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Abstract: The selection of a cost-minimizing combination of hardware and network components that satisfy requirements is a 
complex design problem with multiple degrees of freedom. Decisions must be made on how to distribute the computing load 
onto multiple computers and where to locate computers. This paper provides an overall methodology for combining hardware 
and network design in a single cost-minimization problem for multi-site computer systems. Costs are minimized by applying 
a heuristic optimization approach to a sound decomposition of the problem. Verifications consider several test cases with 
different computing and communication requirements. Cost reductions are evaluated by comparing the cost of 
methodological results with those of architectural solutions obtained by applying professional design guidelines. 
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1   Introduction 
The information technology (IT) infrastructure is comprised 
of the hardware and network components of a computer 
system [13]. The objective of infrastructural design is the 
minimization of the costs required to satisfy the computing 
and communication requirements of a given group of users 
[12]. In most cases, multiple combinations of infrastructural 
components can satisfy requirements and, accordingly, 
overall performance requirements can be differently 
translated into processing and communication capabilities 
of individual components. These degrees of freedom 
generate two infrastructural design steps: the selection of a 
combination of hardware and network components and their 
individual sizing (see Figure 1). Cost-performance analyses 
are executed at both steps. Performance analyses receive a 
pre-defined combination of components as input and 
initially focus on the application of mathematical models to 
define the configuration of each component [13]. 
Performance bottlenecks are then identified at a system 
level and removed by re-sizing specific components that 
constrain system-level performance. Conversely cost 
analyses start at a system level, to identify a combination of 
components that minimizes overall costs, which is initially 
calculated from rough estimates of individual components’ 
configurations and corresponding costs. The evaluation of 
costs of individual components is subsequently refined 
based on more precise sizing information from performance 
analyses (see Figure 1).  Due to this interdependence 
between cost and performance analyses at both design steps, 
the overall infrastructural design process is iterative. 
The goal of this paper is to support the cost-oriented design 
of modern IT infrastructures with an approach based on 
mathematical programming tools. Infrastructural design 
alternatives are organized within a methodological 
framework and are provided a formal representation 

suitable for optimization. Optimization is accomplished by 
sequentially solving two set-partitionings problems, a min 
k-cut problem with a non linear objective function and  
tuning the given solution with a tabu-search heuristic. The 
candidate minimum cost infrastructure are meant to be 
further analyzed by applying fine-tuning performance 
evaluation techniques.  

 Figure 1 - The infrastructural design process. 
 
Current professional guidelines generally recommend 
solutions to individual design alternatives that translate into 
an overall centralization of hardware components [6; 9].  
However, only a few academic studies have attempted a 
more systematic analysis of cost issues in infrastructural 
design [12].  Hence, the goal of this paper is also to verify 
current professional design guidelines suggesting 
centralization as a general paradigm for cost minimization.   
The next section presents the optimization problems which 
are modelled in Section 3. Section 4 describes the 
algorithmic approach proposed to solve the optimization 
models. Section 5 discusses the results of the empirical 
verification of the approach and the professional design 
guidelines. Conclusions are drawn in Section 6. 
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2   The optimization problem 
In the following we assume that WANs are implemented as 
IP Virtual Private Networks (VPNs) [15], due to their 
flexibility in realizing point-to-point connections. In this 
way, network design is performed by sizing link capacity 
and calculating the associated TCO. The next section 
formalizes the technology requirements of an organization. 
The reference organization has a set S of sites. 
 
