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Abstract- Different types of tapered waveguides are analyzed by full vectorial method. Mode 
expansion and mode orthogonality are also used. Full vectorial without approximation in the 
wave equation makes the analysis more accurate and closer to the real problem.  
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1-Introduction  
In some of the optical components such 

as couplers and switches, waveguides with 
different dimensions (cross section) have 
to be connected directly. This increases the 
loss and the reflection (return wave) at the 
interconnection point. In recent yours 
several solutions are proposed to reduce 
the effect of this problem, where using a 
tapered waveguide at the inter connection 
is a well known method.  

In order to analyze the tapered 
waveguide, beam propagation method 
(BPM) is used conventionally. However, 
this method with full vectorial analysis is 
not accurate due to large approximations 
[1]. Several other methods are proposed in 
references [2-6]. 

In this paper, different types of tapered 
waveguides are introduced, and then finite 
difference method is applied to the non 
approximate wave equation. Analysis is 
done fully vectorial in 3-dimension by 
resolving the wave equation into 
orthogonal modes. 

  

2-Tapered waveguides 
We have investigated four types of 

tapered waveguides shown in fig1. In fig 1 
(a) and (b), the widths of the waveguides 
are varying in z direction, where their 
heights (thickness) are constant.  

In the waveguides shown in Fig 1 (c) 
and (d), both of the widths and thicknesses 
of the waveguides are varying in z 
direction. It is clear that the variations of 
the width and/or thickness have to follow a 
fixed relation. This relation can be linear 
as in fig 1 (a) and (c) or nonlinear 
(exponential) as in Fig 1 (b) and (d).  

In Fig 2, the connection of two 
waveguides with different widths are 
shown. In Fig 2 (a), the connection is done 
directly without any tapered waveguide. In 
this case the loss is large and the reflected 
wave is significant. However, in fig 2 (b), 
a tapered waveguide is used to connect 
two different waveguides. 

In this case the loss and reflected wave 
are lower. In fact, appropriate dimension 
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of the tapered waveguide and a proper 
variation of dimension reduce the effect of 
discontinuity in wave propagation greatly. 

 
3-Analysis of tapered waveguides  

One approach to analyze the tapered 
waveguide is dividing the waveguide into 
m section each having the length ∆z in z 
direction as shown in fig.3. The proper 
amount of ∆z depends on the rate of 
variation of the tapered waveguide, i. e. 
the amount of (d1-d2) and l. 

In order to find the propagation 
constant β and field distribution of each 
propagating modes in all directions, finite 
difference method is used to solve the 2-
dimensional wave equation (1). [8]. 
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In this equation n is the matrix of 

refraction coefficient at the points in the 
cross section of the waveguide. 

Considering a very low variation of n 
versus Z, equation (1) can be written as:  
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We introduce u and w to write Hx and 
Hy in the following forms:  

)zjexp(.uxH β−=             
 )zjexp(.wyH β−=                               (3)  

 
Where u and w are not functions of z. 
Now application of finite difference 
method to both equations given in (2) and 
using eq. (3), results  the following 
equations: 
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Fig 1: Four types of tapered 

waveguides 
 

 
Fig2: Connection of two waveguides 

with different widths 
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Fig3: The step approximation of  a 

tapered waveguide 
 
It is clear that, we have to solve the 

wave equation in the difference form, (eqs 
4 and 5) at all the nodes of the whole 
waveguide. The resulting system of 
equations has 3 unknowns β, u, and w. 
Applying some mathematical 
manipulations we obtain the following 
system of eq.  
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(6)  
where, Nx and Ny are the numbers of 
nodes in x and y directions respectively. 
Matrix B contains the coefficients of 
vectors u and w as given in eqs (4) and (5). 
Solving the system of eq. (6) gives the 
eign values & eigen vectors, i. e. Hx, Hy 
and β in the matrix form. To include the 
boundary conditions, we consider the 
boundary of the cladding region in a place 
beyond that the amplitude of each mode is 
almost zero. On the other hand, the 
number of equations in system (6) depends 
on the number of mesh points in the cross 
section of the waveguide. The large 
number of mesh points makes the result 
more accurate, but the solution to the 
problem becomes more complicated or 
sometimes impossible. To prevent this 
problem, we do inhomogeneous meshing. 
In this type of meshing, the mesh size is 
small  where the wave has large variations 
as in the core, whereas in the places with 

low variations as  in the cladding, the 
mesh size is large. Fig 4 shows this type of 
meshing in the core and cladding of a 
waveguide. 

