
Optimization Algorithms For OCL Compilers

GERGELY MEZEI, LÁSZLÓ LENGYEL, TIHAMÉR LEVENDOVSZKY, HASSAN CHARAF
Automation and Applied Informatics

Budapest University of Technology and Economics
1111 Goldman György tér 3.

HUNGARY

Abstract: Constraint handling is one of the most focused research field in both model validation and model
transformation. Constraints are often simple topological conditions such as multiplicity checks, but the main strength of
the constraint validation lies in the textual constraints defined in high-level languages. Object Constraint Language
(OCL) is a wide-spread formalism to express model constraints. We have found that OCL is also useful in graph
transformation-based model transformation rules. There exist several interpreters and compilers that handle OCL
constraints in modeling, but these tools do not support constraint optimization, therefore, the model validation is not
always efficient. This paper presents algorithms to optimize OCL compilers, and accelerate the validation process. The
presented algorithms were implemented in the OCL Compiler of Visual Modeling and Transformation System, and
they were tested in both metamodels and transformation rules.

Key-Words: OCL, Compiler, Navigation Step, Metamodeling, Constraints, Model validation

1 Introduction
Models and model-based software development is
one of the most focused research fields. The
growing importance of modeling made
customizable, flexible modeling languages popular.
Domain Specific Modeling Languages (DSMLs)
represent model elements with customized attributes
in an editing environment. Domain specific
modeling is rarely used by smaller developer
groups, because they are very expensive.
Metamodeling is a proven solution for this problem.
Metamodels specify the modeling language, what
kind of objects the modeler can use, what properties
they have, and what connections one can create
between them. The information represented by a
model has a tendency to be incomplete, informal,
imprecise, and sometimes even inconsistent. For
example, a UML diagram, such as a class diagram,
is typically not refined enough to provide all the
relevant aspects of a specification. Besides other
issues, there is a need to describe additional
constraints about the objects in the model.

One of the most wide-spread approaches to
constraint handling is the Object Constraint
Language (OCL) [1]. OCL is a formal language that
remains easy to read and write. Although OCL was
created to extend the capabilities of UML [2], and
define constraints for the model items, OCL can be
used also in generic metamodeling environments to

validate the models, or the define constraints in the
model transformations.

Visual Modeling and Transformation Systems
(VMTS) [3] is an n-layer metamodeling and model
transformation tool, that grants full transparency
between the layers (each layer is handled with the
same methods). VMTS uses OCL constraints in
model validation and in the graph rewriting-based
model transformation steps. This paper presents the
optimizing algorithms of an OCL compiler, which
can be used to refine both metamodel instantiation
and the applications of model transformation rules.
Proofs are also provided to show that the optimized
and the unoptimized code are functionally
equivalent, i.e. for all input, the output of the
constraint validation is the same.

2 Related work
There exist several modeling frameworks, and
extension tools for frameworks that support OCL
constraints in a more or less efficient way. This
section mentions the most typical compilers only.
 Oclarity [4] is an AddIn for one of the most
popular modeling tools, Rational Rose. Oclarity
supports syntactic, semantic validation of the
constraints, and can correct minor mistakes (e.g.
typos) in the constraint definitions. Oclarity is a

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp55-60)

Fig. 1. The structure of the OCL Compiler

well-designed helper add-in, but the model
validation is interpreting without optimization.
Object Constraint Language Environment (OCLE)
[5] is a UML CASE Tool. OCLE helps the users to
realize both static and dynamic checking at the user
model level. The tool also has a user-friendly
graphical GUI. Although the tool supports model
checking, it does not use compiling techniques.
The Dresden OCL Toolkit (DOT) [6] generates Java
code from OCL expressions, and then instruments
the system in five steps. (i) OCL expressions are
parsed using a LALR(1) parser generated with the
SableCC. The result of the step is an Abstract
Syntax Tree (AST). (ii) A limited semantic analysis
is performed on the AST to find errors. (iii) The
AST is simplified in order to make the further
processing simpler. (iv) The code generator
traverses the simplified AST and builds Java
expressions. (v) The generated code is inserted into
the system that contains the constraint source code,
thus, the contracts can be tested at runtime.
Although DOT implements a real OCL compiler, it
does not support metamodeling, or optimizing of
the constraints.

3 The Compiler
The OCL Compiler realized in VMTS consists of
several parts (Fig. 1). This section gives a short
description of the architecture of the compiler, and
introduces the main steps of the compilation. The
presented information is required to understand the
mechanisms of the optimization algorithms.