2.1 Technology requirements 
Definition 1. Sites. A site denoted by s ∈ S is defined as a 
set of organizational resources connected by a Local Area 
Network (LAN).  
Definition 2. Instances of server applications. An instance 
of a server application (or application process, or, simply, 
application) ai ∈ A is characterized by: (a) the operating 
system, Oi, (b) the computing capacity requirements, 
indicated as Mipsi and measured in millions of instructions 
per second and (c) primary memory requirements, indicated 
as Rami and measured in mega bytes. 
Definition 3. User classes. Each site s ∈ S has a set of user 
classes Cs. Each user class ci

s ∈ Cs is a set of users with 
common computing requirements, that is, using the same set 
of applications AiÕA. A user class is also characterized by a 
type of client computers, either fat, thin or hybrid. The 
client type assigned to a user class is not a design 
alternative. Client machines are located at the same site as 
their user class. If type is thin or hybrid, the following 
additional characteristics are defined: (a) the primary 
memory size, Rami, measured in mega bytes and (b) the 
computing capacity, Mipsi, required to support the remote 
execution of applications for the whole class. C is defined 
as the set of all user classes, that is s

s SC C∈= ∪ . 
 
2.2 Technology resources 
The computing requirements of the reference organization 
can be satisfied by means of the following hardware 
resources: servers and thin servers. Each hardware resource 
is characterized by its configuration.  
Definition 4. Configuration. A configuration indexed by k ∈ 
SC is characterized by the following parameters: (a) the 
primary memory size, RAM_Sk, measured in mega bytes and 
(b) the computing capacity, MIPS_Sk, measured in millions 
of instructions per second. 
Definition 5. Server. A server is a computer with 
configuration k ∈ SC  that supports application instances. 
Definition 6. Thin server. A thin server is a computer with 
configuration k ∈ SC that supports thin or hybrid client 
computers. 
Definition 7. Cluster. A cluster indexed by j ∈ CL is defined 
as a set of either servers or thin servers characterized by the 
same configuration. The configuration of the server 
machines composing a cluster is also referred to as cluster 
configuration. Thin servers and servers cannot coexist in the 
same cluster. A cluster that includes thin servers is also 

referred to as thin cluster. N represents the maximum 
number of servers in a cluster; the actual number of servers 
in cluster j is n(j) ≤ N. 
Definition 8. Network connection. A network connection is 
a dedicated communication link ns connecting site s ∈ S to 
the VPN. A network connection is bi-directional and its 
capacity BSs is defined as an ordered pair (BOs, BIs), where 
BOs and BIs represent input and output capacity, 
respectively, and are both measured in [bit · s-1].  
Definition 9. Data exchanges. User classes and applications 
exchange data. Data exchanges are modelled as a directed 
weighted graph G=(V,E). A vertex v∈V of graph G can 
represent an application, a user class or a thin server. E is 
defined as the set of all arcs of graph G. The weight Rαβ 
associated with the directed arc (α,β)∈E connecting a 
generic vertex α∈V to a generic vertex β∈V represents the 
average bandwidth required to support the data exchanges 
from vertex α to vertex β. In general, Rαβ is a function of the 
frequency of data exchanges and their average size. A 
special node v0∈V represents external applications 
exchanging data with internal applications through the 
Internet. 
Constraint 1. Sharing of clusters among user classes. Not 
all user classes can share the same thin cluster. This is 
specified by defining groups { }1 s

h iG C= , with h∈ IG1, such 

that 1 1,  l ml m G G∀ ≠ ∩ =∅ . Each group is a set of user 
classes that can share the same thin cluster.  
Constraint 2. Sharing of clusters among applications. Not 
all server applications can share the same cluster. This is 
specified by defining groups { }2