 
Fig4: Nonuniform meshing in the core and 

cladding of a waveguide. 
 
Numerical solution to the Maxwell 

equation and using the matrices of Hx and 
Hy, give the other vectors of E and H as 
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(7) 
By eq. (7), the field distributions of all 

the propagating modes in the waveguide 
are determined. Now we can analyze the 
tapered waveguide in z direction. The 
exciting field into the tapered waveguide 
can be written as: 

  

zazHyayHxaxHinH
zazEyayExaxEinE

++=

++=
           (8) 

From Fig 3, it is clear that the input to the 
tapered waveguide is the input to the 
section 1 of the staircase model (fig.3). 
Expansions of the these waves into the 
modes are expressed as  [7] 
 

∑∑
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M
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where Elµ=Elµx+Elµy+Elµz and              
Hlµ=Hlµx+Hlµy+Hlµz are the propagating 
modes in the first section of tapered 
waveguide of fig 3 and M is the number of 
the propagating modes in that section. At 
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the point z= z1
-   in the first section, we 

can write: 

∑

∑

=µ

−β−µµ=−
=µ

−β−µµ=−

1
)1zjexp(1Ha)1z,y,x(H

1
)1zjexp(1Ea)1z,y,x(E

   (10) 

It is possible to use mode orthogonality to 
find the field distribution at the point 
z=z1

+. The electric and magnetic fields in 
the second section of the tapered 
waveguide can be written as: 
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where E2µ= E2µx + E2µy + E2µz  and     H2µ = 
H2µx + H2µy + H2µz are the fields of   
propagating modes in the 2nd  section of 
the tapered waveguide (Fig. 3). Now, bµ 
can be determined as follows [7]: 
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Performing the same operation  for all 
the sections in Fig. 3, we can determine 
the The wave propagation along the 
tapered waveguide.  We have considered 
only two modes (1 and 2) of the 
waveguide in fig 3 as the input to first 
section of the tapered waveguide, thus: 

z12Hy12Hx12H2inH
z12Ey12Ex12E2inE
z11Hy11Hx11H1inH

z11Ey11Ex11E1inE

++=

++=

++=

++=

               (13) 

4-Numerical results: 
Before analyzing the tapered waveguides, 
it is informative to analyze the connection 
of two waveguides without tapering shown 
in Fig 5. The dimension of the waveguide 
shown in Fig. 5(a) are: d1= 8µm, 
d2=3.2µm, t1=t2= 5µm, n1=1.49 and 

n2=1.46. The amount of power losses of 
the modes 1 and 2 obtained for the 
structure of fig. 5 (a) are given in table 1.  
 

 
Fig.5: Interconnection of two 

waveguides without tapereing  
 

In this table, Pout is the output power 
from the core and Pin is the input power to 
the core. The higher loss of the 2nd mode 
in table 1 can be explained as follows: the 
power of the first mode is more 
concentrated at the middle of the core, 
whereas for the 2nd mode, the power is 
concentrated at the sides of the core. 
During the propagation of mode 1 and 
mode 2 from section 1 to section 2, more 
power of the 2nd mode enters the cladding 
or reflected beak to section 1 than those of 
the l’st mode. This makes the 2’nd mode 
more lossy than the l’st one. Fig 6 shows 
the propagation of  the l’st mode in the 
structure of fig 5 (a), where an abrupt 
change in the field distribution at the 
discontinuity point is observed. 

 
Table 1:  Power loss ( 10*log(Pout/Pin)) in 

fig 5(a)  for the modes 1 and 2 
Loss 

in  Fig 5(a) 
input 

1.2(db) Ein1,Hin1 

31.8(db) Ein2 ,Hin2 

Table 2 is obtained from simulation of 
the first mode in the structure of fig 1 (a) 
and (b) in which, d1=8µn, d2=3.2µm, 
t1=t2=5µm n1=1.49 and n2=1.46. In fig 1(a) 
profile of the tapered waveguide is linear, 
whereas in fig 1(b), the profile has a 
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variation of exp (-12-385 ×103 z). Table 2 
includes different lengths of tapered 
waveguide (L) and also different sizes of 
∆z and ∆d. Generally, the losses in 
structures of fig 1 (tapered) are much less 
than those in the structures of fig 5 
(without tapering). 

