
Multithreading Extension for Thumb ISA and

Decoder Support

 Lan Dong
(1)

 Zhenzhou Ji(1) Guangzuo Cui
(2)

 Mingzeng Hu
(1)

Department of Computer Science and Technology

Harbin Institute of Technology
(1)

Modern Education Technology Center, The Peking University

(2)

 No.92, West Da-Zhi Street,Harbin, 150001
 CHINA

Abstract:- Dual width instruction set embedded processors such as ARM provide 16-bit instruction set in
addition to the 32-bit instructions set for lower energy and memory cost. The combination of hardware
multithreading technique with the 16-bit code design can provide a tradeoff between performance and code size.
In this paper, extension thread switch instruction (Ts) is added to the Thumb instruction set. With the decoder
supporting, no extra cycles are needed to handle the Ts instructions. From analysis, our approach is a more
flexible thread switch mechanism and provides better performance with little extra hardware cost.

Key-Word: Embedded processor, multithreading processor, thread switch, Thumb, ARM

1. Introduction
Hardware multithreading is becoming a general
applied technique in modern processor design for its
high performance as well as not much additional
hardware cost. Dual width ISA is simple to
implement and provide a tradeoff between code size
and performance in embedded systems. This paper,
proposes a multithreading thread switch extension to
the 16-bit ISA which is called Ts. Ts instructions are
also 16-bit instructions, they have the energy saving
and small code size properties of Thumb code. Unlike
compiler generated VLIW instructions with switch
information, St instruction do not merely improve the
flexibility to explicitly indicate thread switch position,
they do so without adding any cycles to the handling
time with the decoder we design. While the Ts
extensions described in this paper are for the ARM
architecture, the idea of Ts instructions and the
support decoder can be applied to other dual width
processors. In previous work [2], we showed how to
extend ARM architecture to multithreading
architecture. In this paper, we describe the extension
St instruction and the decoder support to achieve
good performance.
 The remainder of the paper is organized follows.
Section 2 gives a narration of the Ts instructions
including the incorporating method and the
instruction format. Section 3 describes in detail of the

microarchitecture to support the Ts instruction.
Section 4 analyzes the performance generally. We
give our conclusion and future work in section 5.

2. Extension of Thumb ISA with
Thread Switch Instruction
More than 98% of all microprocessors are used in
embedded products, the most popular 32-bit
processor among them being the ARM family of
embedded processors [4].To support explicit
multithreading switch of embedded processors, we
augment thread switch instruction to the thumb ISA.
In real time multithreading systems, the fetching rate
of different thread is a critical problem. Our approach
is also a more flexible aid mechanism for that. The
extension instructions are also 16-bit instructions so
they have the benefit of 16-bit code. We augment a
thread switch instruction (Ts) to Thumb instruction
set. Ts instructions are also 16-bit instructions, they
have the energy saving and small code size properties
of Thumb code. While the Ts extensions described in
this paper are for the ARM architecture, the idea of Ts
instructions and the support decoder can be applied to
other dual width processors. Ts instruction is
incorporated to the instruction sequences at interval
of 1 instruction ahead of the instruction tend to switch.
So the Ts instruction is 2 instructions ahead of the

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp78-81)

instruction inclined to switch. The Ts is decoded
simultaneously with the Thumb instruction
immediately ahead of it with our decoder support.

3. Microarchitecture
Our design is based on the extension of our previous
work [2]. We apply the extension to a 5-stage pipeline.
Additionally, we add banked register sets to the
original design for multithreading contexts.
The five stages of the pipeline are:(i) instruction fetch;
(ii)instruction decode and register read; branch target
calculation and execution; (iii) Shift and ALU
operation, including data transfer memory address
calculation; (iv) data cache access; and (v) result
write-back to register file.
The state of the current thread will be copied to a back
register set.

3.1 Decoder Design
At first, we get a glimpse of the original design of the
decode stage which allows the ARM processor to
execute both ARM and Thumb instructions. The
original decoder architecture is in Figure1. It has 32
bit instruction buffer and the two instructions in it are
selected in consecutive cycles and fed into the thumb
decompressor.

The key idea of our approach is to process an Ts
instruction simultaneously with the processing of the
immediately preceding Thumb instruction.

The overall operation of the hardware design is
shown in Figure2.

We make constraints here that the Ts instruction
must not be the first instruction in the instruction
sequence and two Ts instructions are not allowed to
be adjacent. This can be ensured on the general cases
in real systems. We exploit the instruction buffer
extension idea from [1]. The instruction buffer in the
decode stage is modified to exploit the extra fetch
bandwidth to keep at least two instructions in the
buffer at all times. Thus it is expanded in size from 32
bits to 48 bits. At any time, the relative position in the
instruction buffers is the first instruction in ib1, the
second is in ib2 and the third in ib3.The Ts instruction
is processed by the Ts decoder which generates the
signal of thread switch to fetch unit. The Thumb
instruction is processed by Thumb decompressor and
then the ARM decoder. The design ensures that there
is no additional lost in the processor cycle time. The
Ts decoder’s handling of the Ts instruction is entirely
independent of handling of the thumb instruction by
the decode stage. In the pipeline diagram Thumb-D
and Ts-D denote handling of Thumb and Ts

instructions by the decode stage respectively.
The Ts-decoder is very simple. It just recognizes

the Ts instruction and sends the switch signal to fetch
logic. So the hardware cost for the additional decoder
is little. The switch signal indicates to make a switch
in the next cycle. So in the next cycle two consecutive
instructions are fetched from another thread. The
third instruction after the St instruction may be
abandoned when it is the instruction from the old
thread sequence just following the instruction tend to
switch and is fetched simultaneously with the
instruction tend to switch. It is showed more clearly
in Fig. 6 section 4.

