Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp110-116)

I ncreasing the Determinism in Real-Time Operating Systems for ERC32
Architecture

A. Viana O.R. Polo P. Parra O.G. Poblacion I.G. Tejedor S.S. Prieto
D. Meziat
Computer Engineering Department
University of Alcala, Alcala
Campus Universitario, 28871 Alcala
SPAIN

Abstract: To develop on-board software in embedded space applications, it is often a requirement to use a
real-time operating system, since these systems must assure that the timing constraints associated to each
task are guaranteed. Furthermore, it’s desirable that the execution time of the real-time application in any
scenario is as deterministic as possible (i.e., it takes always the same time to perform the task). Typical
real-time operating systems focus on increasing performance by focusing on scheduler design, device driver
writing, heavy machine-level code optimisations, etc. However, the main goal must be to behave in as a
deterministic way as possible. The work related to this paper is centred in real-time, embedded operating
systems research on the ERC32 architecture, an E.S.A. (European Space Agency) standard architecture
for space applications. This architecture is SPARC V7 instruction set compliant and has a lot of features
built-in for space applications, but some aspects of the architecture can, in some cases, decrease the system
determinism. Our main research tries to obtain a real-time operating system that has a deterministic be-
haviour running on this architecture, by implementing new management paradigms over some architectural
aspects, enhancing the time accuracy, allowing worst case execution time analysis and improving the context
switch operations.

Key-Words : Real-time Operating Systems, Embedded Systems, On-Board Software, ERC32

1 Introduction plications, ERC32 [2, 3]. We are trying to develop
an integrated development environment to perform
design, modelling and automatic code generation for
space applications on this architecture. The environ-
ment consists of the EDROOM [4] tool and ERCOS-
RT real-time operating system. The integrated envi-
ronment must provide a real-time solution with the
main goal of obtaining deterministic operation.

Currently, embedded software in space environments
has increased its complexity and consequently needs
real-time multitasking operating system (RTOS)
presence. A good real-time operating system is not
the fastest one but the more precise in its execution
[1]. This means that consecutive executions of the
embedded software over the RTOS must take the
same time. Sometimes, this characteristic depends
on hardware architecture and system developers must
take into account many hardware aspects to make a
deterministic system.

This paper exposes what are the causes for indeter-
ministic behaviour in real-time systems, what prob-
lems are derived from the ERC32 architecture, what
are the solutions proposed and the improvement de-
rived from our solution. Section 2 makes a brief ex-

Our research is focused in the European Space planation about the ERC32 architecture, section 3
Agency (E.S.A.) standard architecture for space ap- describes the indeterminism problem in this archi-

tecture, the solution proposed for it and some timing
measurements carried out over our real-time operat-
ing system ERCOS-RT (which implements the pro-
posed solution), and other real-time operating sys-
tems. Finally, section 4 shows the conclusions of this
work.

2 ERC32architecture

The ERC32 implementation is based on the SPARC
V7 architecture [5]. The work explained in this paper
has been developed over the Tharsys SPARC RT Sin-
gle Board Computer, built around the radiation toler-
ant ERC32 chip set (TSC691, TSC692 and T'SC693)
manufactured by Themic Semiconductors. This plat-
form has a number of on-board peripherals developed
by E.S.A., targeted at space applications such as:

e UART channels (A and B)

General Purpose Timer

Real-Time Clock

Watchdog Timer

Ethernet Interface

VME interface

e Parallel interface

The SPARC architecture defines a set of registers
and register windows visible to applications execut-
ing at any given time. This architecture defines 32
globally accessible floating-point registers that can be
viewed as 32 single precision floating or integer regis-
ters (f0...£31), 16 double precision floating point regis-
ters (f0, 2, f4, ..., £30) or 8 extended precision floating
point registers (f0, f4, {8, ..., 28). There’s also an-
other 8 globally accessible general purpose registers,
and finally there’s a set of sliding windows that at
any given time allow access to a group of 24 registers
divided into three sets of 8 registers each; input reg-
isters, output registers and local registers. Finally, it
has special registers such as Processor State Register
(PSR) and Window Invalid Mask (WIM). The first
one has the Current Window Pointer (CWP) field

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp110-116)

that stores the current window and together with the
WIM register, manages the SPARC register windows.
Figure 1 shows the described register architecture.

RESTORE

GLOBALS

Figure 1: SPARC six register windows representation.

2.1 Register windows

The SPARC architecture implements the concept of
sliding register windows. This concept tries to simu-
late that the architecture has and infinite set of fresh
register sets available for each subroutine through
some clever but also somewhat complicated register
manipulation.

