
Cost Minimization in the Design of IT Infrastructures

Danilo Ardagna, Chiara Francalanci
Dipartimento di Elettronica e Informazione

Politecnico di Milano, Milan, Italy

Marco Trubian

Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano, Milan, Italy

Abstract: The selection of a cost-minimizing combination of hardware and network components that satisfy requirements is a
complex design problem with multiple degrees of freedom. Decisions must be made on how to distribute the computing load
onto multiple computers and where to locate computers. This paper provides an overall methodology for combining hardware
and network design in a single cost-minimization problem for multi-site computer systems. Costs are minimized by applying
a heuristic optimization approach to a sound decomposition of the problem. Verifications consider several test cases with
different computing and communication requirements. Cost reductions are evaluated by comparing the cost of
methodological results with those of architectural solutions obtained by applying professional design guidelines.

Key-Words: capacity planning; cost minimization; optimization

1 Introduction
The information technology (IT) infrastructure is comprised
of the hardware and network components of a computer
system [13]. The objective of infrastructural design is the
minimization of the costs required to satisfy the computing
and communication requirements of a given group of users
[12]. In most cases, multiple combinations of infrastructural
components can satisfy requirements and, accordingly,
overall performance requirements can be differently
translated into processing and communication capabilities
of individual components. These degrees of freedom
generate two infrastructural design steps: the selection of a
combination of hardware and network components and their
individual sizing (see Figure 1). Cost-performance analyses
are executed at both steps. Performance analyses receive a
pre-defined combination of components as input and
initially focus on the application of mathematical models to
define the configuration of each component [13].
Performance bottlenecks are then identified at a system
level and removed by re-sizing specific components that
constrain system-level performance. Conversely cost
analyses start at a system level, to identify a combination of
components that minimizes overall costs, which is initially
calculated from rough estimates of individual components’
configurations and corresponding costs. The evaluation of
costs of individual components is subsequently refined
based on more precise sizing information from performance
analyses (see Figure 1). Due to this interdependence
between cost and performance analyses at both design steps,
the overall infrastructural design process is iterative.
The goal of this paper is to support the cost-oriented design
of modern IT infrastructures with an approach based on
mathematical programming tools. Infrastructural design
alternatives are organized within a methodological
framework and are provided a formal representation

suitable for optimization. Optimization is accomplished by
sequentially solving two set-partitionings problems, a min
k-cut problem with a non linear objective function and
tuning the given solution with a tabu-search heuristic. The
candidate minimum cost infrastructure are meant to be
further analyzed by applying fine-tuning performance
evaluation techniques.

 Figure 1 - The infrastructural design process.

Current professional guidelines generally recommend
solutions to individual design alternatives that translate into
an overall centralization of hardware components [6; 9].
However, only a few academic studies have attempted a
more systematic analysis of cost issues in infrastructural
design [12]. Hence, the goal of this paper is also to verify
current professional design guidelines suggesting
centralization as a general paradigm for cost minimization.
The next section presents the optimization problems which
are modelled in Section 3. Section 4 describes the
algorithmic approach proposed to solve the optimization
models. Section 5 discusses the results of the empirical
verification of the approach and the professional design
guidelines. Conclusions are drawn in Section 6.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp1-7)

2 The optimization problem
In the following we assume that WANs are implemented as
IP Virtual Private Networks (VPNs) [15], due to their
flexibility in realizing point-to-point connections. In this
way, network design is performed by sizing link capacity
and calculating the associated TCO. The next section
formalizes the technology requirements of an organization.
The reference organization has a set S of sites.

2.1 Technology requirements
Definition 1. Sites. A site denoted by s ∈ S is defined as a
set of organizational resources connected by a Local Area
Network (LAN).
Definition 2. Instances of server applications. An instance
of a server application (or application process, or, simply,
application) ai ∈ A is characterized by: (a) the operating
system, Oi, (b) the computing capacity requirements,
indicated as Mipsi and measured in millions of instructions
per second and (c) primary memory requirements, indicated
as Rami and measured in mega bytes.
Definition 3. User classes. Each site s ∈ S has a set of user
classes Cs. Each user class ci

s ∈ Cs is a set of users with
common computing requirements, that is, using the same set
of applications AiÕA. A user class is also characterized by a
type of client computers, either fat, thin or hybrid. The
client type assigned to a user class is not a design
alternative. Client machines are located at the same site as
their user class. If type is thin or hybrid, the following
additional characteristics are defined: (a) the primary
memory size, Rami, measured in mega bytes and (b) the
computing capacity, Mipsi, required to support the remote
execution of applications for the whole class. C is defined
as the set of all user classes, that is s

s SC C∈= ∪ .