h iG a= , with h∈IG2, that is 
sets of server applications ai that can share the same cluster.  
Observations: note that IG1 identifies a partition, since user 
classes are usually partitioned for security reasons or 
privileges. On the other hand, the groups identified by IG2 
can overlap. In this way, multiple allocations can be defined 
for server applications. MIPS requirements for application 
instances are evaluated by considering requests throughput 
and demanding time [13]. Application instances will be 
assigned to clusters whose overall capacity is greater than or 
equal to their MIPS requirements. This guarantees 
maximum CPU utilization. In this paper, the MIPS of server 
machines are estimated in such a way that maximum CPU 
utilization is lower than 60% [1,2,4]. With values of 
utilization greater that 60%, small variations of throughput 
would cause a substantial growth of response time and, 
overall, performance would become unreliable. This 
empirical rule of thumb, which is commonly applied in 
practice [13], has been provided a formal validation. It has 
been formally demonstrated that a group of aperiodic tasks 
will always meet their deadlines as long as the bottleneck 
resource utilization is lower than 58% [2]. Note that 
performance analyses should follow cost analyses to refine 
sizing according to a formal queuing model. The aim of our 
work is to find a candidate minimum-cost infrastructure that 
can be fine-tuned by applying performance evaluation 
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techniques. Note that MIPS are evaluated for homogeneous 
classes of servers (for example, Intel machines will not be 
compared with SPARCs). Therefore, each application will 
be allocated on a specific class of servers. Similarly, the 
primary memory of each server in a cluster should be grater 
than or equal to the summation of the RAM requirements of 
all applications ai simultaneously executed by the cluster. 
For the sake of simplicity, server disk performance is not 
considered and it is assumed that server configurations are 
CPU and I/O balanced and that disks are never a bottleneck.  
The LAN connection equipment inside a site is not taken 
into account, as its cost per bit/s is several orders of 
magnitude smaller than the cost of leased network 
connections [15].  
 
3   The optimization model 
Let us enumerate from 1 to ⏐J⏐ all subsets of user classes 
or server applications which are feasible according to the 
definition of groups 1

hG  and 2
hG . Let B denote 

the⏐C∪A⏐×⏐J⏐ matrix whose column Bj represents the 
characteristic vector of the jth subset of client machines or 
server applications, defined as follows: the ith entry bij of Bj 
is equal to one if the client machine or server application i 
belongs to the jth subset, while it is equal to zero otherwise. 
Each column Bj is univocally associated with the minimum-
cost cluster that can support all client machines or server 
applications in set j. Note that each set j∈ J either contains 
elements from C or it contains elements from A. Each set j∈ 
J is further constrained by the fact that only feasible 
allocations of user classes and server applications to clusters 
are allowed, according to groups { }1 s

h iG C= , with h∈IG1, 

and { }2
h iG a= , with h∈IG2 (see Constraints 1 and 2 in 

Section 2). 
 
3.1   Decision variables 
In our model optimization alternatives are represented by 
the following decision variables. 
1. Selection of clusters:  

1 if the -th cluster in  is selected
0   otherwise                                   j

j J
x

⎧
= ⎨
⎩  

2. Allocation of clusters to sites:  
1 if the -th cluster in  is allocated to site 
0   otherwise                                                        

s
j

j J s S
y

∈⎧
= ⎨
⎩  

1    if user class or server applications  and  are
     allocated to clusters on different sites 
0   otherwise

wαβ

α β⎧
⎪= ⎨
⎪⎩

 

 
3.2   Objective function 
TCO, that is the objective function to be minimized, is 
defined as the summation of hardware investment costs, 
hardware management costs and the network costs. 

1. HW  investment costs = j j
j J

c x
∈
∑   

Parameter cj represents the cost of the minimum-cost cluster 
that can support all the user classes or server applications in 
set j∈J. That is to say, 

min{ ( ) ( _ _ )}
j

i j

j k ikk SC a B

c n j acq c lic c
∈

∈

= + ∑ , where SCj denotes 

the subset of server configurations that can support the user 
classes or server applications in set j, n(j) denotes the 
number of servers in cluster j, acq_ck denotes the 
acquisition cost of servers with configuration k (including 
the installation and the operating system costs [4]), and 
lic_cik denotes the license cost of server application ai when 
installed on configuration k (this term evaluates to zero 
when cluster j connects user classes, since the license cost 
of client applications remotely executed by a thin cluster 
only depends on the number of users [5]).  
 