When performing subroutine calls, a save instruction
is executed. This instruction decrements the CWP
field, effectively sliding the current register window
and providing a new set of registers ready to be used,
where the subroutine stores its parameters and local
variables. When returning from the subroutine, the
restore instruction is executed, which increments
the CWP field and makes the previous register win-
dow available again.

The ERC32 architecture has eight register windows,
so having a subroutine call deeper than the number
of register windows would result in window overwrit-
ing. This situation is called overflow, and it generates

a trap so that the appropriate trap handler can store
the window register contents to be preserved in its
window stack. When all subroutines return, it be-
gins to perform restore operations. This operations
could cause the need to restore the valid register in-
formation from the window stack to the register win-
dow. This is named as window underflow and it also
generates a trap, so that the trap handler associated
with it can restore the register contents from the win-
dow stack to the register window. Figure 2 shows the
overflow and underflow conditions.

out - in out
local ! local '\ RESTORE
in 5 out in out instruction
VERFLOW 02 . loca i
{ out e in out in
N local 5 local
in A out in out
local N local 4
SAVE out - in out in
instructior < local 3 Jocad
in 5 out in out
local local 2
out 4 in out in
N local * local
in 6 out in out
local local v
WiM register [o] ~ [1J o[o[o[o[o] o] o] [o] ~ [1] o[o] o] o] o] o] o]
cwp cwp
PsRregiser [Of -~ [[[[[[Jo] [of~T[T[[TT[e6s]

Figure 2: Overflow and Underflow Conditions.

The WIM register and CWP field are used together
to manage this overflow and underflow situations.
The CWP field contains the window that is currently
in use and the save and restore instructions decre-
ment and increment the CWP modulo the number
of register windows. Each bit in the WIM register
represents whether a register window contains valid
information for another subroutine. A bit set to ”1”
represents valid information (invalid window) and a
bit set to ”0” represents a free register window. When
a save instruction causes the CWP field point to a
register window marked as invalid window, a overflow
condition is triggered. The same mechanism occurs
when the restore instruction triggers an underflow
trap.

Another complicating factor is the sharing of regis-

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp110-116)

ters between adjacent register windows. Each reg-
ister window has local, input and output registers.
The local registers are owned by the window, the in-
put registers are shared with the output registers of
the register window ((N + 1) modulo RW), with RW
being the number of register windows, and the out-
put registers are the same as the input registers of
the register window ((N - 1) modulo RW). Figure 3
shows this situation.

7

in
locals 6
outs in
locals 5
outs in
locals 4
outs in
locals 3
outs in

locals

outs 0

in
locals
outs

Figure 3: Sparc register sharing mechanism.

The register sharing mechanism improves parame-
ter passing performance because all operations are
register-based instead of stack-based. The caller
loads into its output registers the callee’s parame-
ters. After the caller executes the save instruction,
its output registers turn into the callee’s input reg-
isters, thereby passing the parameter data. This is
a very efficient mechanism to pass parameters be-
cause no data is actually moved by the save and
restore instructions and no access from-to memory
is performed. Only when the overflow-underflow con-
ditions are triggered, the architecture mechanisms in-
troduce a bit of time penalty to execute the associ-
ated trap handlers.

3 Real-Time Performance

There are some approaches that try to increase real-
time performance by improving aspects of the op-
erating system such as: specific scheduling policies,
device driver optimisation, hand-made hardware-
dependant code, etc. These aspects are very im-
portant in real-time operating systems development,

but they mainly focus in performance and low la-
tency while probably the most important aspect of
a real time system is determinism, which leads to
predictability. Because in a real-time environment
we have a lot of external events that appear asyn-
chronously, the system execution becomes less deter-
ministic and the real-time operating system should
make this indeterminism even worse. The next sec-
tion explains this problem in ERC32.

3.1 Problemswith ERC32 to obtain adetermin-
istic system

According to section 2, ERC32 is SPARC V7 com-
pliant and this architecture, implementing the slid-
ing windows mechanism. It has been shown how
this mechanism decreases the time to perform inter-
routine parameter passing, thus obtaining a very fast
system, but on the other hand it decreases the deter-
minism in multitask systems.

In a system with only one task, the sliding window
mechanism does not affect determinism because the
same task is being executed all the time, and since
no context switch occurs, no other task can change
the system state. All the register windows belong to
the same task.

On the other hand, in real multitasking systems,
external events would change the tasks execution
flow, and a thread could stumble upon an over-
flow/underflow condition in one execution scenario
but not in another execution of the same scenario.
In this case the operating system should assure that
the thread execution takes always the same time, so it
must assure that the register window state will be the
same in each system execution, in order to execute
the same operations in all scenarios, thus obtaining
a deterministic behaviour.

