
Optimization Algorithms For OCL Compilers 
 

GERGELY MEZEI, LÁSZLÓ LENGYEL, TIHAMÉR LEVENDOVSZKY, HASSAN CHARAF 
Automation and Applied Informatics 

Budapest University of Technology and Economics 
1111 Goldman György tér 3. 

HUNGARY 
 
 

Abstract: Constraint handling is one of the most focused research field in both model validation and model 
transformation. Constraints are often simple topological conditions such as multiplicity checks, but the main strength of 
the constraint validation lies in the textual constraints defined in high-level languages. Object Constraint Language 
(OCL) is a wide-spread formalism to express model constraints. We have found that OCL is also useful in graph 
transformation-based model transformation rules. There exist several interpreters and compilers that handle OCL 
constraints in modeling, but these tools do not support constraint optimization, therefore, the model validation is not 
always efficient. This paper presents algorithms to optimize OCL compilers, and accelerate the validation process. The 
presented algorithms were implemented in the OCL Compiler of Visual Modeling and Transformation System, and 
they were tested in both metamodels and transformation rules.  
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1   Introduction 
Models and model-based software development is 
one of the most focused research fields. The 
growing importance of modeling made 
customizable, flexible modeling languages popular. 
Domain Specific Modeling Languages (DSMLs) 
represent model elements with customized attributes 
in an editing environment. Domain specific 
modeling is rarely used by smaller developer 
groups, because they are very expensive. 
Metamodeling is a proven solution for this problem. 
Metamodels specify the modeling language, what 
kind of objects the modeler can use, what properties 
they have, and what connections one can create 
between them. The information represented by a 
model has a tendency to be incomplete, informal, 
imprecise, and sometimes even inconsistent. For 
example, a UML diagram, such as a class diagram, 
is typically not refined enough to provide all the 
relevant aspects of a specification. Besides other 
issues, there is a need to describe additional 
constraints about the objects in the model. 

One of the most wide-spread approaches to 
constraint handling is the Object Constraint 
Language (OCL) [1]. OCL is a formal language that 
remains easy to read and write. Although OCL was 
created to extend the capabilities of UML [2], and 
define constraints for the model items, OCL can be 
used also in generic metamodeling environments to 

validate the models, or the define constraints in the 
model transformations. 

Visual Modeling and Transformation Systems 
(VMTS) [3] is an n-layer metamodeling and model 
transformation tool, that grants full transparency 
between the layers (each layer is handled with the 
same methods). VMTS uses OCL constraints in 
model validation and in the graph rewriting-based 
model transformation steps. This paper presents the 
optimizing algorithms of an OCL compiler, which 
can be used to refine both metamodel instantiation 
and the applications of model transformation rules. 
Proofs are also provided to show that the optimized 
and the unoptimized code are functionally 
equivalent, i.e. for all input, the output of the 
constraint validation is the same. 

 
 

2 Related work 
There exist several modeling frameworks, and 
extension tools for frameworks that support OCL 
constraints in a more or less efficient way. This 
section mentions the most typical compilers only. 
      Oclarity [4] is an AddIn for one of the most 
popular modeling tools, Rational Rose. Oclarity 
supports syntactic, semantic validation of the 
constraints, and can correct minor mistakes (e.g. 
typos) in the constraint definitions. Oclarity is a 
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Fig. 1.   The structure of the OCL Compiler 

well-designed helper add-in, but the model 
validation is interpreting without optimization. 
Object Constraint Language Environment (OCLE) 
[5] is a UML CASE Tool. OCLE helps the users to 
realize both static and dynamic checking at the user 
model level. The tool also has a user-friendly 
graphical GUI. Although the tool supports model 
checking, it does not use compiling techniques. 
The Dresden OCL Toolkit (DOT) [6] generates Java 
code from OCL expressions, and then instruments 
the system in five steps. (i) OCL expressions are 
parsed using a LALR(1) parser generated with the 
SableCC. The result of the step is an Abstract 
Syntax Tree (AST). (ii) A limited semantic analysis 
is performed on the AST to find errors. (iii) The 
AST is simplified in order to make the further 
processing simpler. (iv) The code generator 
traverses the simplified AST and builds Java 
expressions. (v) The generated code is inserted into 
the system that contains the constraint source code, 
thus, the contracts can be tested at runtime. 
Although DOT implements a real OCL compiler, it 
does not support metamodeling, or optimizing of 
the constraints. 
 
