
Simulation Environment for Testing and Verifying
the L4 Microkernel Mapping Database

M. K. REVUELTA, P. P. ESPADA, I. G. TEJEDOR, A. V. SÁNCHEZ

Departamento de Automática
Universidad de Alcalá

Escuela Politécnica, Campus Universitario, C.P. 28871 Alcalá de Henares
SPAIN

Abstract: - As the complexity of the operating systems increases, it has been proven necessary to develop new
techniques to test and verify them. L4 is a small microkernel that serves as base for numerous research and
development projects. One of its design paradigms is the externalization from the kernel of the user level
memory allocation policies. This externalization forces the microkernel to maintain complex structures and use
convoluted algorithms to process all the required information. Some of these structures and methods form what
is called the mapping database subsystem. In this paper, we present a simulation environment that extracts the
complete database subsystem from the rest of the kernel, and runs on it several automated tests and verification
processes. With this simulation environment, several errors were discovered in early development stages of a
new mapping database. A fast feedback loop of coding and testing soon led to a final version even more stable
than the old, simpler, mapping database.

Key-Words: - Simulation, Validation, L4, Pistachio, Mapping Database, Test, Random

1 Introduction
Testing and verification of applications and systems
has always been a challenge since the very first steps
of the computer science development. Assuming that
proving the complete absence of errors in operating
systems and its applications is nearly impossible,
several techniques have been used to minimize their
errors. These techniques go from the simple running
of different test programs to the formal verification
using mathematical oriented languages [8].
 In this paper, we present a new approach to the
system testing and error detection problem. This
solution has been actually used to test and verify the
implementation of one of the key parts of the L4
Microkernel: the Mapping Database.
 Basically, it consists in the extraction from the
kernel of the mapping subsystem and the
implementation of a parallel, easily-designed and
well-proven system that simulates the behavior of the
real one. This simulated system is implemented using
some techniques that cannot be used in the real
system, such as recursion, due to the limitation of the
system resources. It is used to generate different
scenarios and run several different operations in order
to verify the correctness of the developing model. As
we will see, the simulator itself is able to generate
random tests, thus increasing the detection
capabilities and reducing the mean error probability
of the final system.

 This testing methodology can be extrapolated to
any other subsystem as long as it has enough
independence from the rest of the operating system. It
can also be used to develop and validate new
computing algorithms and methods.
 This paper covers the design of the mentioned
simulation system developed for testing one of the
key parts of the L4 Microkernel.
 Section 2 briefly introduces the L4 microkernel
and the Map/Grant/Unmap operations.
 Section 3 introduces the mapping database, which
supports the mentioned mapping operations. A quick
glimpse to its complexity explains the motivation of
the present work.
 Section 4 presents the whole simulation system,
with all its features and functionalities.
 Section 5 exposes the results of the simulations.
 Finally, section 6 summarizes the conclusions.

2 L4 Microkenel debriefing
L4 is a small microkernel originally designed and
developed by Jochen Liedtke [4,5] at the GMD
National Research Center. Nowadays, the project is
maintained by the System Architecture Group of the
University of Karlsruhe, the DiSy group from the
University of New South Wales and the Technical
University of Dresden. It follows a set of paradigms,
which are a quick, non-complex, architecture
efficient inter process communication (IPC) and

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp19-23)

externalization of every service that does not require
being executed in supervisor mode.
 The kernel provides primary abstraction of threads
and address spaces. The application interface is
composed of a small set of system calls which offer
basic services such as thread management, memory
and communication primitives.
 Most of the operating system services are
externalized from the kernel, being granted by a set
of user-level privileged threads called servers.
 User level threads, including the servers, exchange
information between them by using a complex set of
communication mechanisms. During the process, the
threads exchange the data through a set of virtual
registers called message registers, whose
implementation is architecture dependant.
 L4 externalizes the user level memory allocation
policies from the kernel. It defines an initial virtual
address space called sigma0 (σ0), which is the result
of idempotentially mapping the complete physical
memory. The rest of the defined virtual address
spaces must receive mappings, directly or indirectly,
from σ0.
 The kernel provides a set of three mapping
primitives: Map, Grant and Unmap [6]. The first one
is used to map a single block of virtual memory from
one space to another. Grant is similar but with the
difference that, in this case, the original memory
mapping disappears. The last primitive can be used to
cancel previously performed operations.
 Figure 1 shows an example of the memory system.
In this example, the physical memory remaining free
after the booting process is mapped directly into σ0
space and the rest of the virtual address spaces get
mappings from it.
 In order to preserve the coherency of the memory
system, the kernel must maintain a set of structures
with all the necessary information regarding the
memory blocks mapped between the different virtual
address spaces. This set of structures is called
mapping database.

