles undergo the stages of beat and pause.
In particular, the breath pausing interval is character-
ized by l ≈ 0; the heart pausing interval is charac-
terized by h ≈ 0. In between the combination sound
of breathing and heart beating, there is a pausing in-
terval in which both lung and heart sounds are very
small, namely, l ≈ 0 and h ≈ 0. Although l and h are
not directly measured, separation of such intervals can
be achieved by several methods: (1) Ventilator vari-
ables: For example, airway pressure cycles (positive-
negative-neutral) in ventilated patients will indicate
inhale, exhale, and pause. (2) Smoothed breathing
wave profiles in natural breath. (3) EKG signals can
clearly indicate heart beat cycles.

Consequently the following intervals are recog-
nized, shown in Figure 4.
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Figure 4: Cyclic Reconfiguration of the System

1. Interval Class I: l ≈ 0 and h ≈ 0.

In this case, the equations (1) and (2) become

yl = Gnlyn

yh = Gnhyn.

As a result, sensor measurements yl, yn, and yn

during Interval Class I can be used to identify the
noise transmission channels Gnl and Gnh.

2. Interval Class II: l is large and h ≈ 0.

In this case, the equations (1) and (2) become

yl = l + Gnlyn,

yh = Glhl + Gnhyn,
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or
yh − Gnhyn = Glh(yl − Gnlyn).

Since Gnl and Gnh have been identified during
Interval Class I, this relationship can be used to
identify Glh.

3. Interval Class III: l ≈ 0 and h is large.

In this case, the equations (1) and (2) become

yl = Ghlh + Gnlyn,

yh = h + Gnhyn,

or
yl − Gnlyn = Ghl(yh − Gnhyn).

Since Gnl and Gnh have been identified during
Interval Class I, this relationship can be used to
identify Ghl.

Generically, all the identification problems en-
countered here can be written as

x = Gu

where u and x are measured or derived from sensor
outputs, and G is to be identified. The identification
algorithm for such a problem and the lung/heart/noise
sounds separation process are discussed in the next
section.

5 Identification Algorithms

For identification of the virtual channels, they can be
viewed as an input-output system x = Gu. Since
G is stable, it can be modeled by its impulse re-
sponse g = {g0, g1, . . .}. Consequently, the above
input/output relationship can be represented in a re-
gression model

xk = φT

k θ + θ̃T

k θ̃ + dk

where φT

k
= [uk, . . . , uk−n+1] is the principal regres-

sion vector, θ = [g0, . . . , gn−1]
T is the parameter vec-

tor of the modeled part of G, θ̃T

k
= [uk−n, . . .] and

θ̃ = [gn, . . .] represent unmodeled dynamics, and dk is
disturbance. In this paper, we will concentrate on the
uncertainty from noises. The issue of unmodeled dy-
namics and its impact on identification accuracy was
discussed in detail in [6]. There are several possible
choices to identify G. We choose the standard least-
squares estimation method for its relative simplicity

and established convergence property [5]. The stan-
dard least-squares estimation leads to an estimate of
the parameter θ of G, on the basis of N data points, as

θ̂N =

(
1

N

N∑

k=1

φkφ
T

k

)−1

1

N

N∑

k=1

φkxk.

This process can be easily recursified to reduce com-
putational burden at each time instant, leading to a re-
cursive least-squares algorithm:

KN =
PN−1φN−1

1 + φT

N−1
PN−1φN−1

PN = (I − KN−1φ
T

N−1)PN−1

θ̂N = θ̂N−1 + KN (yN − φT

N θ̂N−1).

(3)

The detailed recursive algorithm is described as
follows:

• Step 1. Noise Channel Identification:
During the pause stage of the k-th breathing cycle
(k = 0, 1, 2, . . .), when there’s no heart beating
sound, the measured yn and yl and yh are used
to identify the noise channel Gnl and Gnh, re-
spectively, using a recursive least squares (RLS)
algorithm. The estimated model is denoted by
Ĝk

nl
and Ĝk

nh
.

