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Abstract: - As the complexity of the operating systems increases, it has been proven necessary to develop new 
techniques to test and verify them. L4 is a small microkernel that serves as base for numerous research and 
development projects. One of its design paradigms is the externalization from the kernel of the user level 
memory allocation policies. This externalization forces the microkernel to maintain complex structures and use 
convoluted algorithms to process all the required information. Some of these structures and methods form what 
is called the mapping database subsystem. In this paper, we present a simulation environment that extracts the 
complete database subsystem from the rest of the kernel, and runs on it several automated tests and verification 
processes. With this simulation environment, several errors were discovered in early development stages of a 
new mapping database. A fast feedback loop of coding and testing soon led to a final version even more stable 
than the old, simpler, mapping database. 
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1   Introduction 
Testing and verification of applications and systems 
has always been a challenge since the very first steps 
of the computer science development. Assuming that 
proving the complete absence of errors in operating 
systems and its applications is nearly impossible, 
several techniques have been used to minimize their 
errors. These techniques go from the simple running 
of different test programs to the formal verification 
using mathematical oriented languages [8]. 
     In this paper, we present a new approach to the 
system testing and error detection problem. This 
solution has been actually used to test and verify the 
implementation of one of the key parts of the L4 
Microkernel: the Mapping Database. 
     Basically, it consists in the extraction from the 
kernel of the mapping subsystem and the 
implementation of a parallel, easily-designed and 
well-proven system that simulates the behavior of the 
real one. This simulated system is implemented using 
some techniques that cannot be used in the real 
system, such as recursion, due to the limitation of the 
system resources. It is used to generate different 
scenarios and run several different operations in order 
to verify the correctness of the developing model. As 
we will see, the simulator itself is able to generate 
random tests, thus increasing the detection 
capabilities and reducing the mean error probability 
of the final system. 

     This testing methodology can be extrapolated to 
any other subsystem as long as it has enough 
independence from the rest of the operating system. It 
can also be used to develop and validate new 
computing algorithms and methods. 
     This paper covers the design of the mentioned 
simulation system developed for testing one of the 
key parts of the L4 Microkernel. 
     Section 2 briefly introduces the L4 microkernel 
and the Map/Grant/Unmap operations. 
     Section 3 introduces the mapping database, which 
supports the mentioned mapping operations. A quick 
glimpse to its complexity explains the motivation of 
the present work. 
     Section 4 presents the whole simulation system, 
with all its features and functionalities. 
     Section 5 exposes the results of the simulations. 
     Finally, section 6 summarizes the conclusions. 
 
 
2   L4 Microkenel debriefing 
L4 is a small microkernel originally designed and 
developed by Jochen Liedtke [4,5] at the GMD 
National Research Center. Nowadays, the project is 
maintained by the System Architecture Group of the 
University of Karlsruhe, the DiSy group from the 
University of New South Wales and the Technical 
University of Dresden. It follows a set of paradigms, 
which are a quick, non-complex, architecture 
efficient inter process communication (IPC) and 
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externalization of every service that does not require 
being executed in supervisor mode. 
     The kernel provides primary abstraction of threads 
and address spaces. The application interface is 
composed of a small set of system calls which offer 
basic services such as thread management, memory 
and communication primitives. 
     Most of the operating system services are 
externalized from the kernel, being granted by a set 
of user-level privileged threads called servers. 
     User level threads, including the servers, exchange 
information between them by using a complex set of 
communication mechanisms. During the process, the 
threads exchange the data through a set of virtual 
registers called message registers, whose 
implementation is architecture dependant. 
     L4 externalizes the user level memory allocation 
policies from the kernel. It defines an initial virtual 
address space called sigma0 (σ0), which is the result 
of idempotentially mapping the complete physical 
memory. The rest of the defined virtual address 
spaces must receive mappings, directly or indirectly, 
from σ0. 
     The kernel provides a set of three mapping 
primitives: Map, Grant and Unmap [6]. The first one 
is used to map a single block of virtual memory from 
one space to another. Grant is similar but with the 
difference that, in this case, the original memory 
mapping disappears. The last primitive can be used to 
cancel previously performed operations. 
     Figure 1 shows an example of the memory system. 
In this example, the physical memory remaining free 
after the booting process is mapped directly into σ0    
space and the rest of the virtual address spaces get 
mappings from it. 
     In order to preserve the coherency of the memory 
system, the kernel must maintain a set of structures 
with all the necessary information regarding the 
memory blocks mapped between the different virtual 
address spaces. This set of structures is called 
mapping database. 
 