Figure 1. L4 virtual address spaces

 The new mapping database, developed by Espen
Skoglund, member of the L4Ka team, includes other
cascade operations regarding access rights and
accessed bits. All the references to the mapping
database in this paper correspond to the new mapping
database, available since February 2005 in the public
CVS repository [2] of the L4Ka Team as part of
L4Ka::Pistachio 0.4 [1].

3 The Mapping Database
The mapping database plays an important role in the
L4 microkernel. It maintains a complex tree, storing
all the currently valid mappings of the system. The
tree structure is required to perform cascaded
operations affecting all the mappings directly or
indirectly derived from the starting node.
 Every mapnode of the mapping tree represents a
map operation from one space to another. The root of
the tree represents the whole σ0 space, which is an
idempotent mapping of the physical address space.
 Mappings can have different sizes. When a small
mapping is established under a larger one, an
intermediate data structure is used to keep track of the
base address of the small mapping within the larger
one. This intermediate data structure is itself a tree of
arrays of rootnodes. Therefore, the mapping tree is
not only a simple tree, but a tree of trees.
 Figure 2 illustrates a mapping tree with mappings
of different sizes. Mapnodes A and D represent
mappings made directly from σ0. Mapnode A is the
same size as σ0, but the rest correspond to smaller
blocks of memory. The rootnodes arrays subtrees
keep the smaller mapnodes organized depending on
their offsets inside their parent mapnodes. Mapnode
D is several levels smaller than σ0, but it can reside

Figure 2. The mapping tree

σ0

A

D

Compressed
path

E

F
B C

 Mapnodes:

Rootnodes arrays:

root address space

σ0 address space

physical memory

physical space occupied after booting

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp19-23)

under a larger rootnode entry saving intermediate
rootnode arrays. This is called compressed path.
Mapnodes E and F will be considered children of σ0
or children of D, depending on an integer value called
depth.
 As any other part of L4, the Mapping Database is
subject to dramatic restrictions regarding execution
time, preemption and memory resources. Its heavily
optimized implementation avoids ordinary recursion
in order to keep the stack usage as low as possible.
Only a limited amount of information requires being
stacked, and it is stored in an array. The recursive
travel through the tree is performed by loops instead
of function calls. All operations can be quickly
interrupted leaving the mapping database in a
consistent state.
 The implementation is additionally complicated as
a result of the usage of other techniques like
compressed paths in the trees of arrays of rootnodes.

4 Simulation process
 The simulation process consists in extracting the
mapping database and all its structures and functions
from the microkernel, and encapsulating them in a
complex simulated system.
 Within this environment, the mapping database is
tested in many different ways to detect possible
conceptual malfunctions and/or implementation
errors.
 The C++ programming language contains a rich
set of mechanisms that allow redefining data types
with a very low impact on algorithmic parts of the
code. It also includes the powerful substitution

preprocessor directives inherited from C. These
mechanisms are used in the mapping database to
monitor its activity within the simulations. The
mapping tree elements are wrapped by objects
containing additional information and checkpoints are
inserted in the most complex mapping operations.
The validation is performed step by step. A similar
approach has been previously suggested by [7].
 Figure 3 shows the automated simulation process.
The mapping database stands in the middle with a
few modified lines of code that prevent infinite loops,
which would stop the process. The surrounding
elements will be explained along this section.

4.1 Dynamic memory subsystem
A dynamic memory subsystem provides the
necessary memory for the different structures used in
the mapping database. The subsystem assigns the
blocks according to their size. This size must be also
specified upon deallocation.
 The simulated environment provides this kind of
memory allocation system, but also traces the
different assigned memory blocks, saving all the
necessary information, such as the object type, its
size and its address. With this tracing, the simulator
verifies the assignments and deallocations of the
blocks corresponding to the different structures.
 After every step of the mapping process, the
simulator checks that every used structure resides in
an assigned memory block and that every assigned
block is used to store a valid database object. It also
checks that every object is attached to the mapping
database tree.

Figure 3. Simulation environment for the mapping database

Dynamic memory subsystem

new
wrapped object

delete(addr,size)
check

Parallel tree
Logs

Fixed tests

Random tests

≠ ?

Infinite loop? Random tests
genetrator

Handcrafted tests

MAPPING
DATABASE

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp19-23)

4.2 Topology verification
Once an operation is performed in the database, the
simulator travels through the whole mapping tree,
verifying its topology. During this process, the
simulator checks the correctness of the relationships
between the different nodes of the database tree,
validating their pointers.

4.3 Parallel tree
The simulation environment also implements a
parallel tree that has the same features of the original
one.
 The main difference between the one provided by
the simulator and the one from the mapping database
is that the former uses, without any restrictions, all
the normal resources provided by the operating
system on which the simulator is run. It uses
recursion and other memory-and-time-consuming
mechanisms, not available in the heavily optimized
version, implemented for the microkernel. Therefore,
it is easier to ensure its correctness and it can be used
as a reference model.

