
A Distributed DRM Platform Based
on a Web-Oriented Watermarking Protocol

FRANCO FRATTOLILLO, SALVATORE D’ONOFRIO
Research Centre on Software Technology

Department of Engineering, University of Sannio
Corso Garibaldi, n. 107, Benevento

ITALY
frattolillo@unisannio.it

Abstract: This paper presents a distributed digital rights management platform (DRMp) based on a web-oriented
watermarking protocol. The platform enables web service providers (SPs) to dynamically supply copyright pro-
tection services on behalf of web content providers (CPs) in a security context. Thus, CPs exploiting the platform
can take advantage of copyright protection services supplied by SPs acting as trusted third parties (TTPs) without
having to directly implement them. On the other hand, SPs can follow the proposed design approach to implement
protection procedures that can be easily exploited by CPs without imposing a tight coupling among the involved
web entities.

Key–Words: Digital rights management, watermarking protocol, service framework

1 Introduction
Digital watermarking [3] has gained popularity as a
main technology to set up reliable DRMps, which are
software platforms purposely developed to implement
the copyright protection of digital contents distrib-
uted on the Internet [1]. However, some documented
and relevant problems, such as the “customer’s right
problem” [11] and the “unbinding problem” [10], can
arise if DRMps are directly managed by CPs that au-
tonomously implement the watermarking procedures
or insert watermarks that are not properly bound to
the distributed contents or to the transactions by which
the contents are purchased. In fact, such DRMps end
up implementing protection processes that do not cor-
rectly take into account the buyers’ rights, since the
watermark is autonomously inserted by CPs, i.e. the
copyright owners, without any control.

A possible solution to the above problems con-
sists in developing DRMps that can exploit TTPs able
to implement watermarking and dispute resolution
protocols by which CPs can both obtain an adequate
protection of their contents distributed on the Inter-
net and determine the identity of guilty buyers with
undeniable evidence [10]. However, this means that
DRMps have to be characterized by distributed soft-
ware architectures that enable distinct web entities to
dynamically cooperate in a secure context without im-
posing a tight coupling among them.

This paper presents a distributed DRMp based on

a web-oriented watermarking protocol able to solve
the problems described above, such as the “customer’s
right problem” and the “unbinding problem” [5]. The
platform enables SPs to dynamically supply copyright
protection services based on watermarking technolo-
gies on behalf of CPs in a security context. Thus,
CPs that exploit the proposed platform can take ad-
vantage of copyright protection systems supplied by
SPs acting as TTPs without having to directly imple-
ment them. On the other hand, SPs can follow the
proposed design approach, based on web services [2]
and other specific programming techniques [6, 15], to
implement copyright protection procedures, such as
watermarking procedures, which can be easily inte-
grated into the proposed DRMp and exploited by CPs
[4].

The outline of the paper is as follows. Section 2
describes the watermarking protocol assumed as ser-
vice model by the DRMp. Section 3 presents the ar-
chitecture of the DRMp adopting the proposed pro-
tocol. Section 4 describes the main implementation
details of the platform. In Section 5 a brief conclusion
is available.

2 The Watermarking Protocol
The proposed DRMp implements a copyright pro-
tection process that exploits a watermarking protocol
based on four web entities: the buyer (B), the content

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp156-162)

provider or seller (CP), the service provider (SP), and
the trusted watermark certification authority (WCA).
The protocol, which is widely discussed in [5],

• solves both the “customer’s right problem” and
the “unbinding problem”;

• keeps B anonymous during the purchase web
transactions;

• enables users who are not provided with digital
certificates issued by Certification Authorities to
purchase protected digital contents;

• does not require B to be able to autonomously
perform security actions that are not automati-
cally implemented by common web browsers;

• does not require a double watermark insertion,
thus both avoiding to discredit the embedded
protection and a possible degradation of the final
quality of the distributed contents.

In particular, the protocol assumes that B is identified
by means of a code associated to his/her credit card,
and forces WCAs to be directly involved in the com-
mercial transactions that take place whenever B wants
to buy a digital content distributed by CP [5].