3.2 New dliding window management

The classic SPARC window management performed
by several operating systems that support the ERC32
architecture, such as RTEMS [6], ORK [7], Linux,
etc. configure the system so that there’s one invalid
window and all other are marked as valid. With this
configuration it is not possible to know when a over-
flow /underflow condition will occur. As a result, the

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp110-116)

time to execute the real-time applications over the
RTOS is indeterminate.

We propose a new way to manage the sliding win-
dow mechanism. With this new management tech-
nique, we configure only one window as valid, and all
the rest as invalid. In the figure 4 the new window
management is shown.

out - in
! local
in ~ out
local N
out - in
SAVE instruction > local
in ’ out
local °
out . in
> local
in . out
local “
out . in
- local
in . out
local N
]
WiM register] 0] ~ [1] 1 1] 1] 1] 1] 1] o]
CWP
PsRregister [0 ~ | [[[[| [0]

Figure 4: Proposed window management configuration.

The configuration explained above forces an over-
flow /underflow condition in every function call, mak-
ing execution slower than using classic sliding window
management; but on the other hand, the system al-
ways uses the same time in every routine execution
and all the threads find the same register window
situation, increasing system determinism.

Another important issue is that, with this config-
uration, the system always the worst case scenario,
so the timing analysis would be performed with more
accuracy.

3.3 Timing analysis

Nowadays, it is important to provide a mechanism for
measuring the time spent by the operating system in
performing some operations. To provide this mea-

surement capability, it is necessary to force the worst
case execution scenario and it is not always possible.

The classic window management approach does
not take into account this worst case scenario, and
asynchronous events could change the execution flow.
This fact implies that all the measurements carried
out with this management could change with differ-
ent executions.

The window management proposed places the ar-
chitecture in the worst case execution scenario so, it
would be easy to implement kernel routines to make
timing analysis and all the results produced will be
the same in every execution.

3.4 Timing accuracy

In real-time operating systems some of the most com-
mon operations performed by execution threads is
to request a delay, to wait for some event, to syn-
chronise with some other thread, to wait for some
data, etc. The system must wake up the threads at
the precise requested time, and the accuracy is cru-
cial in most cases. Due to the fact that the classic
window management does not guarantee the time to
perform a routine execution, accuracy is lower and
non-deterministic, and the system could wake up a
thread before the time requested because the routine
that wakes up the thread may cause window overflow
or may not.

The window management proposed on this paper
ensures that the time to perform all call operations
are the same, increasing the wake up time accuracy
and consequently the system determinism.

3.5 Fast Context Switch

The SPARC V7 architecture (and ERC32) [5] has a
total of 167 user-allocatable registers, of which 128
are used for the sliding windows mechanism imple-
mentation explained in section 2.1. All the known
kernels implemented for ERC32 architecture such as
ORK [7], RTEMS [6], eCos [8], etc. uses the classic
window management showed in figure 2.

With classic window management, when a thread
is granted the CPU it can run for some time without
performing any window overflow, and consequently
without saving its context. What this means is that,

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp110-116)

since the time spent to perform a context switch
varies depending on the number of windows that
must be flushed, this time varies depending on the
thread behaviour and each execution scenario, in-
creasing the kernel indeterminism. When a context
switch is performed it is necessary to flush all the non
saved windows used by the thread onto the thread
stack or else part of the complete thread context
would be lost. The worst case execution time for the
context switch happens when all the windows must
be saved, in which case the time employed to perform
the context switch can be quite high.

One of the distinctive requirements for real-time
systems is that deadlines must be met. It is known
that the caches exploit the locality of references to
reduce memory access latencies [9]. When an op-
erating system performs a context switch there is a
cache interference cost that must be taken into ac-
count when calculating the worst case execution time
and, in many cases, it is increasingly hard to deter-
mine it. In the same way, the classic window manage-
ment makes the system faster, because not always an
overflow /underflow conditions are triggered, but its
main drawback is that it decreases the system deter-
minism, because it is impossible to predict when this
conditions will be triggered in a concurrent system.

With the new sliding window treatment proposed
on this paper, all the call and restore operations
cause overflow/underflow conditions and the asso-
ciated interrupt handler stores/restores the register
window into its stack. This mechanism makes the
code execution slower than with classic window man-
agement, but the time spent is always the same and
the kernel is more predictable [10]. Additionally,
since each window is saved when it is left, it turns
out that the worst case scenario to perform a context
switch is better than with classic window manage-
ment and moreover, this time is deterministic for any
execution scenario. With this window management,
in all context switchesthe kernel must only save the
current thread window, avoiding the flushing of any
other windows onto the stack because each window
has already been saved when necessary.

