
A Secure Remote Database Backup System
JOSÉ VICENTE AGUIRRE1, RAFAEL ÁLVAREZ2, JOSÉ NOGUERA3 and ANTONIO ZAMORA4

Departamento de Ciencia de la Computación e Inteligencia Artificial
Universidad de Alicante

Campus de Sant Vicent del Raspeig, Ap. Correos 99, E-03080, Alicante
SPAIN

Abstract: - We propose a secure remote database backup system. This application allows for secure session
establishment using public key cryptography, data backup using two kinds of algorithms, compression and
encryption of backups and secure storage on a remote server. The security of the application is adequate even
for sensible business data.

Keywords: - data security, remote database backup, redundant storage.

1 Introduction
Surprisingly, about 90% of small businesses do not
perform security backups or they backup data
incorrectly suffering the corresponding loss of
productivity, income or clients. The most common
problems are accidental data erasure, file
overwriting, new software installation, robbery, fire
or natural disasters, hacker attacks, spyware, etc.

Remote and encrypted backups guarantee that, in
case a disaster occurs, be it at the physical location
of the computers or inside the computers themselves,
data is available immediately.

The TreeKeeper application performs a backup
of a server, workstation or laptop (Windows XP,
2000 and 2003 environments) using the Internet,
intranet or dial-up as a transmission channel, storing
the backup on a remote server located at a different
physical location but connected to the Internet or any
other TCP/IP network. All data is sent encrypted
across TCP/IP networks fully guaranteeing data
confidentiality and application functionality.

There are several reasons why this tool can be
useful for several types of businesses. In the first
place, it must be considered that data is generally a
business’ most valuable asset because they are
required for everyday activity. Secondly, the law
requires that high level data must be conveniently
protected and a copy securely stored offsite.

In this paper we analyze and describe the
security strategies and techniques followed during
the development of TreeKeeper.

2 Description
The application performs unattended backup copies,
at a user programmed time, which are also encrypted
to guarantee data confidentiality. On the other hand,

it is also possible that backups have local or remote
second copies. Backups are sent to the remote server
using a secure channel.

Having security always in mind, and pursuing
the ease of usage, system security is guaranteed by
two keys: the master key, that allows access to the
system; and the current key, used to encrypt the
backup files in such a way that all backups are
encrypted with the same key until it is changed.

The master key is required:

• Each time the user interface is started.
• Each time that the operating system is

started.
• Each time the application is started by the

user using the supplied start-up tool.

In order to send backups to the remote server, or

receive them from the server, it is necessary to have
a FTP server or, at least, a proprietary storage server.

Regarding the backup process, the application
supports two types of backups: full or file level
incremental. When a full backup of a set of files is
performed, all referenced files are always copied
(even if they have not changed since the last
backup). In the case of an incremental backup, only
changed files since the last backup process are
copied. In the domain of our application, a backup is
defined as the set of files to be copied and the
corresponding backup policies determining
periodicity and type of backup (full or incremental)
performed. All backup copies have a default backup
policy, called instant policy, which cannot be deleted
and can be used to perform backups at any time.
Also, every backup policy configuration is encrypted
using the same algorithm chosen to encrypt the
backup. All backups are compressed first using the
ZIP algorithm [6].

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp43-46)

Backup policies can be paused indefinitely either
by user request or automatically (as a consequence of
an unrecoverable error during backup operation).

A finished backup is the successful result of a
backup policy (since a backup policy determines the
execution periodicity, a single backup policy may
have multiple finished backups as time progresses).
It is possible to have up to three physical copies of a
single finished backup:

• Local copy: finished backup stored locally

and main source for restoration.
• Safety copy: second (safety) backup of the

finished backup.
• Remote copy: finished backup stored on a

remote server.

The recovery of local copies is transparent to the

user: after choosing the recovery option desired, the
system automatically determines the correct key to
decrypt and restores the data. Recovery can be
performed at two levels:

• File level: only certain specific files are

restored.
• Backup level: the complete backup

containing all files is restored.

These options are available regardless of the

type of backup (full or incremental). It must also be
considered that if the backup is incremental, it may
require increments not available locally.

It is possible to delete backups and their policies.
If a policy is deleted, the corresponding finished
backups are assigned to the instant backup policy.

A backup deletion destroys all files linked to that
backup. It is possible to either perform a virtual local
backup deletion (to free local hard disk space and
still being capable of restoring data from the remote
server or a second safety backup) or a complete
deletion, eliminating all physical copies of that
backups and associated links (in the case of an
incremental backup).

Backups are executed in strict FIFO order, under
a temporal sorting criterion. Only one backup can be
in execution at each single time instant since
multiple simultaneous disk accesses would cause a
considerable slowdown in machines responsiveness.
If a certain backup is delayed then it is executed as
soon as possible.

Regarding data interchange with the remote
server, the number of upload and download
connections is configurable, being possible to cancel
any operation by user request or connection error.
Data is always sent resuming any previous

connection in order to save bandwidth in the case of
connection losses. Data transfer operations are
simultaneous since Windows operating system limits
each socket speed so, in this case, there are no
performance problems unless the number of
operations is too high.

Due to the fact that the system has been designed
to be executed in the background, the interaction of
the user interface with the related services is
performed in a polling fashion or periodic checking,
so some operations require refreshing so that they are
effective immediately. Nevertheless, the time delay
between each refresh is about 5 seconds (depending
on system load) for backups and 1 minute for data
upload.

In addition, a system log has also been included,
informing the user about all system events (success,
error or warning).

3 Application Analysis
In this section the protocols and strategies employed
in the application are described in detail.

3.1 General application architecture
The application is comprised of four highly
independent fundamental blocks, that interact with
each other by the corresponding interfaces:

• Graphical interface: allows backup
administration.