 
 

Figure 1. L4 virtual address spaces 

     The new mapping database, developed by Espen 
Skoglund, member of the L4Ka team, includes other 
cascade operations regarding access rights and 
accessed bits. All the references to the mapping 
database in this paper correspond to the new mapping 
database, available since February 2005 in the public 
CVS repository [2] of the L4Ka Team as part of 
L4Ka::Pistachio 0.4 [1]. 
 
 
3   The Mapping Database 
The mapping database plays an important role in the 
L4 microkernel. It maintains a complex tree, storing 
all the currently valid mappings of the system. The 
tree structure is required to perform cascaded 
operations affecting all the mappings directly or 
indirectly derived from the starting node. 
     Every mapnode of the mapping tree represents a 
map operation from one space to another. The root of 
the tree represents the whole σ0 space, which is an 
idempotent mapping of the physical address space.  
     Mappings can have different sizes. When a small 
mapping is established under a larger one, an 
intermediate data structure is used to keep track of the 
base address of the small mapping within the larger 
one. This intermediate data structure is itself a tree of 
arrays of rootnodes. Therefore, the mapping tree is 
not only a simple tree, but a tree of trees. 
     Figure 2 illustrates a mapping tree with mappings 
of different sizes. Mapnodes A and D represent 
mappings made directly from σ0. Mapnode A is the 
same size as σ0, but the rest correspond to smaller 
blocks of memory. The rootnodes arrays subtrees 
keep the smaller mapnodes organized depending on 
their offsets inside their parent mapnodes. Mapnode 
D is several levels smaller than σ0, but it can reside 
 

 
 

Figure 2. The mapping tree 
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under a larger rootnode entry saving intermediate 
rootnode arrays. This is called compressed path. 
Mapnodes E and F will be considered children of σ0 
or children of D, depending on an integer value called 
depth. 
     As any other part of L4, the Mapping Database is 
subject to dramatic restrictions regarding execution 
time, preemption and memory resources. Its heavily 
optimized implementation avoids ordinary recursion 
in order to keep the stack usage as low as possible. 
Only a limited amount of information requires being 
stacked, and it is stored in an array. The recursive 
travel through the tree is performed by loops instead 
of function calls. All operations can be quickly 
interrupted leaving the mapping database in a 
consistent state. 
     The implementation is additionally complicated as 
a result of the usage of other techniques like 
compressed paths in the trees of arrays of rootnodes. 
 
 
4   Simulation process 
     The simulation process consists in extracting the 
mapping database and all its structures and functions 
from the microkernel, and encapsulating them in a 
complex simulated system. 
     Within this environment, the mapping database is 
tested in many different ways to detect possible 
conceptual malfunctions and/or implementation 
errors. 
     The C++ programming language contains a rich 
set of mechanisms that allow redefining data types 
with a very low impact on algorithmic parts of the 
code. It also includes the powerful substitution 

preprocessor directives inherited from C. These 
mechanisms are used in the mapping database to 
monitor its activity within the simulations. The 
mapping tree elements are wrapped by objects 
containing additional information and checkpoints are 
inserted in the most complex mapping operations. 
The validation is performed step by step. A similar 
approach has been previously suggested by [7]. 
     Figure 3 shows the automated simulation process. 
The mapping database stands in the middle with a 
few modified lines of code that prevent infinite loops, 
which would stop the process. The surrounding 
elements will be explained along this section. 
 
4.1   Dynamic memory subsystem 
A dynamic memory subsystem provides the 
necessary memory for the different structures used in 
the mapping database. The subsystem assigns the 
blocks according to their size. This size must be also 
specified upon deallocation. 
     The simulated environment provides this kind of 
memory allocation system, but also traces the 
different assigned memory blocks, saving all the 
necessary information, such as the object type, its 
size and its address. With this tracing, the simulator 
verifies the assignments and deallocations of the 
blocks corresponding to the different structures. 
     After every step of the mapping process, the 
simulator checks that every used structure resides in 
an assigned memory block and that every assigned 
block is used to store a valid database object. It also 
checks that every object is attached to the mapping 
database tree. 