4.4 Run tests
The simulator runs two kinds of tests: predefined
tests and random tests.
 It is possible to define a series of predefined
handcrafted tests that present different situations to
challenge the mapping database model. These
situations include mapping and granting operations of
different memory blocks or changes in their
respective access rights.
 After the set of fixed tests, the simulator performs
random actions on the database. In this case, the size
of the mapped blocks and the access rights are
randomly selected, allowing the detection of errors
that would otherwise remain covered. The initial state
for these tests is also built at random.

4.5 Log
The simulator stores precise information of the
operations that are taken into a set of log files. The
aim is to prevent loosing information due to a hang of
the simulation program. The log files contain data
enough to reproduce the conditions that provoked the
error.
 The simulator also implements a mechanism to
avoid falling in an infinite loop. It stores state
snapshots that include the situation of the whole
mapping database tree as well as all the local
variables of the functions. When the system performs
an iterative operation, every new state is compared to
the previous ones and, if the resulting state happens
to have previously occurred, the simulator ends the

test, recording the malfunction in the corresponding
log file. The automated tests that provoke errors can
be added to the set of predefined tests.

5 Results
As a result of performing a large number of tests,
many errors of different nature were discovered and
thus corrected. Some errors were discovered within
the very early stages of the verification process,
requiring only a few iterations to rise up. However,
other errors usually needed thousands of iterations
before being discovered.
 The final version of the mapping database has
passed millions of tests, proving its robustness.
 The verification process required a feedback cycle
consisting of:

• Tests execution
• Error detection
• Search of the error causes
• Fix by the L4Ka Team.

 The feedback cycle has a very short length since
the original code must suffer very few modifications
before being inserted into the simulation tool.
 All the simulations and tests have been run on 32
bits x86 machines. However, due to the fact that the
mapping database is virtually independent from the
underlying architecture, several configurations and
page sizes have been tested.
 For example, one of the errors detected using the
simulator was the behavior of the bit shifting
operation SHL, which changes across the different
generations of the x86 processors family. Originally,
that operation zeroed the result when the value of the
second operand was greater or equal to the size of the
shifted operand. In the new generations, only the
lower bits are used, leaving the first operand
unmodified when the second operand equals the
number of bits of the first operand.
 The history of the affected files [3] can be viewed
in the public CVS repository [2] of the L4Ka Team as
part of L4Ka::Pistachio 0.4 [1].

6 Conclusions
The simulation tool that we have developed has
proven as a powerful ally to detect and debug the
mapping database subsystem of the L4 microkernel.
Numerous errors were found and corrected during the
whole testing process. This fact exposes the necessity
of developing this kind of specific simulators to test
critical subsystems.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp19-23)

 This kind of simulators can be built for modular
subsystems capable to run stand-alone. In these cases
the encapsulation process can be affordable and
worthy enough. The more modularity the whole
system has, the easier and more effective the
simulation is.

7 Acknowledgements
We must thank the whole L4Ka team and specially
Espen Skoglund for their help and their patience.
Without them, it would not have been possible to
accomplish this project.

References:
[1] L4Ka::Pistachio microkernel main page:

http://l4ka.org/projects/pistachio/
[2] L4Ka::Pistachio microkernel CVSWeb:

http://l4hq.org/cvsweb/cvsweb/pistachio/
[3] L4Ka::Pistachio new mapping database:

http://l4hq.org/cvsweb/cvsweb/pistachio/
 kernel/include/mdb.h
http://l4hq.org/cvsweb/cvsweb/pistachio/
 kernel/include/mdb_mem.h
http://l4hq.org/cvsweb/cvsweb/pistachio/
 kernel/src/generic/mdb.cc
http://l4hq.org/cvsweb/cvsweb/pistachio/
 kernel/src/generic/mdb_mem.cc

[4] Liedtke1995. J. Liedtke, On microkernel
construction, In Proceedings of the 15th ACM
Symposium on Operating System Principles
(SOSP-15), Copper Mountain Resort, CO, dec
1995.

[5] Liedtke1996. J. Liedtke, Toward real
microkernels. Commun. ACM, 39(9):70–77, 1996.

[6] L4Ka2005. L4Ka Team. L4 experimental kernel
reference manual. October 2005.

[7] Edwards2004. S. H. Edwards, M. Sitaraman, B.
W. Weide, E. Hollingsworth, Contract-checking
wrappers for C++ classes, IEEE Transactions on
Software Engineering, vol. 30-11, pp. 794-810,
2004

[8] Tuch2005. H. Tuch, G. Klein, G. Heiser, OS
Verification – Now!, In Proceedings of the 10th
Workshop on Hot Topics in Operating Systems
(HotOS X), 2005.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp19-23)