2.2 Technology resources
The computing requirements of the reference organization
can be satisfied by means of the following hardware
resources: servers and thin servers. Each hardware resource
is characterized by its configuration.
Definition 4. Configuration. A configuration indexed by k ∈
SC is characterized by the following parameters: (a) the
primary memory size, RAM_Sk, measured in mega bytes and
(b) the computing capacity, MIPS_Sk, measured in millions
of instructions per second.
Definition 5. Server. A server is a computer with
configuration k ∈ SC that supports application instances.
Definition 6. Thin server. A thin server is a computer with
configuration k ∈ SC that supports thin or hybrid client
computers.
Definition 7. Cluster. A cluster indexed by j ∈ CL is defined
as a set of either servers or thin servers characterized by the
same configuration. The configuration of the server
machines composing a cluster is also referred to as cluster
configuration. Thin servers and servers cannot coexist in the
same cluster. A cluster that includes thin servers is also

referred to as thin cluster. N represents the maximum
number of servers in a cluster; the actual number of servers
in cluster j is n(j) ≤ N.
Definition 8. Network connection. A network connection is
a dedicated communication link ns connecting site s ∈ S to
the VPN. A network connection is bi-directional and its
capacity BSs is defined as an ordered pair (BOs, BIs), where
BOs and BIs represent input and output capacity,
respectively, and are both measured in [bit · s-1].
Definition 9. Data exchanges. User classes and applications
exchange data. Data exchanges are modelled as a directed
weighted graph G=(V,E). A vertex v∈V of graph G can
represent an application, a user class or a thin server. E is
defined as the set of all arcs of graph G. The weight Rαβ
associated with the directed arc (α,β)∈E connecting a
generic vertex α∈V to a generic vertex β∈V represents the
average bandwidth required to support the data exchanges
from vertex α to vertex β. In general, Rαβ is a function of the
frequency of data exchanges and their average size. A
special node v0∈V represents external applications
exchanging data with internal applications through the
Internet.
Constraint 1. Sharing of clusters among user classes. Not
all user classes can share the same thin cluster. This is
specified by defining groups { }1 s

h iG C= , with h∈ IG1, such

that 1 1, l ml m G G∀ ≠ ∩ =∅ . Each group is a set of user
classes that can share the same thin cluster.
Constraint 2. Sharing of clusters among applications. Not
all server applications can share the same cluster. This is
specified by defining groups { }2

h iG a= , with h∈IG2, that is
sets of server applications ai that can share the same cluster.
Observations: note that IG1 identifies a partition, since user
classes are usually partitioned for security reasons or
privileges. On the other hand, the groups identified by IG2
can overlap. In this way, multiple allocations can be defined
for server applications. MIPS requirements for application
instances are evaluated by considering requests throughput
and demanding time [13]. Application instances will be
assigned to clusters whose overall capacity is greater than or
equal to their MIPS requirements. This guarantees
maximum CPU utilization. In this paper, the MIPS of server
machines are estimated in such a way that maximum CPU
utilization is lower than 60% [1,2,4]. With values of
utilization greater that 60%, small variations of throughput
would cause a substantial growth of response time and,
overall, performance would become unreliable. This
empirical rule of thumb, which is commonly applied in
practice [13], has been provided a formal validation. It has
been formally demonstrated that a group of aperiodic tasks
will always meet their deadlines as long as the bottleneck
resource utilization is lower than 58% [2]. Note that
performance analyses should follow cost analyses to refine
sizing according to a formal queuing model. The aim of our
work is to find a candidate minimum-cost infrastructure that
can be fine-tuned by applying performance evaluation