2.1 The Protection Protocol

Figure 1 shows the scheme of the interactions taking
place during a web transaction by which B purchases a
copy of the digital contentX distributed by CP. In par-
ticular, the notation N.n denotes the message dispatch
from the entity N, at the step n of the protocol. Mes-
sages are exchanged through SSL connections charac-
terized by different authentication schemes negotiated
at the connection start-up. Furthermore, the notation
Eentity(data) specifies a ciphered token whose data
are encrypted with the entity’s secret key, whereas
the notation Ephentity(data) specifies a ciphered to-
ken whose data are encrypted by exploiting a cryp-
tosystem that is “privacy homomorphic” with respect
to the watermark insertion [10].

B visits the CP’s web site and, after having cho-
sen X , negotiates with CP to set up a common agree-
ment AGR, which states the rights and obligations of
both parties as well as specifies the digital content of
interest. During this negotiation phase B may have
free access to the CP’s web site or use a registered
pseudonym, thus keeping his/her identity unexposed.

Then, B communicates his/her will of buy-
ing X to CP by sending the negotiated AGR
(B.1). Upon receiving AGR, CP generates the token
ECP (TID,XD,AGR, TCP) that includes: (1) the
transaction identifier TID, which is a code used by

TID,XD,AGR,
ECP(TID,XD,AGR,TCP),
EWCA(UD,CC,TID,XD,

AGR,CP,TWCA,np)

TID,XD,WCA,AGR,
ECP(TID,XD,AGR,TCP)

TID,CP,XD,UD,CC,AGR,ECP(TID,XD,AGR,TCP)

TID,XD,X
EWCA(UD,CC,TID,XD,

AGR,CP,TWCA,np)

TID,UD,CP,NO,XD,
EWCA(UD,CC,TID,XD,AGR,CP,TWCA,np)

EWCA(WU),
EphWCA*(X)

AGR
1

2

3

4

4

5

6

8

7

9

10

12

11

EphWCA*(X)

W
aterm

arkin
g

verifying CC

Payment

B CP WCA

Ciphering

Deciphering

SP

X

TID,CP,XD,UD,CC,AGR,ECP(TID,XD,AGR,TCP),
EWCA(UD,CC,TID,XD,AGR,CP,TWCA,np)

TID,UD,CP,REF,NO,XD

TID,XD,
EWCA(UD,CC,TID,XD,AGR,CP,SP,WU,WUL,TWCA

def)

TID,XD,SP,EWCA(WUL)
EWCA(UD,CC,TID,XD,AGR,

CP,SP,WU,WUL,TWCA
def)

Legend

SSL with authentication of the receiver
SSL with authentication of the sender
SSL with authentication of both sender and receiver

Figure 1: The protection protocol.

CP to identify the current transaction; (2) the descrip-
tion ofX , denoted asXD; (3) the purchase order rep-
resented by the negotiated AGR; (4) the timestamp
TCP , which is generated by CP in order to make the
token’s freshness assessable. The token is sent to B
(CP.2) together with plaintext information, such as the
reference WCA to the WCA selected by CP.

B receives the message CP.2 and sends WCA the
tokenECP (TID,XD,AGR, TCP) (B.3), previously
received from CP, together with further plaintext in-
formation, such as: (1) TID, XD and AGR, whose
definitions are reported above; (2) CP , which is the
reference to CP; (3) UD and CC, which are respec-
tively the identity and the number associated to the
B’s credit card. In fact, data exchanged in the message
B.3 allow WCA to check if B can pay X and to un-
ambiguously identify B. Therefore, if data associated
to the credit card are incorrect or the credit card turns
out to be invalidated, the transaction is interrupted.

B.3 is considered by WCA a purchase order
involving B and CP. Therefore, after verifying

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp156-162)

the B’s credit card, WCA generates the token
EWCA(UD,CC, TID,XD,AGR,CP, TWCA, np),
which includes, among the others, TWCA and np:
the former is a timestamp that makes the token’s
freshness assessable, whereas the latter is a flag
specifying that the B’s credit card has not been
charged yet. The token is sent to B as a “temporary”
purchase certificate, whereas is sent to CP as a
“temporary” sale certificate (WCA.4). In addition,
WCA also returns some other information to B and
CP in order to enable them to make a check on the
current transaction. In fact, B and CP cannot access
the information contained in the temporary, ciphered
certificates, and this prevents them from maliciously
modifying the certificates. However, they can verify
the plaintext data exchanged in WCA.4, and so they
can abort the transaction if data turn out to be invalid.