2. HW management costs = Mng ( )

s

s
s i j j

s S j Ji C

mng y p
∈ ∈∈

+∑ ∑ ∑  

Parameter pj represents the number of management hours 
required by cluster j (it depends both on the user classes or 
server applications allocated on cluster j and on cluster j’s 
configuration, say k∈SC). I.e., 

j

j ik
i B

p p
∈

= ∑ , where 

parameter pik represents the number of management hours 
required by user class s

ic  or application ia  on cluster j with 
configuration k. Parameter mngi indicates the number of 
management hours required by the client machines of user 
class s

ic . Hardware management costs are computed as a 
non linear function, Mngs(⋅). The argument of function 
Mngs(⋅) is the total number of management hours required 
by all applications and user classes allocated on all clusters 
assigned to site s. Management hours can be either 
attributed to internal personnel or purchased. In the first 
case, they involve in house costs, which are a step-wise 
function of the number of people that must be hired to 
provide the required amount of management hours; in the 
second case, they involve outsourcing costs, which are a 
linear function of management hours. Mngs(⋅) is calculated 
as the minimum value between the in house and outsourcing 
functions of costs. 
 
3. Network costs = 

( , ) ( , )

( , )s
s S E t S E t S

TC R w R wαβ αβ αβ αβ
α β α β∈ ∈ ∈ ∈ ∈

∑ ∑ ∑ ∑ ∑  

Network costs of site s are computed as a two dimensional 
stepwise linear function, TCs(⋅,⋅), of the physical bandwidth 
required to support inbound and outbound information 
exchanges between user classes, applications or thin clusters 
of site s and any other site. 
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3.3   Problem formulation 
The overall optimization problem is modelled as follows: 
P1)     min Mng ( )+

s

s
j j s i j j

j J s S j Ji C

c x mng y p
∈ ∈ ∈∈

+ +∑ ∑ ∑ ∑  

                   

( , ) ( , )

TC ( , )s
s S E t S E t S

R w R wαβ αβ αβ αβ
α β α β∈ ∈ ∈ ∈ ∈

+∑ ∑ ∑ ∑ ∑  

such that: 
1ij j

j J

b x
∈

=∑ , i C A∀ ∈ ∪                            (1) 

0s
j j

s S

x y
∈

− =∑ , j J∀ ∈                              (2) 

s s
h ky y wαβ− ≤ , s S∀ ∈ , , ,h k J h k∀ ∈ ≠ , 

,h kB Bα β∈ ∈ , ( , ) Eα β∀ ∈                    (3)  

{ }0,1jx ∈ , j J∀ ∈ ; { }0,1s
jy ∈ , j J∀ ∈ ,

s S∀ ∈ ; { }0,1wαβ ∈ , ( , ) Eα β∀ ∈ . 

Constraint family (1) imposes that each user class or server 
application is assigned to exactly one cluster. Constraint 
family (1) summarizes two disjoint set partitioning 
problems: the first one selects thin clusters for user classes, 
while the second selects clusters for server applications. 
Constraint family (2) imposes that each cluster is assigned 
to exactly one site. It models the allocation of servers to 
sites. Constraint family (3) ties localization variables y to 
variables w. A variable wαβ must evaluate to one if user 
classes or applications α and β have not been assigned to 
clusters allocated in the same site s and exchange data with 
each other in graph G. Constraint families (2) and (3) 
together model the feasible region of a min k cut problem.  
 
4   Cost optimization algorithm 
The overall optimization problem has been split into the 
following three intertwined sub-problems, which are solved 
in sequence. A final fine-tuning step that implements a tabu-
search approach is also performed, in order to improve the, 
possibly, local optimum that is found through the isolated 
solution of the four sub-problems. (1) Client optimization: 
user classes are assigned to minimum-cost thin clusters that 
satisfy requirements. (2) Server optimization:  server 
applications are assigned to minimum-cost clusters of 
servers that satisfy computing requirements. (3) Server 
localization: the server machines identified by solving sub-
problems (1) and (2) are allocated to sites by minimizing 
overall network and management costs.  
Client optimization  Disjoint sets of client computers that 
can share the same thin cluster, according to Definition 7, 
are assigned to the same thin cluster. This assignment is 
modeled as a family of set partitioning problems (SPPs), 
one for each group 1

hG , with h ∈ IG1. Let us enumerate all 

the non empty subsets of elements in 1
hG  from 1 to ⏐Jh⏐, 

for a given h ∈ IG1. Let B denote the⏐ 1
hG ⏐×⏐Jh⏐ matrix 

whose column Bj represents the characteristic vector of the 
jth subset of user classes, Qj (see Section 3). Each column Bj 
corresponds to a cluster that can support the overall Rami 
and Mipsi requirements of all user classes in Qj. A cost 