 
 

Figure 3. Simulation environment for the mapping database 
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4.2   Topology verification 
Once an operation is performed in the database, the 
simulator travels through the whole mapping tree, 
verifying its topology. During this process, the 
simulator checks the correctness of the relationships 
between the different nodes of the database tree, 
validating their pointers. 
 
4.3   Parallel tree 
The simulation environment also implements a 
parallel tree that has the same features of the original 
one. 
     The main difference between the one provided by 
the simulator and the one from the mapping database 
is that the former uses, without any restrictions, all 
the normal resources provided by the operating 
system on which the simulator is run. It uses 
recursion and other memory-and-time-consuming 
mechanisms, not available in the heavily optimized 
version, implemented for the microkernel. Therefore, 
it is easier to ensure its correctness and it can be used 
as a reference model. 
 
4.4   Run tests 
The simulator runs two kinds of tests: predefined 
tests and random tests. 
     It is possible to define a series of predefined 
handcrafted tests that present different situations to 
challenge the mapping database model. These 
situations include mapping and granting operations of 
different memory blocks or changes in their 
respective access rights. 
     After the set of fixed tests, the simulator performs 
random actions on the database. In this case, the size 
of the mapped blocks and the access rights are 
randomly selected, allowing the detection of errors 
that would otherwise remain covered. The initial state 
for these tests is also built at random. 
 
4.5   Log 
The simulator stores precise information of the 
operations that are taken into a set of log files. The 
aim is to prevent loosing information due to a hang of 
the simulation program. The log files contain data 
enough to reproduce the conditions that provoked the 
error. 
     The simulator also implements a mechanism to 
avoid falling in an infinite loop. It stores state 
snapshots that include the situation of the whole 
mapping database tree as well as all the local 
variables of the functions. When the system performs 
an iterative operation, every new state is compared to 
the previous ones and, if the resulting state happens 
to have previously occurred, the simulator ends the 

test, recording the malfunction in the corresponding 
log file. The automated tests that provoke errors can 
be added to the set of predefined tests. 
 
 
5   Results 
As a result of performing a large number of tests, 
many errors of different nature were discovered and 
thus corrected. Some errors were discovered within 
the very early stages of the verification process, 
requiring only a few iterations to rise up. However, 
other errors usually needed thousands of iterations 
before being discovered. 
     The final version of the mapping database has 
passed millions of tests, proving its robustness. 
     The verification process required a feedback cycle 
consisting of: 

• Tests execution 
• Error detection 
• Search of the error causes 
• Fix by the L4Ka Team. 

 
     The feedback cycle has a very short length since 
the original code must suffer very few modifications 
before being inserted into the simulation tool. 
     All the simulations and tests have been run on 32 
bits x86 machines. However, due to the fact that the 
mapping database is virtually independent from the 
underlying architecture, several configurations and 
page sizes have been tested. 
     For example, one of the errors detected using the 
simulator was the behavior of the bit shifting 
operation SHL, which changes across the different 
generations of the x86 processors family. Originally, 
that operation zeroed the result when the value of the 
second operand was greater or equal to the size of the 
shifted operand. In the new generations, only the 
lower bits are used, leaving the first operand 
unmodified when the second operand equals the 
number of bits of the first operand. 
     The history of the affected files [3] can be viewed 
in the public CVS repository [2] of the L4Ka Team as 
part of L4Ka::Pistachio 0.4 [1]. 
 
 
6   Conclusions 
The simulation tool that we have developed has 
proven as a powerful ally to detect and debug the 
mapping database subsystem of the L4 microkernel. 
Numerous errors were found and corrected during the 
whole testing process. This fact exposes the necessity 
of developing this kind of specific simulators to test 
critical subsystems. 
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     This kind of simulators can be built for modular 
subsystems capable to run stand-alone. In these cases 
the encapsulation process can be affordable and 
worthy enough. The more modularity the whole 
system has, the easier and more effective the 
simulation is. 
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