Firstly, the user defines the constraints in OCL, then
the constraint definitions are tokenized and
syntactically analyzed. The lexical analysis reads
the constraint definition as a text, and creates a
sequence of token such as the keywords of the
language. Tokenization is performed by Flex [7].

Syntactic analysis build a Syntax tree using the
grammar rules specified in OCL. Unfortunately, the
grammar cannot be mapped directly into the OCL
specification because of its ambiguities. The
grammar rules are simplified to solve this problem
(this information is reconstructed in the later
compilation steps). Syntactic analysis uses Bison
[8].
The Syntax tree does not contain every necessary
information, it should be extended e.g. with type
information, and implicit self references. This
amendment is performed in the semantic analysis
phase, and it produces the semantic analyzed syntax
tree. The semantic analysis also reconstructs the
simplification made in the grammar in the
syntactical analysis phase.
In the next step, the constructed and semantically
analyzed tree is transformed to a CodeDOM tree.
CodeDOM is a .NET-based technology that can
describe programs using abstract trees, and it can
use this tree representation to generate code to any
languages that is supported by the .NET CLR (like
C#, Visual Basic or J#). The transformation to the
CodeDOM tree is simple, because each node type in
the syntax tree has an appropriate code sequence i.e.
CodeDOM tree branch.
The compiler transforms the CodeDOM tree to C#
source code. Packages are transformed to
namespaces; contexts are realized with classes, and
constraint expressions as public methods. To
support the base types available in OCL, a class
library was developed. The constraint classes are
inherited from base classes implemented in this
class library. To handle the invariants simply, the
context class has always a method (checkInvariants)
that calls the methods of the invariants one after the
other.
Finally, the compiler compiles the source code and
builds it. The output of the OCL compiler is an
assembly (a .dll file) that implements the validation
on the OCL constraint. The steps of the unoptimized
OCL compiler are discussed in detail in [3], and in
[9].

4 Optimization algorithms
The evaluation of the OCL constraint consists of
two parts. (i) Selecting the object and its properties
that we need to check against the constraint and (ii)
executing the validation method. In general, the first

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp55-60)

Fig. 2. RELOCATECONSTRAINT algorithm

step has more serious computational complexity,
thus, our optimization algorithms focus on
minimizing the number of navigation steps required
to check the constraint. Since each navigation step
means a query on the database, the process can be
optimized by reducing these steps. If the constraint
does not contain any unnecessary navigation steps,
then it is in Canonical Constraint Form, or simply it
is normalized. The normalization (reducing the
navigation steps) can accelerate the first part of the
constraint evaluation. The primary aim of the
introduced optimization algorithms is to provide a
method to normalize the OCL constraints if it is
possible.

4.1 Constraint relocation
The first normalization algorithm called
RELOCATECONSTRAINT is shown in Fig. 2. The
algorithm processes the OCL constraints propagated
to the transformation step. The main foreach loop
examines the navigation paths of the actual
constraint. The algorithm calculates the number of
all navigation steps for each node contained by the
model. This calculation sums the number of the
navigation steps which is necessary to reach all
destination nodes of the original constraint C from
the new place. The algorithm stores the most
appropriate node (optimalNode) and finally updates
the navigation paths and relocates the constraint to
the optimal node.

The computational complexity of the
RELOCATECONSTRAINT algorithm is

∑
=

+Ο
c

i
i vn

1

3)(, where c denotes the number of the

propagated constraints contained by the rewriting
rule, ni is the number of the navigation steps
contained by constraint i, and v denotes the number
of the nodes in the rewriting rule. The complexity of
finding the shortest path in the rewriting rule is v2.
We must execute it v times: for each node in the
constraint aspect.

Proposition 1. Applying the RELOCATE-
CONSTRAINT algorithm, each constraint is
relocated in the node that implements the constraint
using minimal number of navigation step if only
constraint relocation is allowed. Using constraint
relocation, the RELOCATECONSTRAINT
algorithm eliminates all unnecessary navigation
steps in non-decomposable (atomic) expressions.

Proof. Let H be an optional input model, and let C
be an atomic OCL constraint which is propagated to
H. Running the RELOCATECONSTRAINT
algorithm results in the optimal node A to which we
should assign the constraint. Assume that there
exists another node (B) for which the following
holds: if one links the constraint C to the node B and
updates the navigation paths of C, then the
constraint C contains fewer navigation steps, than if
it had been propagated to the A node. The
RELOCATECONSTRAINT algorithm visits all the
nodes in the input model H, and it calculates for all
nodes what the number of the navigation steps
would be if the constraint were relocated to the
actual node and the navigation paths were updated.
Therefore, if the node B were better in the case of
the constraint C, then it would be found by the
RELOCATECONSTRAINT algorithm. That
contradicts the assumption.