{ }min ( ) _
j

j kk SC
c n j acq c

∈
=  is associated with each column Bj 

and corresponds to the acquisition cost of the servers in the 
cluster (see Section 3.3), where SCj denotes the subset of 
server configurations that can support the user classes in Qj 
and n(j) denotes the number of servers in the cluster made 
of servers with configuration k ∈ SCj. Let xj denote a binary 
variable which is equal to one if the jth cluster in Jh is 
selected, zero otherwise. The optimization problem can be 
modeled as: 
Ph)     min

h

j j
j J

c x
∈
∑  

1
h

ij j
j J

b x
∈

=∑ , 1
hi G∀ ∈                                  (4) 

{ }0,1jx ∈ , hj J∀ ∈  

Each feasible solution identifies a set of clusters such that 
each user class in 1

hG  is connected to exactly one of them. 
Server optimization  This sub-problem considers the 
optimum allocation of server applications to clusters. The 
set of servers involved in this sub-problem excludes 
thin/hybrid servers. Server applications are organized in 
tiers, i.e. into sets of server applications that cooperate to 
manage the same request. Each server application or 
application tier must be assigned to exactly one cluster. 
Similar to the client optimization problem, this problem is 
modeled as a SPP. Let us enumerate from 1 to ⏐J⏐ all 
subsets of elements in 2

hG , for all h ∈ IG2. Let B denote 
the⏐A⏐×⏐J⏐ matrix whose column Bj represents the 
characteristic vector of the jth subset of server applications, 
Qj. Each column Bj corresponds to a cluster such that each 
individual server in the cluster has enough memory to 
support all server applications in Qj. Similarly, the number 
of servers in the cluster provides enough computing 
capacity to support all server applications in Qj. A cost cj, 
corresponding to the acquisition cost of all servers in the 
cluster (see Section 3.3) is associated with each column Bj. 
Let xj denote a binary variable which evaluates to one if the 
j-th cluster in J is selected, to zero otherwise. The 
optimization problem can be modeled as: 
P2)   min j j

j J

c x
∈
∑  

      1ij j
j J

b x
∈

=∑ , i A∀ ∈                                                        (5) 

        { }0,1jx ∈ , hj J∀ ∈  

Each feasible solution of the SPP P2) identifies a set of 
clusters such that each server application in A is allocated to 
exactly one cluster of the identified set. 
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Server localization  This sub-problem considers the 
optimum allocation of clusters to sites. Two cost items are 
affected by the allocation of clusters: hardware management 
and network costs which are evaluated by means of the 
Mngs(⋅) and TCs(⋅,⋅) functions, respectively (see Section 
3.3). This cost-minimization sub-problem can be modelled 
as a network optimization problem as follows. Let us 
consider a directed graph G = (V, E) and a subset VCL ⊆ V – 
{v0}. Vertices in VCL represent clusters, while vertices in V – 
VCL – {v0} represent client computers which are located at 
the same site as their user class. The set of arcs E represents 
possible data exchanges between client computers and 
clusters, among clusters and between v0 (i.e., the special 
node which represents external applications) and clusters. 
The problem consists in partitioning VCL into disjoint 
subsets Js, with s =1,…, |S|, in order to minimize the 
following objective function: 