• Step 2. Noise Cancellation and Heart-to-Lung
Channel Identification:
During the pause stage of the k-th breathing cy-
cle, when heart beating sound exists, the esti-
mated noise channel models Ĝk

nl
and Ĝk

nh
are

used to extract noise-free lung and heart sound
measurements via

ŷl = yl − Gk

nlyn

ŷh = yh − Ĝk

nhyn.

The estimated ŷh and ŷl are used as the in-
put/output pair to identify the heart to lung chan-
nel Ghl using RLS. The estimated model is de-
noted by Ĝk

hl
.

• Step 3. Noise Cancellation and Lung-to-Heart
Channel Identification:
During the inhale and exhale stage of the k-
th breathing cycle, when there’s no heart beat-
ing, the estimated noise channel models Ĝk

nl
and

Ĝk

nh
are used to extract noise-free lung and heart

sound measurements via

ŷl = yl − Gk

nlyn
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ŷh = yh − Ĝk

nhyn.

The estimated ŷl and ŷh are used as the in-
put/output pair to identify the heart to lung chan-
nel Glh using RLS. The estimated model is de-
noted by Ĝk

lh
.

• Step 4: Lung and Heart Sound Separation
During the inhale and exhale stage of the k-th
breathing cycle, when heart beating sound ex-
ists, the estimated noise channel models Ĝk

nl
and

Ĝk

nh
are used to extract noise-free lung and heart

sound measurements via

ŷl = yl − Gk

nlyn

ŷh = yh − Ĝk

nhyn.

The estimated heart-to-lung and lung-to-heart
channel models

Ĝk

lh

and
Ĝk

hl

are used to separate the heart/lung sound via

l̂k =
ŷl − Ĝk

hl
ŷh

1 − Ĝk

hl
Ĝk

lh

ĥk =
ŷh − Ĝk

lh
ŷl

1 − Ĝk

lh
Ĝk

hl

.

• Recursive Steps:
In the (k+1)-th breathing cycle, repeat Step 1 to
Step 4. All estimated channel models are up-
dated by using the new data from measured yn

and yl, yh. The channel models derived from
previous cycles are used as the initial condition
and the models are updated by the RLS estima-
tion. The newly updated virtual channel models
are used to separate the heart/lung sound in the
(k+1)-th breathing cycle. These steps are then
repeated from cycle to cycle.

6 Example: Time-Split Noise Cancel
and Sound Separate

The collected data from Section 2 are used to evaluate
the methodology and algorithms described in the pre-
vious sections. In this example, the scenario we used
on the HPS is a 50-year old truck driver with normal
health conditions.

A practical issue on sensor placement arises.
When sensors are placed on the skin, it often pro-
duces some scraping-skin noise. It is also noticed that
heart/lung sensors may catch some chest movement
noise while noise reference sensor may not. These
phenomena make the noise reference sensor incapable
of representing accurately the noises received by the
lung sensors. Fortunately, these noises are low fre-
quency off-band signals and can be eliminated with
regular filtering.

The measured heart and lung sounds are obtained
directly from the HPS. They are corrupted by different
noises with signals shown by the top plots in Figure
5. The environment noise is, after passing through an
unknown transmission channel, measured by the ref-
erence noise sensor. In order to eliminate the off-band
low frequency noises, both the measured heart/lung
signals and the reference noise signal go through a de-
signed high-pass filter. The after-filtering heart/lung
sound signals are shown by the 2nd plots in Figure 5.
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Figure 5: Signals before and after Off-band noise fil-
tering

In the sound extracting process, we use two 30-
th order moving average (MA) regression models to
represent the virtual noise-to-heart channel and noise-
to-lung channel. During the noise channels identifi-
cation phase (both heart sound and lung sound in a
pause stage), a recursive least-squares identification
algorithm is employed to update the parameters in the
MA regression models. During the noise-cancellation
phase (inhale/exhale or heart beating stages), the esti-
mated regression models are used to derive noise es-
timates, which are then subtracted from the signals
measured by the heart sensor and lung sensor.
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