Fig. 1 Thumb Decode Implementation

Fig.2 Ts-Thumb Decode Implementation

4. Performance Analysis

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp78-81)

We discuss the performance generally here. The
instruction sequence is i1, i2, i3, i4, i5, i6… We make
assumptions: (1) i1 to be the first instruction of the
two consecutive instructions fetched simultaneously.
It will not affect the representative because we
analyze it by relative position. (2) Other instructions
except the instruction inclined to switch is normal
instruction which doesn’t give rise to extra latencies
in the pipleline.

If i3 is an instruction inclined to switch, we
incorporate the Ts instruction (ts) to the position 2
instructions ahead of i3. The instruction sequence is
changed to i1,ts,i2,i3,b1,b2,b3….b1,b2,b3 are from
another thread. The Timing diagram is in the Figure 3.
The identifier * in the grid in following figures means
the phase may be abnormal due to latencies which
could be any kind of delay causing thread switch in
common thread switch technique such as control
dependence, caching missing and so on. If there are
not any extra latencies, we will delete * in the
corresponding grid. The latency of the preceding
instruction can lead to latency of the following
instructions. For more clear comparison of the two
timing diagram we put * to the corresponding
pipeline phases although these phases may not mean
pipeline phases at that time. Of course i3 could be
normal instruction without any extra latency to itself
and its following instructions. For example if i3 is a
conditional branch, and i4, i5, i6 are from the wrong
destination, i4, i5, i6 must be abandoned and the
pipeline must be refilled.

Fig.3 Timing diagram for original architecture

Fig.4 the Timing diagram for Our Architecture

In Fig.4, because the Ts instruction is recognized in
Ts-D stage, instructions following i3 are switched to
another thread. We observe the execution time of 6
instructions in Fig.4 is at least no more than the

execution time of 5 instructions in Fig.3. Equal
condition meets only when the i3 doesn’t cause any
extra latency. But if the equal condition is not meet,
the performance can be increased using the method of
Fig.4.It shows while we add one more instruction (ts)
to the instruction sequence, the throughput is
increased in most cases and no decrease in any
conditions. For example if i3 is a conditional branch
instruction, we can use the St instruction to reduce the
control dependence.
If the instruction tend to switch is i4, we can see the
performance in the following Fig.5 and Fig.6.

Fig.5 the Timing Diagram for Original Architecture

Fig.6 the Timing Diagram for our Architecture

Similarly we can find the execution time of 7
instructions with Ts instruction in Fig.5 is at least no
more than the execution time of 6 instructions in
Fig.5 and the performance will be increased in most
cases.

It should be noted that i5 will be abandoned.
Figure.6.Because it is fetched simultaneous with an
instruction tend to thread switch. i3 and i4 represent
the typical relative positions of instructions in
simultaneously fetching buffer. From our analysis, it
can be conclude that our approach generally leads to
better performance to switch at the switch point it
arises abnormal latency. And our approach will not
hurt the performance when switch happens at an
arbitrary point. This feature is more meaningful for
multithreading fetch policy in real-time
multithreading embedded processors.

5. Conclusions and Future Work

In this paper, we proposed a novel thread switch
approach by combining an augmenting thread switch

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp78-81)

instruction with a support decoder. It provides a
flexible thread switching mechanism as well as good
performance for ARM/Thumb system. While the
approach described here is implemented in the
context of ARM architecture, they can be applied to
other dual width embedded processors.

In the future, we will study further on the better
combination of our mechanism with thread fetch
policy and thread speculation techniques.

References:
[1] A. Krishnaswamy and R. Gupta,“Enhancing the
Performance of 16-bit Code Using Augmenting
Instructions,” ACM SIGPLAN Notices, Vol.38 No.7
July 2003

[[2]Cui Guangzuo, “MT_ARM: multithreading
Implementation in ARM7 Architecture,” ASICON01,
September, 2001, Shanghai, China

[[3]A. Krishnaswamy and R. Gupta, “Profile Guided
Selection of ARM and Thumb Instructions,” ACM
SIGPLAN Joint Conference on Languages Compilers
and Tools for Embedded Systems & Software and
Compilers for Embedded Systems(LCTES/SCOPES),
Berlin, Germany, June 2002.
[4] Intel Corporation, “The Intel PXA250
Applications Processor, A White Paper,” February
2002.

[[5] T.UNGERER, B.ROBIC, J.SILC. “A Survey of
processors with explicit multithreading,” ACM
Computing Surveys, Vol. 35, No. 1, 2003, pp.29-63,
[6] SWANSON, S., MCDOWELL, L., SWIFT, M.,
EGGERS, S., AND LEVY, H. “An evaluation of
speculative instruction execution on simultaneous
multithreaded processors � “ACM Transactions on
Computer Systems (TOCS) archive Vol.21, No.3,
2003 pp.247-253

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp78-81)