0 0

00( , ) ( , ) ( , )( , )
 in  in  in  in 
 in  in 

(Mng ( ) TC ( , ))
s

s

s i j s v v
s S j J E E v Ei C v E

s s ss
t s t s

mng p R R R Rαβ α αβ β
α β α β βα
α β βα
β α

∈ ∈ ∈ ∈ ∈∈ ∈

≠ ≠

+ + + +∑ ∑ ∑ ∑ ∑ ∑ ∑
 

where α (β) in s (t) denotes that vertex α (β) has been 
located at site s (t). For each site s, the first term is 
management cost of all clusters and user classes located in 
s, and the second term represents the cost of the bandwidth 
required to connect vertices in s with vertices in sites 
different from s. In each feasible solution, each cluster is 
assigned to one site and each set of client computers is 
assigned to the site of the corresponding user class. If all 
values ip  evaluate to zero, VCL is equal to V and network 
costs are a linear function of bandwidth, the above network 
problem is known in literature as min k-cut problem, where 
k = |S|. A tabu search meta-heuristic [9] has been adopted. 
The neighborhood of each feasible solution is defined by all 
solutions that can be obtained by moving a cluster to a 
different site, for all clusters. Only the short-term memory 
mechanism has been implemented. 
Fine-tuning step  The decomposition of the overall 
optimization problem into four sub-problems does not 
guarantee that the final solution is a global optimum. Hence, 
a fine-tuning step based on a tabu-search approach [9] has 
been implemented to possibly improve the solution obtained 
by separately solving the four sub-problems. Only the short-
term memory mechanism has been implemented. The 
neighborhood of a solution is defined as follows. A user 
class, say Ci

s1, or a server application, say aj, is 
disconnected from a cluster, say ClusterA, to which it is 
currently connected. A new minimum-cost cluster, say 
ClusterB, is selected to replace ClusterA . Costs are evaluated 
by assuming that ClusterB is located in the same site, say s2, 
of the cluster that is replaced. A new minimum-cost cluster, 
say ClusterC, is selected to support Ci

s1 (or ai) and the costs 
of allocating ClusterC in a site different from s2 are 
evaluated. Hardware management costs and network costs 
are calculated by means of the Mngs(⋅) and TCs(⋅,⋅) 
functions. In this way, a destination site, say s3, is identified 
for ClusterC. At last, the possibility of discarding ClusterC is 

evaluated by connecting Ci
s1 (or ai) to a different cluster in 

s3.  
 
5   Empirical verifications 
Empirical verifications have been supported by ISIDE 
(Infrastructure Systems Integrated Design Environment), a 
prototype tool that implements the cost minimization 
algorithm. The tool includes a database of commercial 
infrastructural components and related cost data described 
in [3] which includes about 5000 server configurations from 
4 vendors. For the solution of linear integer programming 
models ISIDE calls CPLEX 8.0 library routines. 
Simulations have been supported by a PIV@3GHz, 
Windows XP workstation with 1 GB of RAM. Analyses 
focus on three case studies: a multi-department university, 
an Internet banking system and an information retrieval 
system. The three case studies have substantially different 
technology requirements. In the first case study, user classes 
are numerous and use a variety of applications, making the 
allocation of servers to sites a critical design alternative. 
The Internet banking system is composed of complex multi-
tier applications whose allocation on servers is particularly 
cumbersome. Finally, the information retrieval system is 
characterized by CPU-intensive applications and the design 
of server farms plays an important role. The computing 
requirements data of the test cases are reported in [3]. In 
order to evaluate the performance of the cost-minimization 
algorithm, each case study is analyzed for an increasing 
number of user classes, applications and sites. Cost and time 
efficiency are evaluated by comparing the algorithm’s 
output with the output of the fine-tuning step  starting from 
an initial solution obtained by applying the following rules: 
(1) User classes adopting thin or hybrid client computers 
and belonging to the same group 1

hG  are assigned to a 
single cluster, according to the server-consolidation 
principle [9,11]. (2) Applications belonging to the same 
group 2