The goal of the constraint normalization is to
achieve the pure canonical form, which does not
contain navigation steps. Using RELOCATE-
CONSTRAINT algorithm, it is not possible in all
cases, because constraints are often built from sub-
terms and linked with operators (self.age = 18
and self.name = 'Jay'), or require property
values from different nodes (self.secureId =
self.manufacturer.secureId).

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp55-60)

Fig. 3. ANALYZECLAUSES algorithm

4.2. Constraint decomposition
Although subterms are not decomposable in
general, they can be partitioned to clauses if they
are linked with boolean operators. A clause can
contain two expressions (OCL expression, or other
clauses) and one operation (and/or/xor/implies)
between them. Separating the clauses, we can
reduce the number of the navigation steps contained
by the OCL expressions, and the complexity of the
constraint evaluation during the constraint
validation process. It is simpler to evaluate the
logical operations between the members of a clause
than to traverse the navigation paths contained by
the constraints.
It is useful to handle invariants uniformly, hence we
have extended the clause definitions by a special
type that can contain exactly one OCL expression
(without any logical operation). This special clause
is used only if the invariant does not contain any
Boolean operators that can be used to decompose
the constraint.

The ANALYSECLAUSES algorithm (Fig. 3) is
invoked for the outermost OCL expression of each
invariant. The decomposition works as follows: (i)
If the expression is a logical expression, then a new
clause is created with the appropriate relation type
(and/or/xor/implies), and the two sides of the
expressions are added to the clause as children. The
children are recursively checked, because they can
also be OCL expressions connected with logical
operators (recall that clauses can contain other
clauses as children). The result clause is retrieved to

handle the recursive calls. (ii) If the expression is an
expression in parentheses, then the function returns
the inner expression. This substep is necessary,
because the parentheses can modify the order of the
constraint processing. (iii) In other cases the OCL
expression cannot be decomposed. If it is the only
expression in the constraint then a special clause is
created, the RELOCATECONSTRAINT algorithm
is processed on the expression, and the clause is
retrieved. If the expression is not the only
expression in the constraint, then the expression
itself is atomic. In this case the expression is passed
to the RELOCATECONSTRAINT algorithm, and
then it is retrieved.
The constraint relocation algorithm is optimal only
in case of non-decomposable constraints, hence the
constraint decomposition should be processed
firstly, and then the relocation (the processing order
can not be changed). This statement can be proved
with a simple example: self.age = 18 and
self.manager.name = 'Jay'.

Proposition 2. Applying the ANALYZECLAUSES
algorithm, the number of the navigation steps in the
constraints contained by the output model is
minimal (supposing that only the logical relations
can be decomposed).

Proof. Let H be an optional input, and let C be an
OCL constraint which is propagated to the H.
Running the ANALYSECLAUSES algorithm
results in the model H' with normalized constraints.
Assume that there exists a normalized model of H
(H'') which contains less navigation steps than H'.
The ANALYSECLAUSES algorithm partition the
constraint according to the logical expressions. The
algorithm produces either expressions with at most
one navigation step or complex expressions that
cannot be processed further. The algorithm
produces atomic expressions in both cases. In the
next step, the decomposed parts are processed by
the RELOCATECONSTRAINT algorithm to
reduce the number of the navigation steps. Using
the RELOCATECONSTRAINT algorithm, the
number of the navigation steps in the constraints
contained by the output model is minimal, because
the expressions were atomic. That contradicts our
assumption.
Proposition 3. Applying the RELOCATE-
CONSTRAINT and ANALYSECLAUSES

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp55-60)

Fig. 4. Company – products case-study

algorithms for an optional input model does not
modify the result of the constraint evaluation.

Proof. Let H be an optional input model, let H' be
the result model of the ANALYZECLAUSES
algorithm and let H'' be the result model of the
RELOCATECONSTRAINT after the constraint
normalization. Assume that evaluating constraints
contained by H' or H'' produces different value than
evaluating constraints contained by H. Both
ANALYZECLAUSES and RELOCATE-
CONSTRAINT algorithms update the navigation
paths and the context information of the constraints.
The algorithms do not modify the constraint
conditions (cf. above the pseudo code and the
descriptions of the algorithms), and they are
processed sequentially (they do not affect the result
of each other). That contradicts the assumption.