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp1-7)

techniques. Note that MIPS are evaluated for homogeneous
classes of servers (for example, Intel machines will not be
compared with SPARCs). Therefore, each application will
be allocated on a specific class of servers. Similarly, the
primary memory of each server in a cluster should be grater
than or equal to the summation of the RAM requirements of
all applications ai simultaneously executed by the cluster.
For the sake of simplicity, server disk performance is not
considered and it is assumed that server configurations are
CPU and I/O balanced and that disks are never a bottleneck.
The LAN connection equipment inside a site is not taken
into account, as its cost per bit/s is several orders of
magnitude smaller than the cost of leased network
connections [15].

3 The optimization model
Let us enumerate from 1 to ⏐J⏐ all subsets of user classes
or server applications which are feasible according to the
definition of groups 1

hG and 2
hG . Let B denote

the⏐C∪A⏐×⏐J⏐ matrix whose column Bj represents the
characteristic vector of the jth subset of client machines or
server applications, defined as follows: the ith entry bij of Bj
is equal to one if the client machine or server application i
belongs to the jth subset, while it is equal to zero otherwise.
Each column Bj is univocally associated with the minimum-
cost cluster that can support all client machines or server
applications in set j. Note that each set j∈ J either contains
elements from C or it contains elements from A. Each set j∈
J is further constrained by the fact that only feasible
allocations of user classes and server applications to clusters
are allowed, according to groups { }1 s

h iG C= , with h∈IG1,

and { }2
h iG a= , with h∈IG2 (see Constraints 1 and 2 in

Section 2).

3.1 Decision variables
In our model optimization alternatives are represented by
the following decision variables.
1. Selection of clusters:

1 if the -th cluster in is selected
0 otherwise j

j J
x

⎧
= ⎨
⎩

2. Allocation of clusters to sites:
1 if the -th cluster in is allocated to site
0 otherwise

s
j

j J s S
y

∈⎧
= ⎨
⎩

1 if user class or server applications and are
 allocated to clusters on different sites
0 otherwise

wαβ

α β⎧
⎪= ⎨
⎪⎩

3.2 Objective function
TCO, that is the objective function to be minimized, is
defined as the summation of hardware investment costs,
hardware management costs and the network costs.

1. HW investment costs = j j
j J

c x
∈
∑

Parameter cj represents the cost of the minimum-cost cluster
that can support all the user classes or server applications in
set j∈J. That is to say,

min{ () (_ _)}
j

i j

j k ikk SC a B

c n j acq c lic c
∈

∈

= + ∑ , where SCj denotes

the subset of server configurations that can support the user
classes or server applications in set j, n(j) denotes the
number of servers in cluster j, acq_ck denotes the
acquisition cost of servers with configuration k (including
the installation and the operating system costs [4]), and
lic_cik denotes the license cost of server application ai when
installed on configuration k (this term evaluates to zero
when cluster j connects user classes, since the license cost
of client applications remotely executed by a thin cluster
only depends on the number of users [5]).

2. HW management costs = Mng ()

s

s
s i j j

s S j Ji C

mng y p
∈ ∈∈

+∑ ∑ ∑

Parameter pj represents the number of management hours
required by cluster j (it depends both on the user classes or
server applications allocated on cluster j and on cluster j’s
configuration, say k∈SC). I.e.,

j

j ik
i B

p p
∈

= ∑ , where

parameter pik represents the number of management hours
required by user class s

ic or application ia on cluster j with
configuration k. Parameter mngi indicates the number of
management hours required by the client machines of user
class s

ic . Hardware management costs are computed as a
non linear function, Mngs(⋅). The argument of function
Mngs(⋅) is the total number of management hours required
by all applications and user classes allocated on all clusters
assigned to site s. Management hours can be either
attributed to internal personnel or purchased. In the first
case, they involve in house costs, which are a step-wise
function of the number of people that must be hired to
provide the required amount of management hours; in the
second case, they involve outsourcing costs, which are a
linear function of management hours. Mngs(⋅) is calculated
as the minimum value between the in house and outsourcing
functions of costs.