 
3 The Compiler 
The OCL Compiler realized in VMTS consists of 
several parts (Fig. 1). This section gives a short 
description of the architecture of the compiler, and 
introduces the main steps of the compilation. The 
presented information is required to understand the 
mechanisms of the optimization algorithms. 
 

 
 
 
 
Firstly, the user defines the constraints in OCL, then 
the constraint definitions are tokenized and 
syntactically analyzed. The lexical analysis reads 
the constraint definition as a text, and creates a 
sequence of token such as the keywords of the 
language. Tokenization is performed by Flex [7]. 

Syntactic analysis build a Syntax tree using the 
grammar rules specified in OCL. Unfortunately, the 
grammar cannot be mapped directly into the OCL 
specification because of its ambiguities. The 
grammar rules are simplified to solve this problem 
(this information is reconstructed in the later 
compilation steps). Syntactic analysis uses Bison 
[8].  
The Syntax tree does not contain every necessary 
information, it should be extended e.g. with type 
information, and implicit self references. This 
amendment is performed in the semantic analysis 
phase, and it produces the semantic analyzed syntax 
tree. The semantic analysis also reconstructs the 
simplification made in the grammar in the 
syntactical analysis phase.  
In the next step, the constructed and semantically 
analyzed tree is transformed to a CodeDOM tree. 
CodeDOM is a .NET-based technology that can 
describe programs using abstract trees, and it can 
use this tree representation to generate code to any 
languages that is supported by the .NET CLR (like 
C#, Visual Basic or J#). The transformation to the 
CodeDOM tree is simple, because each node type in 
the syntax tree has an appropriate code sequence i.e. 
CodeDOM tree branch.  
The compiler transforms the CodeDOM tree to C# 
source code. Packages are transformed to 
namespaces; contexts are realized with classes, and 
constraint expressions as public methods. To 
support the base types available in OCL, a class 
library was developed. The constraint classes are 
inherited from base classes implemented in this 
class library. To handle the invariants simply, the 
context class has always a method (checkInvariants) 
that calls the methods of the invariants one after the 
other.  
Finally, the compiler compiles the source code and 
builds it. The output of the OCL compiler is an 
assembly (a .dll file) that implements the validation 
on the OCL constraint. The steps of the unoptimized 
OCL compiler are discussed in detail in [3], and in 
[9]. 

 
 

4 Optimization algorithms 
The evaluation of the OCL constraint consists of 
two parts. (i) Selecting the object and its properties 
that we need to check against the constraint and (ii) 
executing the validation method. In general, the first 
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Fig. 2. RELOCATECONSTRAINT algorithm

step has more serious computational complexity, 
thus, our optimization algorithms focus on 
minimizing the number of navigation steps required 
to check the constraint. Since each navigation step 
means a query on the database, the process can be 
optimized by reducing these steps. If the constraint 
does not contain any unnecessary navigation steps, 
then it is in Canonical Constraint Form, or simply it 
is normalized. The normalization (reducing the 
navigation steps) can accelerate the first part of the 
constraint evaluation. The primary aim of the 
introduced optimization algorithms is to provide a 
method to normalize the OCL constraints if it is 
possible.  
 
4.1 Constraint relocation 
The first normalization algorithm called 
RELOCATECONSTRAINT is shown in Fig. 2. The 
algorithm processes the OCL constraints propagated 
to the transformation step. The main foreach loop 
examines the navigation paths of the actual 
constraint. The algorithm calculates the number of 
all navigation steps for each node contained by the 
model. This calculation sums the number of the 
navigation steps which is necessary to reach all 
destination nodes of the original constraint C from 
the new place. The algorithm stores the most 
appropriate node (optimalNode) and finally updates 
the navigation paths and relocates the constraint to 
the optimal node.  
 

 
 
 
The computational complexity of the 
RELOCATECONSTRAINT algorithm is 
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3 )( , where c denotes the number of the 

propagated constraints contained by the rewriting 
rule, ni is the number of the navigation steps 
contained by constraint i, and v denotes the number 
of the nodes in the rewriting rule. The complexity of 
finding the shortest path in the rewriting rule is v2. 
We must execute it v times: for each node in the 
constraint aspect. 
 
Proposition 1. Applying the RELOCATE-
CONSTRAINT algorithm, each constraint is 
relocated in the node that implements the constraint 
using minimal number of navigation step if only 
constraint relocation is allowed. Using constraint 
relocation, the RELOCATECONSTRAINT  
algorithm eliminates all unnecessary navigation 
steps in non-decomposable (atomic) expressions. 
 