We have developed a real-time operating system,
named ERCOS-RT, over which this new window
management has been implemented. The context

Operating System | Platform Configuration usecs
RTEMS ERC32 16 Mhz 128
ORK ERC32 10 Mhz 85
ERCOS-RT ERC32 16 Mhz 31

Table 1: Context Switch Latency

switch latency has been measured by implementing
the LMBENCH [11] test suite over the real-time op-
erating system. ERCOS-RT takes 31 microseconds
to perform a context switch in the hardware plat-
form described in section 2, without saving the float-
ing point registers. The context switch kernel rou-
tine takes only 14 microseconds to perform the task
switch, but the benchmark implemented also mea-
sures the time the kernel needs to propagate the event
that performs the task switch. The same tests have
been executed in the RTEMS [6] kernel and it takes
128 microseconds. The routine that performs the
RTEMS task switching takes 10 microseconds, but
this value does not take into account the time to per-
form all the needed window flushing. The worst case
execution time for the tasks switch in RTEMS would
be 10 microseconds plus the time spent to flush the
maximum number of windows, which could be up to
seven in the case of the ERC32 architecture. The ta-
ble 1 shows some ERCOS-RT comparisons with other
real-time kernels for the ERC32 architecture, such as
the Open Ravenscar Kernel [7].

4 Conclusions

We have determined that one of the most important
things in a real-time operating systems is not just
performance or low latency, but its predictability. A
deterministic system allows much better constraint
evaluation, and leads to more robust and precise sys-
tems. Chasing this goal, we have proposed a method
to enhance predictability in the ERC32 architecture
that guarantees a more predictable task behaviour
in a real time environment, and that at the same
time obtains better performance and a deterministic
behaviour in context switch routines. This method
is implemented in the ERCOS-RT operating system
and is the basis for time-constrain analysis tools un-
der way.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp110-116)

References

1]

Stankovic J.A. Misconceptions about Real-
Time Computing, a Serious Problem for Next-
Generation Systems. IFEFE, October 1998,
pp. 10-18.

Gillier L., Via A.D., and Dherbecourt A. VMFE
Sparc RT Single Board Computer. Furopean
Space Agency.

Stachetti V., Gaisler J., Goller G., and Gargas-
son C.L. 32-bit processing unit for embedded
space flight applications. IEEE Transactions,
vol. 43, June 1996, pp. 873-878.

Polo O.R., la Cruz J. M. D., J.M. G.S., and S. E.
EDROOM. Automatic C4++ Code Generator for
Real-Time Systems Modelled with ROOM. In
NTCC2001 IFAC Conference, November 2001.

Sparc International INC. Sparc Architecture

Manual Version 7.

On-Line Application Research Corporation.
RTEMS SPARC Applications Supplement,
september 2000.

de la Puente J.A., Zamorano J., Ruiz J.,
Ferndndez R., and Garcia R. The design and
implementation of the open Ravenscar kernel.
In IRTAW °00: Proceedings of the 10th inter-
national workshop on Real-time Ada workshop.

ACM Press, New York, NY, USA, 2001.

Redhat. eCos Reference Manual, September
2000.
Starner J. and Asplund L. Measuring the cache

interference cost in preemptive real-time sys-
tems. In LCTES °04: Proceedings of the 2004
ACM SIGPLAN/SIGBED conference on Lan-
guages, compilers, and tools for embedded sys-
tems. ACM Press, New York, NY, USA, 2004.
ISBN 1-58113-806-7.

Halang W.A. Contemporary Research on real-
time schedulin considered obsolete. In 27th
IFAC/IFIP/IEEE Workshop on real-time pro-
gramming, WRTP’03, May 2003.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp110-116)

[11] McVoy L. and Staelin C. LMBench: Portable
tools for performance analysis. In USENIX An-
nual Technical Conference, January 1996.

[12] Selic, B., Gulleckson, G., and P.T W. Real-
Time Object Oriented Modelling. John Wiley
and Sons, 1994.

[13] Harel and David. Statecharts: A Visual Formal-
ism for Complex Systems. Science of Computer
Programming, (8), 1987, pp. 231-274.

[14] Viana A., Polo O.R., Lopez O., Knoblauch M.,
Prieto S.S., and Meziat D. EDROOM: a free tool
for the UML2 component based design and au-
tomatic code generation of tiny embedded real-
time systems. In & Furopean Congress in Em-

bedded Real-Time Systems, January 2006.

[15] Polo O.R., S. E., Grau A., and de la Cruz J.
Control Code Generator used for Control Ex-
periments in Ship Scale Model. In CAMS2001
IFAC Conference, July 2001.

[16] UML 2.0. www.u2-partners.org/uml2wg.htm.