3. Network costs =

(,) (,)

(,)s
s S E t S E t S

TC R w R wαβ αβ αβ αβ
α β α β∈ ∈ ∈ ∈ ∈

∑ ∑ ∑ ∑ ∑

Network costs of site s are computed as a two dimensional
stepwise linear function, TCs(⋅,⋅), of the physical bandwidth
required to support inbound and outbound information
exchanges between user classes, applications or thin clusters
of site s and any other site.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp1-7)

3.3 Problem formulation
The overall optimization problem is modelled as follows:
P1) min Mng ()+

s

s
j j s i j j

j J s S j Ji C

c x mng y p
∈ ∈ ∈∈

+ +∑ ∑ ∑ ∑

(,) (,)

TC (,)s
s S E t S E t S

R w R wαβ αβ αβ αβ
α β α β∈ ∈ ∈ ∈ ∈

+∑ ∑ ∑ ∑ ∑

such that:
1ij j

j J

b x
∈

=∑ , i C A∀ ∈ ∪ (1)

0s
j j

s S

x y
∈

− =∑ , j J∀ ∈ (2)

s s
h ky y wαβ− ≤ , s S∀ ∈ , , ,h k J h k∀ ∈ ≠ ,

,h kB Bα β∈ ∈ , (,) Eα β∀ ∈ (3)

{ }0,1jx ∈ , j J∀ ∈ ; { }0,1s
jy ∈ , j J∀ ∈ ,

s S∀ ∈ ; { }0,1wαβ ∈ , (,) Eα β∀ ∈ .

Constraint family (1) imposes that each user class or server
application is assigned to exactly one cluster. Constraint
family (1) summarizes two disjoint set partitioning
problems: the first one selects thin clusters for user classes,
while the second selects clusters for server applications.
Constraint family (2) imposes that each cluster is assigned
to exactly one site. It models the allocation of servers to
sites. Constraint family (3) ties localization variables y to
variables w. A variable wαβ must evaluate to one if user
classes or applications α and β have not been assigned to
clusters allocated in the same site s and exchange data with
each other in graph G. Constraint families (2) and (3)
together model the feasible region of a min k cut problem.

4 Cost optimization algorithm
The overall optimization problem has been split into the
following three intertwined sub-problems, which are solved
in sequence. A final fine-tuning step that implements a tabu-
search approach is also performed, in order to improve the,
possibly, local optimum that is found through the isolated
solution of the four sub-problems. (1) Client optimization:
user classes are assigned to minimum-cost thin clusters that
satisfy requirements. (2) Server optimization: server
applications are assigned to minimum-cost clusters of
servers that satisfy computing requirements. (3) Server
localization: the server machines identified by solving sub-
problems (1) and (2) are allocated to sites by minimizing
overall network and management costs.
Client optimization Disjoint sets of client computers that
can share the same thin cluster, according to Definition 7,
are assigned to the same thin cluster. This assignment is
modeled as a family of set partitioning problems (SPPs),
one for each group 1

hG , with h ∈ IG1. Let us enumerate all

the non empty subsets of elements in 1
hG from 1 to ⏐Jh⏐,

for a given h ∈ IG1. Let B denote the⏐ 1
hG ⏐×⏐Jh⏐ matrix

whose column Bj represents the characteristic vector of the
jth subset of user classes, Qj (see Section 3). Each column Bj
corresponds to a cluster that can support the overall Rami
and Mipsi requirements of all user classes in Qj. A cost

{ }min () _
j

j kk SC
c n j acq c

∈
= is associated with each column Bj

and corresponds to the acquisition cost of the servers in the
cluster (see Section 3.3), where SCj denotes the subset of
server configurations that can support the user classes in Qj
and n(j) denotes the number of servers in the cluster made
of servers with configuration k ∈ SCj. Let xj denote a binary
variable which is equal to one if the jth cluster in Jh is
selected, zero otherwise. The optimization problem can be
modeled as:
Ph) min

h

j j
j J

c x
∈
∑

1
h

ij j
j J

b x
∈

=∑ , 1
hi G∀ ∈ (4)

