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Abstract: - In  this  paper  we  analyse  the  interactions  of  four  biological  species,  
a  predator  and  two  types  of  prey,  the  models  and  mimics.  The  models  are  
noxious  prey  that  must  be  avoided  by  the predator  and  the  mimics  are   
palatable  prey  and  primary  source  of  food  for  the  preadator,  that  resemble  in  
appearance  the  models,  thus  escaping  consumption.  The  alternative  prey  
represents  a  secondary  food  source  for  the  predator.  We  identify  the  predator  
as  a  learning  automaton  with  two  actions,  consume  prey  or  ignore  prey  that  
elicit  favourable  and unfavourable  probabilistic  responses  from  the  environment.  
Two  kinds  of  environment  are  considered,  stationary  with  fixed  penalty  
probabilities  and  nonstationary  with  variable  penalty  probabilities.  All  prey are  
assumed  to grow  logistically.  A  benefit  function  is  constructed  for  the  predator  
that  measures  the  consumption  level  at  each  stage  of  predation.  Finally,  
strategies  for  increasing  consumption  are derived  in  terms  of  the     parameters  
of  the    learning  process. 
 
Keywords:-learning automaton,   reinforcement  learning,  mimics,  models, 
alternative  prey. 
 
 

1.  Introduction 
In  this  paper   we  analyse  in  detail  a  linear  
reinforcement  learning  algorithm  designed  
to  allow  a  predator  (the  learning  
automaton)  to  operate  efficiently  in terms  of  
acceptable  prey  consumption  in  an  
environment  occupied  by  palatable  and  
unpalatable  prey  and  characterized  by  a  
penalty  probability  for  each  predator  action.  
The  predator  chooses  to  either  ignore  prey  
or  consume  prey.  Our  present   work   builds  
on  the  framework  laid  out  in  a  previous  
article [1]. 
 
A  brief  description  of  the  concept  of  the   
learning  automaton  is  given  in  [1].  For  a  
comprehensive  introduction  the  book  by  
Narendra  and Thathachar [2] is  

recommended. Linear  reinforcement  
algorithms  are  based  on  the  simple  premise  
of  increasing  the  probability  of  that  action  
that  elicits a  favourable  response  by  an  
amount  proportional  to  the  total  value  of  
all  other action  probabilities.  Otherwise, it is 
decreased by  an  amount  proportional  to  its  
current  value. In  this  work  we  also  adopt  
the  2-action   Linear  Reward-Penalty  (LR-P)  
scheme  as  the  predator’s  learning  
algorithm.,  with  actions  a1  (ignore)  and  a2  
(eat).  A  penalty  is  associated  with  either  
ignoring   mimics  or  alternative  prey,  or  
consuming  models. The  penalty  probabilities  
on  these  actions   are  defined  as  follows: 
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The  LR-P  algorithm  is  described  below: 
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The  expectation  of  the  consumption  
probability,  p2(k+1),   conditioned  on  p2(k),  
is  given  by: 
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2.  Prey  population  growth 
The  mimic, model  and  alternative  prey  
populations,  X ,  M  and  A respectively,    
grow  logistically  as  follows: 
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where  321 ,, rrr   are  the  intrinsic    growth  
rates,  321 ,, KKK   are the  carrying  
capacities,  and  222 ,, cfd  are  the  prey  
consumption  probabilities  )1( 222 =++ cfd . 

 
 

3.  The  benefit  function 
The  net  expected  benefit  to  the  predator  is  
assessed  in  terms  of  capturing  a  palatable  
mimic  and  the  unnecessary  energy  
expended  in  capturing  an  unpalatable  model  
[3].  If  b,  a  and  c  are  the  parameters  
associated  with  the  consumption  of  a  single  
mimic,  alternative  prey  and  model  
respectively,  the  expected  net  change  in  
benefit  at  stage  k  is  given  by 
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The  objective  of  the  predator  is  to  optimize  
its  next  stage  benefit by  adjusting  
accordingly  the  learning  parameters   α  and  
β  at  the  current  stage. 
 
4. Consumption  strategies  for  
Stationary  prey  environments 
A  stationary  pey  environment  is  one in   
which    the  penalty  probabilities  remain.  
constant.  In this  case  the  consumption  
probability  given  in  (2)  converges  to  the  
asymptotic  value  which  is  the  fixed  point  
solution  of  (2). 
 
The  maximum  rate  of  net  benefit  change   
is  determined  by  the  sign  of  the  