After verifying WCA.4, CP sends WCA the wa-
termarking request CP.5, which includes X . After
receiving X , WCA encrypts it by exploiting a cryp-
tosystem that is “privacy homomorphic” with respect
to the subsequent watermark insertion [10]. WCA
also generates the fingerprinting code WU , which
will have to be embedded in X to identify B. To this
end, in order to always associate the same code to the
same buyer, WCA exploits two specific functions, Φ
and Ψ: the former generates a binary code µ identify-
ing the buyer on the base of CC and UD, whereas the
latter generates a bit string τ depending on XD and
TWCA. Thus, µ is always the same for a given credit
card, whereas τ varies under different digital contents
and timestamps. WU is the concatenation of µ and τ .
In addition, WCA exploits a further function ε to gen-
erate an extended version of WU , denoted as WUL,
whose ciphered form will be used by CP to identify B.
Then, WCA selects an SP and sends it the watermark-
ing request (WCA.6), which includes EWCA(WU)
and EphWCA∗(X), where ∗ denotes that the content
X has been ciphered with a one-time secret key.

After receiving WCA.6, SP can directly wa-
termark EphWCA∗(X), since the encryption func-
tion applied by WCA is “privacy homomorphic”
with respect to the watermark insertion operation.
OnceEphWCA∗(X) has been watermarked, SP sends
WCA the message SP.7, which contains the new wa-
termarked content EphWCA∗(X) obtained by insert-
ing the watermark in the encryption domain.

WCA decrypts EphWCA∗(X) and generates X̄ ,
the final version of the watermarked copy of X . In
fact, the privacy homomorphic cryptosystem used by
WCA results in the following equalities:

EphWCA∗(X) = EphWCA∗(X̄)

X̄ = DphWCA∗(EphWCA∗(X))

where the operator Dph denotes the decryption func-
tion corresponding to the encryption function Eph.

Once generated X̄ , WCA notifies its availability
to B. In particular, message WCA.8 also specifies a
“nonce” NO and the reference REF to the download
server, which can be also distinct from WCA and from
which B may download the watermarked content X̄ .
Then, if all data exchanged in B.9 are valid, B can
contact the server REF and download X̄ (WCA.10).
Thus, after the correct download of X̄ , WCA can
charge the B’s credit card and generate the token
EWCA(UD, CC, TID, XD, AGR, CP, SP, WU,

WUL, T defWCA), which represents the definitive ver-
sion of the purchase and sale certificates to be sent
to B and CP respectively (WCA.11 and WCA.12). In
addition, WCA also sends CP EWCA(WUL), which
will be used by CP to refer to the corresponding sale
certificate, SP and TID in its databases.

2.2 The Identification and Arbitration Pro-
tocol

This protocol, shown in Figure 2, can be conducted
whenever a pirated copyX ′ of a protected digital con-
tentX owned or distributed by CP is found in the mar-
ket. To this end, CP can ask WCA for starting the
protocol by sending it X ′ and the reference to the SP
exploited to protect the original content X (CP.1).

WCA sends SP the ciphered content
EphWCA(X ′) (WCA.2), and this prevents SP
from getting access to the final versions of the pro-
tected contents distributed by CP. Then, SP extracts
the embedded watermark from EphWCA(X ′) and
communicates the fingerprinting code EWCA(WU ′)
to WCA (SP.3). WCA takes charge of generating the

EphWCA(X')

Results

TID,SP,
EWCA(UD,CC,TID,
XD,AGR,CP,SP

WU',WUL',TWCA
def)

EWCA(WUL')

EWCA(WU')

X',SP

CP WCA SP

1

2

W
a

term
a

rk
E

xtraction3
Generating the

extended version of
WU'

S
ea

rc
h

in
gD

B
s 4

5

6
Verifying

Legend

SSL with authentication of the receiver
SSL with authentication of the sender
SSL with authentication of both sender and receiver

Figure 2: The identification and arbitration protocol.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp156-162)

Servlets

Computational Engine

Content
DB

JSP

Other
 DB

Watermark
Generation

Service

Encryption /
Decryption

Service

Credit Card
Verifying
Service

Billing Service

Discovery /
Binding
Service

CLIENTS

CONTENT PROVIDER

User
DB

WATERMARK
CERTIFICATION

AUTHORITY

Bind

Find

Pub
lis

h

SERVICE FRAMEWORK

Unified
Access
Point

Other
Service

WM
Service

Other
Service

UDDI
Server UDDI

Registry

Figure 3: The architecture of the proposed DRMp.

extended version of WU ′, denoted as WUL′. Then,
WCA sends CP EWCA(WUL′) (WCA.4).