{ }0,1jx ∈ , hj J∀ ∈

Each feasible solution identifies a set of clusters such that
each user class in 1

hG is connected to exactly one of them.
Server optimization This sub-problem considers the
optimum allocation of server applications to clusters. The
set of servers involved in this sub-problem excludes
thin/hybrid servers. Server applications are organized in
tiers, i.e. into sets of server applications that cooperate to
manage the same request. Each server application or
application tier must be assigned to exactly one cluster.
Similar to the client optimization problem, this problem is
modeled as a SPP. Let us enumerate from 1 to ⏐J⏐ all
subsets of elements in 2

hG , for all h ∈ IG2. Let B denote
the⏐A⏐×⏐J⏐ matrix whose column Bj represents the
characteristic vector of the jth subset of server applications,
Qj. Each column Bj corresponds to a cluster such that each
individual server in the cluster has enough memory to
support all server applications in Qj. Similarly, the number
of servers in the cluster provides enough computing
capacity to support all server applications in Qj. A cost cj,
corresponding to the acquisition cost of all servers in the
cluster (see Section 3.3) is associated with each column Bj.
Let xj denote a binary variable which evaluates to one if the
j-th cluster in J is selected, to zero otherwise. The
optimization problem can be modeled as:
P2) min j j

j J

c x
∈
∑

 1ij j
j J

b x
∈

=∑ , i A∀ ∈ (5)

 { }0,1jx ∈ , hj J∀ ∈

Each feasible solution of the SPP P2) identifies a set of
clusters such that each server application in A is allocated to
exactly one cluster of the identified set.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp1-7)

Server localization This sub-problem considers the
optimum allocation of clusters to sites. Two cost items are
affected by the allocation of clusters: hardware management
and network costs which are evaluated by means of the
Mngs(⋅) and TCs(⋅,⋅) functions, respectively (see Section
3.3). This cost-minimization sub-problem can be modelled
as a network optimization problem as follows. Let us
consider a directed graph G = (V, E) and a subset VCL ⊆ V –
{v0}. Vertices in VCL represent clusters, while vertices in V –
VCL – {v0} represent client computers which are located at
the same site as their user class. The set of arcs E represents
possible data exchanges between client computers and
clusters, among clusters and between v0 (i.e., the special
node which represents external applications) and clusters.
The problem consists in partitioning VCL into disjoint
subsets Js, with s =1,…, |S|, in order to minimize the
following objective function:

0 0

00(,) (,) (,)(,)
 in in in in
 in in

(Mng () TC (,))
s

s

s i j s v v
s S j J E E v Ei C v E

s s ss
t s t s

mng p R R R Rαβ α αβ β
α β α β βα
α β βα
β α

∈ ∈ ∈ ∈ ∈∈ ∈

≠ ≠

+ + + +∑ ∑ ∑ ∑ ∑ ∑ ∑

where α (β) in s (t) denotes that vertex α (β) has been
located at site s (t). For each site s, the first term is
management cost of all clusters and user classes located in
s, and the second term represents the cost of the bandwidth
required to connect vertices in s with vertices in sites
different from s. In each feasible solution, each cluster is
assigned to one site and each set of client computers is
assigned to the site of the corresponding user class. If all
values ip evaluate to zero, VCL is equal to V and network
costs are a linear function of bandwidth, the above network
problem is known in literature as min k-cut problem, where
k = |S|. A tabu search meta-heuristic [9] has been adopted.
The neighborhood of each feasible solution is defined by all
solutions that can be obtained by moving a cluster to a
different site, for all clusters. Only the short-term memory
mechanism has been implemented.
Fine-tuning step The decomposition of the overall
optimization problem into four sub-problems does not
guarantee that the final solution is a global optimum. Hence,
a fine-tuning step based on a tabu-search approach [9] has
been implemented to possibly improve the solution obtained
by separately solving the four sub-problems. Only the short-
term memory mechanism has been implemented. The
neighborhood of a solution is defined as follows. A user
class, say Ci

s1, or a server application, say aj, is
disconnected from a cluster, say ClusterA, to which it is
currently connected. A new minimum-cost cluster, say
ClusterB, is selected to replace ClusterA . Costs are evaluated
by assuming that ClusterB is located in the same site, say s2,
of the cluster that is replaced. A new minimum-cost cluster,
say ClusterC, is selected to support Ci

s1 (or ai) and the costs
of allocating ClusterC in a site different from s2 are
evaluated. Hardware management costs and network costs
are calculated by means of the Mngs(⋅) and TCs(⋅,⋅)
functions. In this way, a destination site, say s3, is identified
for ClusterC. At last, the possibility of discarding ClusterC is

evaluated by connecting Ci
s1 (or ai) to a different cluster in

s3.