hG are assigned to a single cluster, according to the 
server-consolidation principle [9,11]. Applications 
belonging to multiple groups are allocated to the cluster that 
maximizes the number of tiers of requests [14]. (3) All 
servers are located in one site, which is selected by 
minimizing management costs, according to the server 
consolidation principle [9]. (4) Clusters are implemented by 
selecting the smallest server that can support applications, 
to reduce hardware acquisition costs, according to the 
“think big, but build small” paradigm [14]. 
In the following, the final algorithm’s solution will be 
indicated as SolA. The solution identified by applying rules 
1-5 will be referred to as SolB, while the final solution 
obtained by applying the fine-tuning step to SolB will be 
indicated as SolC. 
- Improvement of the professional initial solution (IPI): it 

represents the percent improvement of SolB and is a 
measure of the efficiency of our optimization approach 
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compared to professional design guidelines. It is 
evaluated as ( )B A ASol Sol Sol− ; 

- Improvement of the professional final solution (IPF): it 
represents the percent improvement of SolA with respect 
to SolC.  It is evaluated as ( )C A ASol Sol Sol− . 

 
5.1   A multi-department university  
The university is composed by K departments (sites), with 
K ranging between 1 and 6. Each site hosts 3 user classes, 
administrative staff, software engineering researchers (SE) 
and electronic engineering researchers (EE). Each class is 
composed by 100 users. All users use a browser, an e-mail 
client and an office-automation suite. SE researchers also 
use an integrated development environment and EE 
researchers also use a circuit simulator. The administrative 
staff is assigned to thin clients, while researchers are 
assigned to hybrid clients. An e-mail and a web/proxy 
server application are introduced for each department, 
running on W2000 and Linux servers, respectively. The 
web server is accessed by internal clients but also by 
external Internet users. Data on RAM, MIPS and data 
exchanges among server applications have been empirically 
obtained from the analysis of our University’s system logs. 
Two groups are specified, G1

2 for e-mail servers and G2
2 for 

web servers. A single group G1
1 including all user classes is 

specified. The solution identified by our methodology is 
fully distributed for all values of K. For each site, e-mail 
and web applications are allocated on dedicated servers and 
a thin cluster supporting all user classes is introduced. If 
SolA is compared with SolB, cost savings are higher than 
280%, since professional guidelines suggest the 
centralization of servers in a single site. For the one-site test 
case, the professional solution is improved by about 20%, 
since in this case the difference between the methodological 
and professional solution is only due to a different sizing of 
servers. Table 1 summarizes the total execution time and the 
metrics defined above, as a function of the number of sites 
K. In general, as the size of the system (i.e., the number of 
sites) grows, the improvement of both the initial and final 
professional solutions increases. 
 

N. of 
sites 

Time IPI IPF 

K=1 2.2 s 20.31% 18.22% 
K=2 3.4 s 287.10% 281.76% 

K=3 9.8 s 316.86% 302.88% 
K=4 15.4 s 359.93% 346.46% 
K=5 30.1 s 373.89% 348.83% 

K=6 43.3 s 384.39% 366.14% 

Table 1 - Summary of results of a 
multi-department university. 

 
5.2   An Internet banking system 
The system is distributed over K sites, with K ranging 
between 1 and 3. Each site supports 100.000 Internet users 
accessing the following applications: (a) a web server 

application; (b) a servlet engine; (c) an application server; 
(d) a relational DBMS storing historical data on stock 
quotes; (e) an object-oriented DBMS storing user data. 
Users issue two types of requests, information retrieval and 
transaction execution, with a 10 to 1 ratio. The overall 
average access rate to the system is about 250 accesses per 
hour. Data on user classes, RAM, MIPS and data exchange 
requirements among server applications have been obtained 
from the logs of a large national financial institution. The 
target system for the optimization is based on Ultra Sparc 
Solaris servers (see the observation on MIPS in Section 2). 
DBMSs are replicated in all sites and transactions write 
multiple copies of data synchronously for fault tolerance 
purposes. Three different allocations of applications into 
tiers are allowed: a 5-tier allocation, which assigns each 
server application to a single tier, and two 4-tier allocations, 
which assign the servlet engine to the same tier of either the 
web server or the application server. This is obtained by 
introducing two 2