The optimization algorithms require an appropriate
syntax tree, since, for example, the constraint
relocation algorithm would not work if navigation
calls were recognized as attribute calls because of
the simplification made in the syntax analyzing
step. Furthermore the constraint relocation step
requires proper type information to query the
available navigation destinations. Therefore the
optimization steps are used between the semantic
analysis and the code generation. The optimization
algorithms must be executed only once for the
specified constraints, and they accelerate the
constraint validation for an arbitrary model.
The CodeDOM tree is constructed using the
optimized syntax tree. Clauses are transformed to
methods, and the parts of the clauses are compiled
to method calls. All four Boolean operators are
expressed by or, and, and not operations (e.g. a xor
b is expressed as a and !b or !a and b).

5 Case study
Using a case study, we introduce how the
optimization algorithms work. The case study is
about a computer manufacturer company that
produces CDs, flash memories, and pen drives.
Although both the model and the constraint are very
simple, it can show the algorithms in working.

The metamodel of the case study is shown in Fig 4.
The attributes are not visible in the picture,
Company has two attributes: Name (string), and
LastSerialIndex (integer), SerialBase (integer). The
products (all three types) have only one attribute:
SerialNumber (integer).

The constraint (Fig. 5) checks the SerialNumber of
the product (in this case the serial number of the
CDs). The last valid SerialNumber for the products
of the Company is computed by adding up
SerialBase and LastSerialIndex. Another restriction
is that the SerialNumber is only valid if it is greater
than 0 independently from the manufacturer.

Optimization executes the ANALYZECLAUSES
algorithm on the invariant. The algorithm creates
two clauses that are connected with an and operator.
The first contains the simple condition
(SerialNumber > 0), while the second checks the
number according to the data stored in the
manufacturer. The clauses are processed further
using the RELOCATECONSTRAINT algorithm.
The algorithm does not change the first clause, but
the second clause is relocated to the manufacturer
node. The relocation is necessary, because the
constraint in the original node (CD) contains two
navigation steps, while in the new node (Company)
only one step is required.

Fig. 5. Serial checker constraint

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp55-60)

Fig. 6 shows the syntax tree of the constraint after
the semantic analysis, but before the optimization.
ClassifierContextDeclaration represents the
invariant. The context of the invariant (CD) is
shown in brackets. The OperationCallLogical-
Expression expresses the subexpressions connected
with and relation (node 266 in the picture).

Fig. 7 shows the syntax tree after the optimization.
A clause (Optimalization_InvariantClause) is
created instead of the deleted context definition by
the ANALYSECLAUSES algorithm, and
RELOCATECONSTRAINT has changed the
context of the second subclause to Company.

6 Conclusions
This paper has presented the main concepts of an
optimizing OCL Compiler in an n-layer
metamodeling and model transformation system.

The paper has discussed the steps of the compiler
construction in short from the lexical and syntactic
analysis to the code generation. The compiler was
extended by optimizing algorithms. The primary
aim of the optimization was to normalize the
constraints, therefore, constraint relocating and
constraint decomposition techniques have been
proposed. The correctness and the efficiency of the
algorithms have been proven. Finally, a simple but
illustrative case study has been shown the
underlying mechanisms in operation.
Although two effective optimization algorithms
were presented, processing the OCL constraints is
not optimal. The decomposition and the
normalization of the atomic expressions have
reduced the navigation steps to the minimum, but
further research is required to extend the scope of
the optimization algorithms and accelerate the
processing, focusing on constraint transformations
besides the navigation steps.

Acknowledgements
The found of “Mobile Innovation Centre” has
supported, in part, the activities described in this
paper.

References:
[1] Object Constraint Language Specification (OCL),

www.omg.org
[2] UML 2.0 Specification http://www.omg.org/uml/
[3] VMTS Web Site

http://avalon.aut.bme.hu/~tihamer/research/vmts
[4] Oclarity,

http://www.empowertec.de/products/rational-rose-ocl.htm
[5] Object Constraint Language Environment,

http://lci.cs.ubbcluj.ro/ocle/
[6] Dresden OCL Toolkit,

http://dresden-ocl.sourceforge.net/index.html
[7] Flex, Official Homepage,

http://www.gnu.org/software/flex/
[8] Bison, Official Homepage,

http://www.gnu.org/software/bison/bison.html
[9] Gergely Mezei, Tihamér Levendovszky, Hassan

Charaf, Implementing an OCL 2.0 Compiler for
Metamodeling Environments, 4th Slovakian-
Hungarian Joint Symposium on Applied Machine
Intelligence

Fig. 6. Syntax Tree – before optimization

Fig. 7. Syntax Tree – after optimization

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp55-60)