5 Empirical verifications
Empirical verifications have been supported by ISIDE
(Infrastructure Systems Integrated Design Environment), a
prototype tool that implements the cost minimization
algorithm. The tool includes a database of commercial
infrastructural components and related cost data described
in [3] which includes about 5000 server configurations from
4 vendors. For the solution of linear integer programming
models ISIDE calls CPLEX 8.0 library routines.
Simulations have been supported by a PIV@3GHz,
Windows XP workstation with 1 GB of RAM. Analyses
focus on three case studies: a multi-department university,
an Internet banking system and an information retrieval
system. The three case studies have substantially different
technology requirements. In the first case study, user classes
are numerous and use a variety of applications, making the
allocation of servers to sites a critical design alternative.
The Internet banking system is composed of complex multi-
tier applications whose allocation on servers is particularly
cumbersome. Finally, the information retrieval system is
characterized by CPU-intensive applications and the design
of server farms plays an important role. The computing
requirements data of the test cases are reported in [3]. In
order to evaluate the performance of the cost-minimization
algorithm, each case study is analyzed for an increasing
number of user classes, applications and sites. Cost and time
efficiency are evaluated by comparing the algorithm’s
output with the output of the fine-tuning step starting from
an initial solution obtained by applying the following rules:
(1) User classes adopting thin or hybrid client computers
and belonging to the same group 1

hG are assigned to a
single cluster, according to the server-consolidation
principle [9,11]. (2) Applications belonging to the same
group 2

hG are assigned to a single cluster, according to the
server-consolidation principle [9,11]. Applications
belonging to multiple groups are allocated to the cluster that
maximizes the number of tiers of requests [14]. (3) All
servers are located in one site, which is selected by
minimizing management costs, according to the server
consolidation principle [9]. (4) Clusters are implemented by
selecting the smallest server that can support applications,
to reduce hardware acquisition costs, according to the
“think big, but build small” paradigm [14].
In the following, the final algorithm’s solution will be
indicated as SolA. The solution identified by applying rules
1-5 will be referred to as SolB, while the final solution
obtained by applying the fine-tuning step to SolB will be
indicated as SolC.
- Improvement of the professional initial solution (IPI): it

represents the percent improvement of SolB and is a
measure of the efficiency of our optimization approach

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp1-7)

compared to professional design guidelines. It is
evaluated as ()B A ASol Sol Sol− ;

- Improvement of the professional final solution (IPF): it
represents the percent improvement of SolA with respect
to SolC. It is evaluated as ()C A ASol Sol Sol− .

5.1 A multi-department university
The university is composed by K departments (sites), with
K ranging between 1 and 6. Each site hosts 3 user classes,
administrative staff, software engineering researchers (SE)
and electronic engineering researchers (EE). Each class is
composed by 100 users. All users use a browser, an e-mail
client and an office-automation suite. SE researchers also
use an integrated development environment and EE
researchers also use a circuit simulator. The administrative
staff is assigned to thin clients, while researchers are
assigned to hybrid clients. An e-mail and a web/proxy
server application are introduced for each department,
running on W2000 and Linux servers, respectively. The
web server is accessed by internal clients but also by
external Internet users. Data on RAM, MIPS and data
exchanges among server applications have been empirically
obtained from the analysis of our University’s system logs.
Two groups are specified, G1

2 for e-mail servers and G2
2 for

web servers. A single group G1
1 including all user classes is

specified. The solution identified by our methodology is
fully distributed for all values of K. For each site, e-mail
and web applications are allocated on dedicated servers and
a thin cluster supporting all user classes is introduced. If
SolA is compared with SolB, cost savings are higher than
280%, since professional guidelines suggest the
centralization of servers in a single site. For the one-site test
case, the professional solution is improved by about 20%,
since in this case the difference between the methodological
and professional solution is only due to a different sizing of
servers. Table 1 summarizes the total execution time and the
metrics defined above, as a function of the number of sites
K. In general, as the size of the system (i.e., the number of
sites) grows, the improvement of both the initial and final
professional solutions increases.