CP accesses its databases and uses
EWCA(WUL′) to search them for a match. When
a match is found, CP retrieves the sale certificate
EWCA(UD, CC, TID, XD, AGR, CP, SP, WU ′,
WUL′, T defWCA) as well as further information as-
sociated to EWCA(WUL′), and requires the buyer
identification by sending these data to WCA (CP.5).

WCA decrypts the sale certificate and verifies all
data received from CP. If all data turn out to be cor-
rect, the identity of the buyer is revealed, and WCA
can adjudicate him/her to be guilty, thus closing the
case. Otherwise, the protocol ends without exposing
any identity.

3 The DRM Platform
The proposed platform, whose architecture is shown
in Figure 3, consists of three main parts. The first part
groups the web servers of a CP, and represents the
“front-end” tier of the platform seen by user clients.
The second part is represented by the WCA, and is
the “middle” tier of the platform. The third part repre-
sents the “back-end” tier of the platform, and is basi-
cally composed of the web services [2] implemented
by SPs and made available to the platform by means
of a purposely designed “service framework” [4].

The platform has been developed according both
to the WS-Security (Web Services Security) specifi-
cations, which define a set of SOAP header exten-
sions for end-to-end SOAP messaging security, and
to a “federated model” for the identity management
of the web services’ operators [14].

The front-end tier of the platform is represented

Service
Engines/Adapters

Service
Descr.

WSDL

WSFL

SERVICE
DIRECTORY

LOOKUP
DISCOVERY

SERVICE

OTHER
SERVICES

SERVICE
QoS

CERTIFIER
QoS

Ext.
UDDI

External Section of
the Framework

UNIFIED
ACCESS
POINT

SERVICE
MANAGER

DB
MANAGER

 Service 1

 Service N

Internal Section of
the Framework

SERVICE
CONTROLLER

Figure 4: The service framework.

by the CP’s web applications, whose logic is assumed
to be adapted to the distributed architecture of the plat-
form. As a consequence, a CP wanting to exploit the
proposed DRMp has to modify its applications in or-
der to integrate them in the new interaction scheme
involving the WCA.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp156-162)

Service Engines

WM
Engine

Service
Engine N

Proxy
1

Proxy
N

Adapter 1

Adapter 2

Adapter 3

Adapter N

Service Adapters
Web Services

QIM
Service

ISS
Service

SS
Service

Other
Service

Figure 5: The invocation scheme implemented within
the service framework.

WCA acts as a TTP and so it provides the DRMp
with the security services needed to execute the water-
marking and dispute resolution protocols. Therefore,
its software architecture has a static internal charac-
terization with respect to such assumptions. On the
contrary, the back-end tier of the platform has been
purposely designed as a service framework in order
to make the architecture modularly extensible by web
services dynamically loaded and supplied by distinct
and external SPs. In particular, the service frame-
work does not directly expose the web services that it
groups, but it hides them behind a unified access point,
which acts as a unique interface toward the external
web entities for all the web services internally loaded.
Such an interface, designed itself as a web service,
takes charge of receiving the service requests specified
according to what published in the UDDI registries
and of dispatching them to the web services internally
loaded according to the strategies implemented by the
framework.

The choice of implementing the service frame-
work as a “wrapper” for a set of web services hid-
den from external users and exposed through a uni-
fied access point enables the services that have to be
supplied by the framework to be abstractly expressed.
In fact, the wrapper allows the service framework to
publish in the UDDI registries simplified and standard
versions for the interfaces of the web services that are
then dynamically loaded in the framework, and this
makes such interfaces independent of the possible im-
plementations actually developed by SPs.

4 The Implementation of the DRM
Platform

This section focuses on the main implementation de-
tails concerning with the back-end tier of the proposed
DRMp, which has been designed as a service frame-

work (see Figure 4). In particular, to support flexibil-
ity and to make the service integration easy and dy-
namical, the service framework has been developed
in Java. It consists of two main sections: the for-
mer comprises the internal services of the framework,
whereas the latter comprises the web services supplied
by SPs and dynamically loaded in the framework.

The internal services have been implemented in
several software components whose interfaces have
been defined according to a “component framework”
approach [15]. In particular, each component of the
framework implements a set of behavior rules that de-
fine the execution environment and the skeleton of the
framework, i.e. the set of minimal services needed
to enable SPs to dynamically integrate their web ser-
vices in the DRMp. Furthermore, to facilitate the in-
tegration among the framework components and the
external web services, four specific design patterns [6]
have been used: “inversion of control”, “separation of
concerns”, “proxy” and “adapter”.