Proof. Let H be an optional input model, and let C 
be an atomic OCL constraint which is propagated to 
H. Running the RELOCATECONSTRAINT 
algorithm results in the optimal node A to which we 
should assign the constraint. Assume that there 
exists another node (B) for which the following 
holds: if one links the constraint C to the node B and 
updates the navigation paths of C, then the 
constraint C contains fewer navigation steps, than if 
it had been propagated to the A node. The 
RELOCATECONSTRAINT algorithm visits all the 
nodes in the input model H, and it calculates for all 
nodes what the number of the navigation steps 
would be if the constraint were relocated to the 
actual node and the navigation paths were updated. 
Therefore, if the node B were better in the case of 
the constraint C, then it would be found by the 
RELOCATECONSTRAINT algorithm. That 
contradicts the assumption.  
 
The goal of the constraint normalization is to 
achieve the pure canonical form, which does not 
contain navigation steps. Using RELOCATE-
CONSTRAINT algorithm, it is not possible in all 
cases, because constraints are often built from sub-
terms and linked with operators (self.age = 18 
and self.name = 'Jay'), or require property 
values from different nodes (self.secureId = 
self.manufacturer.secureId). 
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Fig. 3. ANALYZECLAUSES algorithm 

4.2. Constraint decomposition 
Although subterms are not decomposable in 
general, they can be partitioned to clauses if they 
are linked with boolean operators. A clause can 
contain two expressions (OCL expression, or other 
clauses) and one operation (and/or/xor/implies) 
between them. Separating the clauses, we can 
reduce the number of the navigation steps contained 
by the OCL expressions, and the complexity of the 
constraint evaluation during the constraint 
validation process. It is simpler to evaluate the 
logical operations between the members of a clause 
than to traverse the navigation paths contained by 
the constraints.  
It is useful to handle invariants uniformly, hence we 
have extended the clause definitions by a special 
type that can contain exactly one OCL expression 
(without any logical operation). This special clause 
is used only if the invariant does not contain any 
Boolean operators that can be used to decompose 
the constraint. 
 

 
 
 
The ANALYSECLAUSES algorithm (Fig. 3) is 
invoked for the outermost OCL expression of each 
invariant. The decomposition works as follows: (i) 
If the expression is a logical expression, then a new 
clause is created with the appropriate relation type 
(and/or/xor/implies), and the two sides of the 
expressions are added to the clause as children. The 
children are recursively checked, because they can 
also be OCL expressions connected with logical 
operators (recall that clauses can contain other 
clauses as children). The result clause is retrieved to 

handle the recursive calls. (ii) If the expression is an 
expression in parentheses, then the function returns 
the inner expression. This substep is necessary, 
because the parentheses can modify the order of the 
constraint processing. (iii) In other cases the OCL 
expression cannot be decomposed. If it is the only 
expression in the constraint then a special clause is 
created, the RELOCATECONSTRAINT algorithm 
is processed on the expression, and the clause is 
retrieved. If the expression is not the only 
expression in the constraint, then the expression 
itself is atomic. In this case the expression is passed 
to the RELOCATECONSTRAINT algorithm, and 
then it is retrieved. 
The constraint relocation algorithm is optimal only 
in case of non-decomposable constraints, hence the 
constraint decomposition should be processed 
firstly, and then the relocation (the processing order 
can not be changed). This statement can be proved 
with a simple example: self.age = 18 and 
self.manager.name = 'Jay'.  
  
Proposition 2. Applying the ANALYZECLAUSES 
algorithm, the number of the navigation steps in the 
constraints contained by the output model is 
minimal (supposing that only the logical relations 
can be decomposed).  
 
Proof. Let H be an optional input, and let C be an 
OCL constraint which is propagated to the H. 
Running the ANALYSECLAUSES algorithm 
results in the model H' with normalized constraints. 
Assume that there exists a normalized model of H 
(H'') which contains less navigation steps than H'. 
The ANALYSECLAUSES algorithm partition the 
constraint according to the logical expressions. The 
algorithm produces either expressions with at most 
one navigation step or complex expressions that 
cannot be processed further. The algorithm 
produces atomic expressions in both cases. In the 
next step, the decomposed parts are processed by 
the RELOCATECONSTRAINT algorithm to 
reduce the number of the navigation steps. Using 
the RELOCATECONSTRAINT algorithm, the 
number of the navigation steps in the constraints 
contained by the output model is minimal, because 
the expressions were atomic. That contradicts our 
assumption. 
Proposition 3. Applying the RELOCATE-
CONSTRAINT and ANALYSECLAUSES 
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Fig. 4. Company – products case-study 

algorithms for an optional input model does not 
modify the result of the constraint evaluation. 
 