derivatives,  
βα ∂

∆∂
∂

∆∂ )(  ,)( kBkB ,  and  

consequently  by  the  sign  of  the  derivatives,  

βα ∂
∂

∂
∂ )(  ,)( 22 kpkp . The   optimal  strategies  for  

the  predator  is  identical  to  the  those  in  
Table  1  of  our  previous  work  [1],  with  1c   
in  that  table  replaced  by  11 fc +   to  account  
for  the  presence  of  alternative  prey. 
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5.  Nonstationary  prey  environments 
In this  section   we  analyse  the  performance  
of  the  learning  algorithm  of  the  last  section  
when  each  penalty  probability,  211   , cfc +   is  
a  monotonically   increasing  function  of the  
respective  action  probability,  ai,  i  =1,2.   We  
base  our  decision  on  the  reasonable  
assumption  that  if  the  predator  is  ignoring  
all  prey  with  a  certain  frequency,  palatable  
prey  amongst  them  are  essentially  ignored  
at  a  less  frequent  rate,  and  by  the  same  
token,  we  extend  this  assumption  to the  
frequency of  consumption.  Thus  at  each  
stage  k: 
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The  two  coefficients,  g1  and  g2,  can  be   
interpreted  respectively  as  the  fraction  of    
falsely  avoided  mimics  and  alternative  prey  
in  the  proportion  of  overlooked  prey,  and  
the  fraction  of   falsely  consumed  models  in  
the  proportion  of  consumed  prey.    Values  
of  either  factor  close  to  0  indicate  that  the  
predator  commits  either   penalty  
infrequently,  whereas    values  close  to  1  
indicate  a  large  penalty  frequency.  The  
complementary  expressions,  11 g−   and  

21 g− ,  may  be  thought  of  as  the  predatory  
efficiency  in  avoiding  the  wrong  prey  and  
consuming  the  right  prey  respectively. 
  
The  expectation  of  the  action  probability,  
p2(k),   conditioned  on  p2(k-1),  is  a  third-
order  polynomial  in  p2(k-1): 
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The  asymptotic  probability  can  be  found  as  
one  of  the  three  roots  of  the  resulting  
cubic  polynomial,  based  on  the  work  of  
Cardan  [4].  For  algebraic  convenience  we  

shall  confine  ourselves  to  the  case  βα = ,  
in  which  case: 
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with  21 gg ≠ . The  scheme  admits  the  
asymptotically  stable  probability:   
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The    expected  net   change  in  benefit  is  
now 
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where  10  , << γγ ,  is  a  parameter  
reflecting  the  fraction  of  the  prey  
consumption  frequency  dedicated  to  the  
alternative  prey.  Note  again  that  

1)()()( 222 =++ kckdkf ,  for  all  k.  The  
benefit change  is  rewritten  as   
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We   treat  the  learning  parameter,  α ,  as  the  
decision  variable  at  each  stage,  k,  that  
influences   the  magnitude  of  the  expected  
change  in  the  net  benefit,  at  the  next  stage.  
To  test  whether  the  expected  benefit  is  
continually  increasing    we   consider  the  
partial  derivative  of  the  benefit  change  with  
respect  to  α.  Since the  dependence  of  

)(kB∆   on  α  is  implicit  only  through  
)(2 kp ,  which  is  a  linear  function  of α,  the  

derivative  will  be  simply  the  slope  of  
)(kB∆ .  Thus  the  optimal  action  will  
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depend on    the  choice  of  parameters  that  
yield  the  maximum  slope.  We  write  the 
derivative: 
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the  benefit  change can  only  be   maximal  
with  respect  to  the  learning  parameter,  α,  
when  the  consumption  probability  reaches  
its  asymptotic  value,  (7),  or  also  prior  to  
that when  it  crosses  the  critical  value  at  
some  k: 
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Note  that  )(ˆ2 kp   may  not  always  exist. 

The  optimal  strategy  for  the  predator’s  
consumption  frequency  will  be  determined 
upon  the  results  of  the  comparison  between  
the  values  of  g2  and  the  value  of  the  ratio  
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In this  simpler  scenario  with  equal  
efficiency  measures,  the  predator’s  optimal  
consumption  strategy  will  be  dictated  upon   
comparison  of  the  consumption  probabilities  

2
1   and  if  it  exists,  )(ˆ2 kp ,  as  given  by  

(10). 

Figure 1  displays  the  improvement  in  the  
benefit  change  by  lowering  the  learning  
parameter  from  9.0=α   to  1.0=α .   
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6. Discussion 

In  this  paper  we  have  explored  the  
concept  of  a   predator  as  a  learning  
automaton  feeding  on  prey  that  can  be  
broadly  categorized  as  either  palatable  
(the  mimics  and  alternative  prey)  or  
unpalatable  (the  models).  The  predator’s  
actions  is  to  either  attack  the  prey  or  
simply  ignore  it.  Each  action  elicits  a  
probabilistic  response  from  the  
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environment  that  is  classified  as  
favourable  or  unfavourable.  A  response  
is  deemed  favourable  if  the  prey  
consumed  is  of  the  palatable  type  or  if  
the  prey  ignored  is  unpalatable  and  
deemed  unfavourable  if the  prey  ignored  
is  palatable or  the  prey  consumed  is  
unpalatable.  This  distinction  made  when  
ignoring  prey  is  related   to  the  
predator’s  ability  to  discriminate  
effectively  against  models.  If  the  
predator  senses  that  the  prey  ignored  is  
of  palatable  nature  it  will  decrease  the  
frequency  of  avoidance  and  vice  versa.  
A  suitable  function  has  been  constructed  
to  take  into  account  the  net  energetic  
benefit  to  predator.  Conditions  for  
maximal  increase  in  benefit  have  been  
derived  dependent  upon  the  prey  
populations,  and  the efficiency  
coefficients  g1  and  g2.  The  present  work 
effectively     extends   the      theoretical  
framework  presented in  [1]  by  including  
a  third  type  of  prey.    
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