Investigating the results represented in 
table 2, shows that the larger length of the 
tapered waveguide, the less is the loss, 
note that larger ∆z or ∆d (less number of 
sections in fig 3) increases the loss. From 
the results represented in table 2 we can 
see that the linear tapered waveguide has a 
lower loss than that of the exponential one. 

 
Table 2 : Power loss ( 10*log(Pout/Pin)) in 
fig. 1(a) and fig. 1(b)  for the mode 1 

Loss in  
fig1(b) 

Loss in  
fig1(a) 

 
Waveguide 

length  
input 

0.55(db) 0.48(db)  
∆z=0.1µ 
∆d=0.1µ  

--  0.51(db) 
∆z=0.2µ 
∆d=0.2µ  

L=2.5µ  

--  0.54(db) 
∆z=0.1µ 
∆d=0.1µ 

L=1.25µ 

Ein1, 
Hin1  

 

 
fig6: Propagation of  the l’st mode in the 

structure of fig 5 (a) 
 
Fig 7 shows the propagating of the l’st 

mode in the structure of fig 1(a), where 
there is no discontinuity in the field 
distribution at the interconnection point. 
This justifies reduction in the loss and 
reflection of fig 1. Fig 8 shows the 
propagation of the 2’nd mode in the 
tapered waveguide of fig 1(a). 

Fig 5 (b), has dimensions: d1=4.5µn, 
d2=1.8µm, t1=4.5 t2=1.8µm n1=1.49 and 

n2=1.46. Comparing the results given in 
table 1 with those of table 3 shows that the 
loss in structure with discontinuity in 2-
dimension (fig. 5 (b)) is more than the loss 
in structure with discontinuity in 1 
dimension (fig 5 (a)) . 

 
Table 3:  Power loss ( 10*log(Pout/Pin)) in               

fig 5(b)  for the modes 1 and 2 
 

 
Fig 7: Propagation of the 1st mode in 

the structure of fig 1(a) 
 

 
Fig 8: Propagation of the 2nd mode in 
the tapered waveguide of fig 1(a). 

 
The results of simulation of the 

structures shown in  fig 1 (c) and (d) are 
given in table 4. In these structures, 
d1=1.46µn, d2=1.8µm, t1=4.5µm, t2=1.8µm 
n1=1.49 and n2=1.46.  the structure of fig. 
1(c) is linearly tapered and that of the fig 
1(b) has an exponential variation of exp (-

Loss  
Fig5 (b)  

Input  

3.74(db) Ein1,Hin1  

12.26(db) Ein2 ,Hin2  
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12-385 ×103 z) for x and y. Comparing the 
results given in table 2 with those in table 
4 shows that the taper with discontinuity in 
2-dimension has much higher loss than 
those of the taper with 1-dimensional 
discontinuity.  

 
Table 4 : Power loss ( 10*log(Pout/Pin)) in fig. 

1(c) and fig. 1(d)  for the modes 1 and 2 

 
 

6-Conclusion  
    In optical devices like MMI couplers, 
we are faced with junctions of dielectric 
waveguides of different cross sections. 
Tapering of the cross-sections reduce the 
reflection and loss.  
In this paper a method is presented to 
analyze the tapered optical waveguide in 
3-dimension by full vectorial approach. In 
this method, the complete (non 
approximate) equation of the wave 
propagation is used. In fact, replacing  

0. =∇ E  by 0. =∇ D  makes the accuracy 
of the simulation higher than that of the 
conventional approximate case. However, 
many authors stated that 0. =∇ E  is 
reasonable when the weak guidance 
approximation is applicable. Meanwhile, 
application of  0. =∇ E  in devices with a 
large refractive index contrast (ncore-
ncladding), reduces the accuracy greatly, 
where this is not the case with 0. =∇ D . 
In addition by doing a proper 
onohomogenuous meshing in the cross-
section of the waveguide more accuracy in 
results is observed.  
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Loss in 
fig1(d)  

Loss in 
fig1(c) 

  Input 

3.97(db)  3.1(db) 
∆z=0.1µ 
∆d=0.1µ  

Ein1,Hin1  

12.55(db) 11.8(db) 
∆z=0.1µ 
∆d=0.1µ 

Ein2 ,Hin2  
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