• Oracle service: process in charge of
centralizing data access and providing data
transparency.

• Planning service: process in charge of
executing backup policies.

• Messenger service: process that manages
backup exchange (sending and receiving) with the
remote server.

The chosen operating system has been Microsoft
Windows XP, although it will also work under
Windows 2000 or higher that support the .Net
Framework version 1.1 or higher.

Due to the fact that the system allows
performing unattended backups, it is paramount that
processes can be executed in the background. For
this purpose the system employs Windows services
(formerly known as NT services) that execute in the
background without requiring any user interaction.
This functionality is not available in versions prior to
Windows XP that are not of the NT family.

The communication between different services
and the user interface is done by the means of a

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp43-46)

remote object (served by the Oracle service), that has
all the functionality associated to traditional servers
but with the advantage that it behaves like an object
inside the application. This remote object installs at
the local host on a fixed port.

Since the remote object is accessible through the
network, it is necessary to incorporate an
authentication system to grant transaction execution
permissions based on session identifiers, list
maintained by the Oracle service itself.

The Oracle service is the main part of the
application since it grants access to all required data.
Therefore, to access any data it is necessary to obtain
previous positive authentication using the master
key. So, even before starting up the services or the
GUI, the systems requests the master key from the
user in order to provide authentication. From this
instant, each running service will have a session key
to connect to the Oracle service. The session key is
valid until the machine is restarted. Starting services
up (except the Oracle) without this previous step will
cause the error to be logged in the operating system’s
error log and the services to be stopped.

The authentication system is based on the system
master key that is stored in an encrypted file with
AES using 256 bits of key size. The information
related to the remote server is also stored in a
different file encrypted in the same way, in order to
prevent unauthorized information access.

The secure communication channels with the
remote server can be done in two ways: using the
SSL protocol with an sFTP server, or using a secure
communication scheme (Needham-Schroeder, see
[1] for more information), consisting of session key
exchange and encrypting all successive data. This is
a lighter scheme more suitable for mobile devices.

3.2 Password System
The systems consist of three types of keys: the
master key, the current keys and session keys.

Session keys are all keys used each time a
communication is established between two parties in
an insecure network. The keys are exchanged by the
cited key exchange algorithm, are cryptographically
random and last until the session is terminated. In the
case that any of these keys was compromised, it
would only affect that session. The chance of this
happening is very low considering the protocol
employed for its distribution [1].

Current keys are the keys used to encrypt all
finished backups and change during time. The
validity period for these keys is user defined and for
each period the system generates a cryptographically
random key that will be employed to cipher the

backups performed during that period. The system
also allows the user to define the key for that period,
which can be useful if the user wants to recover the
backups manually. If any of these keys was
compromised, it would only affect the validity period
for that key. In this case, human factor causes that
keys are somewhat easier to compromise than
session keys, for that purpose the system includes a
filter for non recommendable keys [5], although a
dictionary or brute force attack must not be
underestimated. This is the reason that the SHA512
algorithm is used to generate the real bit sequence
employed as key. In order to decrypt the backups it
also necessary to maintain a history of all current
keys employed. Such history file is a weak link since
and must be well protect, since if it was
compromised all of the copies performed by that user
could be decrypted. All current keys are of 512 bits
in length, if the cryptosystem chosen has a smaller
key size then only the required most significant bits
are used.

The master key is necessary to encrypt the
history of current keys file. This key must be defined
and remembered by the user, who must also be
responsible of its security. The master key is not
stored anywhere, it is determined to be correct if the
history file is decrypted successfully. If the master
key was compromised, all of the current keys would
be compromised too, so the security of the master
key is extremely important.

This system is considered safe for high security
profile installations as long as the master key is kept
secret.

3.3 Backup Integrity
The system guarantees the integrity of the backups
storing a 512 bits hash of all backups performed after
being compressed and encrypted. For that purpose,
the SHA512 algorithm is used. This hash function is
employed to avoid data corruption or unauthorized
manipulation.

Additionally, an independent hash of each file
contained in the backup is also stored in order to
detect changes between incremental backups and to
guarantee that the restored files are identical to the
original files.

4 Conclusions
In summary, TreeKeeper is a robust application for
the creation and remote storage of database backups.
It also shows a high level of security employing well
known cryptographic algorithms and standards. It

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp43-46)

has been demonstrated that the application has
enough security measures to reduce the risk of
compromised keys, may it be preventing the usage of
weak keys or limiting the damage caused by exposed
keys. Finally, data integrity is guaranteed storing and
checking a hash of the data on every operation where
data corruption could occur.

A possible improvement would be guaranteeing
non repudiation from the server so that a user would
have legal means to justify the loss of data by the
server. The performance with big files or in the case
of backups consisting of lots of small files could also
be improved. Finally, a way to perform bit level
incremental backups could also be implemented in
addition to the file level incremental backup already
available. These changes should have no effect on
the necessary security techniques analyzed in this
paper.

References:
[1] Needham, R., Schroeder, M. Using encryption

for authentication in large networks of
computers, Communications of the ACM,
21(12):993-999, 1978.

[2] Stallings, W. Cryptography and Network
Security. Principles and Practice. Third Edition.
Prentice Hall. New Jersey. 2003.

[3] Handley, M., Aciri, H., Schulzrinne, E., Schooler
A., Rosenberg J. Session Initiation Protocol
(SIP). The Internet Society 1999.

[4] Menezes A., van Oorschot P., Vanstone, S.,
Handbook of Applied Cryptography. CRC Press.
Florida. 2001.

[5] Password Management Guideline, Department of
Defense, CSC-STD-002-85.

[6] Welch, T.A. A Technique for High Performance
Data Compression, IEEE Computer, Vol. 17,
No. 6, 1984, pp. 8-19.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp43-46)