N. of
sites

Time IPI IPF

K=1 2.2 s 20.31% 18.22%
K=2 3.4 s 287.10% 281.76%

K=3 9.8 s 316.86% 302.88%
K=4 15.4 s 359.93% 346.46%
K=5 30.1 s 373.89% 348.83%

K=6 43.3 s 384.39% 366.14%

Table 1 - Summary of results of a
multi-department university.

5.2 An Internet banking system
The system is distributed over K sites, with K ranging
between 1 and 3. Each site supports 100.000 Internet users
accessing the following applications: (a) a web server

application; (b) a servlet engine; (c) an application server;
(d) a relational DBMS storing historical data on stock
quotes; (e) an object-oriented DBMS storing user data.
Users issue two types of requests, information retrieval and
transaction execution, with a 10 to 1 ratio. The overall
average access rate to the system is about 250 accesses per
hour. Data on user classes, RAM, MIPS and data exchange
requirements among server applications have been obtained
from the logs of a large national financial institution. The
target system for the optimization is based on Ultra Sparc
Solaris servers (see the observation on MIPS in Section 2).
DBMSs are replicated in all sites and transactions write
multiple copies of data synchronously for fault tolerance
purposes. Three different allocations of applications into
tiers are allowed: a 5-tier allocation, which assigns each
server application to a single tier, and two 4-tier allocations,
which assign the servlet engine to the same tier of either the
web server or the application server. This is obtained by
introducing two 2

hG groups: the first group includes web
servers and servlet engines; the second group includes
servlet engines and application servers. Results are reported
in Table 2. The professional solutions are not improved by
the final fine-tuning step. The decomposition is effective, as
it enables a 10-20% reduction of TCO, which increases with
the size and complexity of the system. SolA and SolC are
different from each other. In SolA, database servers are
replicated in all sites, according to design constraints, and
web applications are centralized on one cluster in one site.
Servlet engines and application servers are allocated on the
same cluster, but one such cluster is allocated on each site to
serve the site’s user classes. This contrasts against
professional guidelines suggesting the allocation of
applications with the maximum number of tiers and the
centralization of corresponding tiers of different instances
of the same application. SolC allocates all server
applications to the same site on 5 tiers.

N. of
sites

Time IPI IPF

K=1 1.3 s 10.52% 10.52%

K=2 8.2 s 15.06% 15.06%
K=3 19.1 s 19.79% 19.79%

Table 2 - Summary of results
of an Internet banking system.

5.3 An information retrieval system
The following test case is based on the work presented in
[7]. An information retrieval system is considered,
composed by two applications: (a) the information retrieval
engine, called inquery server, which stores and retrieves
documents by providing a query interface; (b) the central
broker, called connection server, which administers the
connection between users and inquery servers by
maintaining a list of available connections and by routing
queries and responses, accordingly. The system is
distributed over K sites, with K ranging between 1 and 3.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp1-7)

Each site has a local connection server and four inquery
servers. Local connection servers distribute requests to both
local and remote inquery servers (which store different
data). External users access the distributed system from the
Internet and can issue search retrieval and document
retrieval commands. Requests are uniformly distributed
across inquery servers. The target system for the
optimization is based on Alpha servers. Data on MIPS and
RAM requirements and data exchanges are obtained from
[7]. Two groups are introduced, G1

2 including all the
instances of connection servers and G2

2 including all
inquery servers. In both SolA and SolB severs are localized
in one site. Anyway, in SolA, connection servers are
centralized within the same cluster, while each instance of
the inquery server is assigned to a separate cluster. The
professional solution suggests the location of all servers in
one site and the centralization of both connection and
inquery servers in two clusters. The fine-tuning step
improves SolB by 2-4% (see Table 3). The decomposition is
effective as it identifies a solution 20-55% cheaper than
SolC. SolA is also 30-60% cheaper than SolB.