The first pattern enables the framework to control
the execution of components and to coordinate all the
events produced by transactions. The second pattern
allows the internal services of the framework to be
implemented as collections of well-defined, reusable,
easily understandable and independent components
[8]. The third pattern is exploited to create “surro-
gate” objects for the external web services grouped in
the framework in order to control the access to them.
Finally, the fourth pattern is used to convert the spe-
cific interfaces of the external web services into sim-
plified interfaces that can be invoked by the internal
components of the framework. In fact, the proxy and
adapter patterns make it possible to dynamically load
the external web services into the framework without
imposing constraints on their public interfaces.

Figure 6 shows the scheme of the interactions, la-
belled by numbers, taking place when a service re-
quest is issued to the framework. In particular, the re-
quest is received by the unified access point, which is
a web service that acts as a service dispatcher toward
all the external web services dynamically loaded into
the framework and made available to CPs. Therefore,
when the unified access point receives a service re-
quest from outside (1), it contacts the service manager
(2), which has the main task of managing the request.

The service manager accesses the database man-
ager (3), which determines the characteristics, i.e.
the “profile” (4), that a web service provided by the
framework should have in order to match the require-
ments derived from the external request issued. To
this end, the database manager manages a reposi-
tory (see Figure 7) which specifies some main para-
meters able to characterize the web services’ imple-
mentations. Such parameters can specify, for exam-

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp156-162)

PROXY

UNIFIED
ACCESS
POINT

SERVICE
DIRECTORY

DISCOVERY
SERVICE

2
3

DB
MANAGER

SERVICE
PROFILE

4

3a

3b DATABASES

5 12

6 11

ADAPTER

11a. create

15 1811c. link

16

17

8
9

EXTERNAL
WEB

SERVICES

7

10

13
a.

gen
er

at
e

SERVICE
ENGINE

19

14

13b
. link

20

BUYER

1

SERVICE
MANAGER

Actions

Requests/
Communications

EXTERNAL UDDI
REGISTRIES

9a

9b

9c

SERVICE QoS
CERTIFIER

QoS

SERVICE
CONTROLLER

11b. link

Figure 6: The interaction scheme implemented within the service framework.

ple, the protection level achievable by a given service
implementation as well as the implementation behav-
ior with respect to web transactions. Therefore, the
available repository makes it possible to determine a
particular “service profile” depending on both protec-
tion and QoS (quality of service) requirements spec-
ified in the service requests originally issued to the
framework.

Then, the service manager searches the service
directory (5) for a web service having the profile thus
determined. If the service results in being already
loaded and available within the framework, the ser-
vice directory returns the information about the ser-
vice (12) received from the service controller (6,11)
to the service manager, which thus can create a spe-
cific proxy object (13a,13b) that has the task of rout-
ing the service request coming from outside (20) to
the corresponding service engine according to the in-
vocation scheme shown in Figure 5 (14,19). Such an
engine is an intermediate software layer that trans-
lates the service invocations performed on the proxy
objects to invocations on adapter objects (15,18). In
fact, a service engine receives service requests com-
ing from the proxy objects and specified according to
the simplified web interfaces published by UDDI reg-
istries, and takes charge of invoking the correspond-
ing and selected web services according to their par-
ticular interfaces (15,16,17,18). To this end, to en-
able a dynamical loading of external web services into

the framework without imposing constraints on the
web services’ interfaces, the service engines exploit
the adapter objects, which are dynamically generated
and loaded whenever an external web service is dis-
covered and loaded into the framework (11a,11b,11c)
[7, 9].

If the required service is not available within the
framework, the service directory has to start the dis-
covery service supplied by specific framework com-
ponents implemented by exploiting the JINI frame-
work [13]. The discovery service is activated via the
service controller (6,7). It can search UDDI registries
to discover the required service (8) and can return the
result to the service directory (9,10,11), which com-
municates it to the service manager (12). To this end,
it is worth noting that the discovery service is designed
to exploit an extended UDDI model by which it is pos-
sible to find for a web service with the requested pro-
tection and QoS characteristics [12]. Therefore, the
discovery service can search UDDI registries to dis-
cover a web service with the characteristics imposed
by the service profile previously determined. Once
the web service is found, the service QoS certifier
can verify the service characteristics claimed by its SP
(9a,9b,9c): if the characteristics map with the require-
ments specified by the service profile, the web service
is loaded into the framework and the profile is stored
in the internal repository by the database manager.