hG  groups: the first group includes web 
servers and servlet engines; the second group includes 
servlet engines and application servers. Results are reported 
in Table 2. The professional solutions are not improved by 
the final fine-tuning step. The decomposition is effective, as 
it enables a 10-20% reduction of TCO, which increases with 
the size and complexity of the system. SolA and SolC are 
different from each other. In SolA, database servers are 
replicated in all sites, according to design constraints, and 
web applications are centralized on one cluster in one site. 
Servlet engines and application servers are allocated on the 
same cluster, but one such cluster is allocated on each site to 
serve the site’s user classes. This contrasts against 
professional guidelines suggesting the allocation of 
applications with the maximum number of tiers and the 
centralization of corresponding tiers of different instances 
of the same application. SolC allocates all server 
applications to the same site on 5 tiers. 
 

N. of 
sites 

Time IPI IPF 

K=1 1.3 s 10.52% 10.52% 

K=2 8.2 s 15.06% 15.06% 
K=3 19.1 s 19.79% 19.79% 

Table 2 - Summary of results 
of an Internet banking system. 

 
5.3   An information retrieval system 
The following test case is based on the work presented in 
[7]. An information retrieval system is considered, 
composed by two applications: (a) the information retrieval 
engine, called inquery server, which stores and retrieves 
documents by providing a query interface; (b) the central 
broker, called connection server, which administers the 
connection between users and inquery servers by 
maintaining a list of available connections and by routing 
queries and responses, accordingly. The system is 
distributed over K sites, with K ranging between 1 and 3. 
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Each site has a local connection server and four inquery 
servers. Local connection servers distribute requests to both 
local and remote inquery servers (which store different 
data). External users access the distributed system from the 
Internet and can issue search retrieval and document 
retrieval commands. Requests are uniformly distributed 
across inquery servers. The target system for the 
optimization is based on Alpha servers. Data on MIPS and 
RAM requirements and data exchanges are obtained from 
[7]. Two groups are introduced, G1

2 including all the 
instances of connection servers and G2

2 including all 
inquery servers. In both SolA and SolB severs are localized 
in one site. Anyway, in SolA, connection servers are 
centralized within the same cluster, while each instance of 
the inquery server is assigned to a separate cluster. The 
professional solution suggests the location of all servers in 
one site and the centralization of both connection and 
inquery servers in two clusters. The fine-tuning step 
improves SolB by 2-4% (see Table 3). The decomposition is 
effective as it identifies a solution 20-55% cheaper than 
SolC. SolA is also 30-60% cheaper than SolB. 
 

N. of 
sites 

Time IPI IPF 

K=1 1.5 s 28.44% 23.88% 

K=2 2.8 s 49.36% 46.46% 
K=3 177.98 s 64.31% 58.19% 

Table 3 - Summary of results of 
an information retrieval system. 

 
6   Conclusions 
We have proposed an overall approach to support the cost-
oriented design of hardware and network systems 
considering both infrastructural, network and management 
costs. Most of the design alternatives enabled by current 
technologies are addressed, including server sizing and 
localization of multi-tier applications. Cost reductions have 
been evaluated by comparing the cost of methodological 
results with those of architectural solutions obtained by 
applying professional design guidelines. Testing results 
indicate that cost reductions can be significant and 
considerably grow with the size and complexity of the 
system. Current professional rules are challenged by 
findings, this indicates that general design guidelines are 
difficult to infer. Analyses show that the geographical 
centralization of servers can reduce management costs, but 
cannot be assumed as a universal cost-minimizing paradigm 
[10,11]. Similarly, a higher number of tiers does not 
represent a reliable source of savings [14]. From a 
methodological standpoint, cost-oriented design is suitable 
for the selection of a combination of technology resources, 
while it involves an approximation in their individual 
sizing. Future work will consider the integration of the cost-
oriented algorithm with traditional performance analyses 
which provide precise sizing information. 
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