N. of
sites

Time IPI IPF

K=1 1.5 s 28.44% 23.88%

K=2 2.8 s 49.36% 46.46%
K=3 177.98 s 64.31% 58.19%

Table 3 - Summary of results of
an information retrieval system.

6 Conclusions
We have proposed an overall approach to support the cost-
oriented design of hardware and network systems
considering both infrastructural, network and management
costs. Most of the design alternatives enabled by current
technologies are addressed, including server sizing and
localization of multi-tier applications. Cost reductions have
been evaluated by comparing the cost of methodological
results with those of architectural solutions obtained by
applying professional design guidelines. Testing results
indicate that cost reductions can be significant and
considerably grow with the size and complexity of the
system. Current professional rules are challenged by
findings, this indicates that general design guidelines are
difficult to infer. Analyses show that the geographical
centralization of servers can reduce management costs, but
cannot be assumed as a universal cost-minimizing paradigm
[10,11]. Similarly, a higher number of tiers does not
represent a reliable source of savings [14]. From a
methodological standpoint, cost-oriented design is suitable
for the selection of a combination of technology resources,
while it involves an approximation in their individual
sizing. Future work will consider the integration of the cost-
oriented algorithm with traditional performance analyses
which provide precise sizing information.

References:
[1] T.F. Abdelzaher, K.G. Shin, N. Bhatti, “User-level

QoS-adaptive resource management in server end-
systems,” IEEE Trans. on Computers, 52, 678-685,
2003.

[2] T.F. Abdelzaher, K.G. Shin, N. Bhatti, “Performance
Guarantees for Web Server End-Systems: A Control-
Theoretical Approach,” IEEE Trans. on Parallel and
Distrib. Systems, 13, 80-96, 2002.

[3] D. Ardagna, “A cost-oriented methodology for the
design of information technology architectures”,
Politecnico di Milano, Ph. Dissertation,
http://www.elet.polimi.it/upload/ardagna/phd_dissertat
ion.pdf, 2004

[4] D. Ardagna, C. Francalanci, M. Trubian, “A cost-
oriented approach for infrastructural design,” ACM
SAC2004 Proc., 2004.

[5] D. Ardagna, C. Francalanci, “A Cost-Oriented
Approach for the Design of IT Architectures”, Journal
of Information Technology 20, 32-51, 2005.

[6] D. Ardagna, C. Francalanci, G. Bazzigaluppi, M. Gatti,
F. Silveri, M.Trubian, “A Cost-oriented tool to support
server consolidation”, ICEIS 2005 Proc., 2005.

[7] B. Cahoon, K. S. McKinley, Z. Lu, “Evaluating the
performance of distributed architectures for
information retrieval using a variety of loads,” ACM
Trans. on Information Systems, 18, 1-43, 2000.

[8] Gavish, B., Pirkul, H, “ Computer and Database
Location in Distributed Computer Systems,” IEEE
Trans. on Computers. 35(7), 583-590, 1986.

[9] F. Glover, M. Laguna, Tabu Search, Kluwer Academic
Publishers, 1997.

[10] HP, “The Scope of HP Systems Consolidation,”
http://www.hp.com/products1/unixservers/solutions,
2002.

[11] IBM, “Improve the Return on Your IT Investment with
Server Consolidation,” http://www-
1.ibm.com/servers/eserver/iseries/australia/serv.htm,
2002.

[12] H.K. Jain, “A Comprehensive Model for the Design of
Distributed Computer Systems,” IEEE Trans. on
Software Engineering, 13, 1092-1104, 1987.

[13] D.A. Menascé, and V.A.F. Almeida, “Scaling for E-
business. Technologies, models, performance and
capacity planning”, Prentice-Hall, 2000.

[14] P. Sonderegger, H. Manning, “Best Practices For Web
Site Reviews,” Forrest Research, 2002.

[15] R. Yuan, W.T. Strayer, “Virtual Private Networks:
Technologies and Solutions,” Addison Wesley, 2001.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp1-7)