When this phase ends, the new external web ser-

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp156-162)

Service
DB

SERVICES

Watermarking

service 2

...

service n

QIM
SECURITY PARAMETERS

Fingerprinting code lenght

...

WATERMARKING SERVICES

QIM - Watermarking

SS - Watermarking

iSS - Watermarking

...
QIM

QoS PARAMETERS

Elapsed time

...
iSS

SECURITY PARAMETERS

Fingerprinting code lenght

...

iSS
QoS PARAMETERS

Elapsed time

...

requirements tied to
a service request

issued to the framework

matching service

Figure 7: The service description database.

vice results in being loaded into the framework, and
its adapter object is generated and linked to the cor-
responding service engine by the service controller
(11a,11b,11c). Then, the service manager can gen-
erate the proxy object (13a,13b) that will receive the
service requests issued to the framework and coming
from outside (20).

5 Conclusions
This paper presents a distributed DRM platform based
on a web-oriented watermarking protocol and imple-
mented by using web services and specific program-
ming technologies. The platform enables SPs to dy-
namically supply copyright protection services on be-
half of CPs in a security context, whereas CPs ex-
ploiting the platform can take advantage of a copy-
right protection system without having to directly im-
plement it. In fact, the proposed design approach,
based on a service framework, makes the DRM plat-
form modular and easily extensible, since the copy-
right protection services developed by SPs can be eas-
ily and dynamically exploited by CPs without requir-
ing a tight coupling among the involved web entities.

References:

[1] M. Barni and F. Bartolini, Data Hiding for Fight-
ing Piracy, IEEE Signal Processing Magazine,
Vol. 21, No. 2, 2004, pp. 28–39.

[2] R. Brunner, F. Cohen et al., Java Web Services
Unleashed, SAMS Publishing, 2001.

[3] I. Cox, J. Bloom and M. Miller, Digital Water-
marking: Principles & Practice, Morgan Kauf-
man, 2001.

[4] F. Frattolillo and S. D’Onofrio, An Effective
and Dynamically Extensible DRM Web Plat-
form, Procs of the Int’l Conference on High Per-
formance Computing and Communications, in
LNCS, Vol. 3726 , pp. 411–418, Sorrento, Italy,
September 21–24, 2005.

[5] F. Frattolillo and S. D’Onofrio, A Web Oriented
Watermarking Protocol, Procs of the Int’l Con-
ference on Signal Processing, in Enformatika,
Vol. 7, pp. 91–96, Prague, Czech Republic, Au-
gust 26–28, 2005.

[6] E. Gamma, R. Helm et al., Design Patterns, Ad-
dison Wesley, 1995.

[7] G. C. Gannod, H. Zhu and S. V. Mudiam, On-
the-fly Wrapping of Web Services to Support
Dynamic Integration, Procs of the 10th Work-
ing Conference on Reverse Engineering, Victo-
ria, Canada, November 2003.

[8] R. Johnson and B. Foote, Designing Reusable
Classes, Journal of Object-Oriented Program-
ming, Vol. 1, No. 2, 1988, pp. 22-35.

[9] M. Lampe, E. Althammer and W. Pree, Generic
Adaptation of Jini Services, Procs of the Ubiqui-
tous Computing Workshop, Philadelphia, USA,
October 2000.

[10] C. L. Lei, P. L. Yu et al., An Efficient and
Anonymous Buyer-Seller Watermarking Proto-
col, IEEE Trans. on Image Processing, Vol. 13,
No. 12, 2004, pp. 1618–1626.

[11] N. Memon and P. W. Wong, A Buyer-Seller
Watermarking Protocol, IEEE Trans. on Image
Processing, Vol. 10, No. 4, 2001, pp. 643–649.

[12] S. Ran, A Model for Web Services Discovery
With QoS, ACM SIGecom Exchanges, Vol. 4,
No. 1, 2003, pp. 1–10.

[13] W. K. Richards, Core JINI, Prentice-Hall, 1999.
[14] S. Shin, Secure Web Services,

http://www.javaworld.com, 2005.
[15] C. Szyperski, Component Software. Beyond

Object-Oriented Programming, Addison Wes-
ley, 1997.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp156-162)