Proof. Let H be an optional input model, let H' be 
the result model of the ANALYZECLAUSES 
algorithm and let H'' be the result model of the 
RELOCATECONSTRAINT after the constraint 
normalization. Assume that evaluating constraints 
contained by H' or H'' produces different value than 
evaluating constraints contained by H. Both 
ANALYZECLAUSES and RELOCATE-
CONSTRAINT algorithms update the navigation 
paths and the context information of the constraints. 
The algorithms do not modify the constraint 
conditions (cf. above the pseudo code and the 
descriptions of the algorithms), and they are 
processed sequentially (they do not affect the result 
of each other). That contradicts the assumption. 
 
The optimization algorithms require an appropriate 
syntax tree, since, for example, the constraint 
relocation algorithm would not work if navigation 
calls were recognized as attribute calls because of 
the simplification made in the syntax analyzing 
step. Furthermore the constraint relocation step 
requires proper type information to query the 
available navigation destinations. Therefore the 
optimization steps are used between the semantic 
analysis and the code generation. The optimization 
algorithms must be executed only once for the 
specified constraints, and they accelerate the 
constraint validation for an arbitrary model. 
The CodeDOM tree is constructed using the 
optimized syntax tree. Clauses are transformed to 
methods, and the parts of the clauses are compiled 
to method calls. All four Boolean operators are 
expressed by or, and, and not operations (e.g. a xor 
b is expressed as a and !b or !a and b).  
 
 
5 Case study 
Using a case study, we introduce how the 
optimization algorithms work. The case study is 
about a computer manufacturer company that 
produces CDs, flash memories, and pen drives. 
Although both the model and the constraint are very 
simple, it can show the algorithms in working. 

 
 
 
 
The metamodel of the case study is shown in Fig 4. 
The attributes are not visible in the picture, 
Company has two attributes: Name (string), and 
LastSerialIndex (integer), SerialBase (integer). The 
products (all three types) have only one attribute: 
SerialNumber (integer). 
 
The constraint (Fig. 5) checks the SerialNumber of 
the product (in this case the serial number of the 
CDs). The last valid SerialNumber for the products 
of the Company is computed by adding up 
SerialBase and LastSerialIndex. Another restriction 
is that the SerialNumber is only valid if it is greater 
than 0 independently from the manufacturer. 
 

Optimization executes the ANALYZECLAUSES 
algorithm on the invariant. The algorithm creates 
two clauses that are connected with an and operator. 
The first contains the simple condition 
(SerialNumber > 0), while the second checks the 
number according to the data stored in the 
manufacturer. The clauses are processed further 
using the RELOCATECONSTRAINT algorithm. 
The algorithm does not change the first clause, but 
the second clause is relocated to the manufacturer 
node. The relocation is necessary, because the 
constraint in the original node (CD) contains two 
navigation steps, while in the new node (Company) 
only one step is required.  

Fig. 5. Serial checker constraint 
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Fig. 6 shows the syntax tree of the constraint after 
the semantic analysis, but before the optimization. 
ClassifierContextDeclaration represents the 
invariant. The context of the invariant (CD) is 
shown in brackets. The OperationCallLogical-
Expression expresses the subexpressions connected 
with and relation (node 266 in the picture).  
 

Fig. 7 shows the syntax tree after the optimization. 
A clause (Optimalization_InvariantClause) is 
created instead of the deleted context definition by 
the ANALYSECLAUSES algorithm, and 
RELOCATECONSTRAINT has changed the 
context of the second subclause to Company.  
 
 
6 Conclusions 
This paper has presented the main concepts of an 
optimizing OCL Compiler in an n-layer 
metamodeling and model transformation system. 

The paper has discussed the steps of the compiler 
construction in short from the lexical and syntactic 
analysis to the code generation. The compiler was 
extended by optimizing algorithms. The primary 
aim of the optimization was to normalize the 
constraints, therefore, constraint relocating and 
constraint decomposition techniques have been 
proposed. The correctness and the efficiency of the 
algorithms have been proven. Finally, a simple but 
illustrative case study has been shown the 
underlying mechanisms in operation. 
Although two effective optimization algorithms 
were presented, processing the OCL constraints is 
not optimal. The decomposition and the 
normalization of the atomic expressions have 
reduced the navigation steps to the minimum, but 
further research is required to extend the scope of 
the optimization algorithms and accelerate the 
processing, focusing on constraint transformations 
besides the navigation steps.  
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Fig. 6. Syntax Tree – before optimization 
 

Fig. 7. Syntax Tree – after optimization 
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